JPS6138140B2 - - Google Patents

Info

Publication number
JPS6138140B2
JPS6138140B2 JP54053259A JP5325979A JPS6138140B2 JP S6138140 B2 JPS6138140 B2 JP S6138140B2 JP 54053259 A JP54053259 A JP 54053259A JP 5325979 A JP5325979 A JP 5325979A JP S6138140 B2 JPS6138140 B2 JP S6138140B2
Authority
JP
Japan
Prior art keywords
dielectric constant
weight
temperature
composition
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54053259A
Other languages
Japanese (ja)
Other versions
JPS55144470A (en
Inventor
Shinobu Fujiwara
Kyoshi Furukawa
Nobuaki Kikuchi
Osamu Iizawa
Hitoshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP5325979A priority Critical patent/JPS55144470A/en
Publication of JPS55144470A publication Critical patent/JPS55144470A/en
Publication of JPS6138140B2 publication Critical patent/JPS6138140B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高誘電率系磁器組成物に係り、複合酸
化物の固相反応によつて合成されたPb(Mg1/3
Nb2/3)O3―PbTiO3―Pb(Mg1/2W1/2)O3
Pb(Mn1/3Ta2/3)O3系酸化物で、特に低温度
焼結が可能で、高誘電率、かつ誘電体損失が小さ
く、絶縁抵抗の優れた高誘電率系磁器組成物に関
するものである。従来より高誘電率系磁器組成物
として、BaTiO3系を主成分としてBaSnO3
CaTiO3、PbTiO3などを基本として、その置換固
溶体あるいは他の結晶構造を有する化合物との複
合誘電体磁器が、種々の要求特性に対して、広く
実用化されている。これ等の磁器誘電体は、特性
改善の為に常温での誘電率を最大にすると誘電率
の温度変化が大きくなり、一方誘電率の温度変化
を小さくすれば誘電率の最大値が減少するなど実
用上種々の問題点があり、その改善が望まれてい
た。更に、BaTiO3系を主成分としたものである
ために通常1200〜1400℃附近の高温領域で焼結を
必要とするために焼結時、多量の熱エネルギーを
必要とし、更に高温下の焼成炉材の熱的劣化損失
が激しく、従つて焼成装置の保全費がかさむ等の
欠点があつた。また最近急速に普及しつつある積
層磁器コンデンサにあつては、製造法上、内部電
極を磁器誘電体に埋込んだ状態で焼結する必要が
あり、焼結温度が1200℃を越える従来の磁器誘電
体では、1300℃以上の高温で安定ではあるが高価
な貴金属・白金、パラジウムもしくはこれ等の合
金を使用しなければならなかつた。もし1000℃程
度の低温度焼結可能な磁器誘電体を積層磁器コン
デンサとして用いることが可能であれば、埋込み
内部電極に銀系、ニツケル系、アルミ系等の安価
な金属材料を内部電極として使用出来ることにな
り、製造コスト面で極めて有利である。もちろん
低温度焼結で得られた磁器誘電体は、絶縁抵抗が
高く、誘電率が比較的大きく、誘電体損失が小さ
く、かつ温度変化率の優れたものが必要とされ
る。従来、これ等の条件を備えた低温度焼結によ
る安定な磁器誘電体は少なく、その実現が望まれ
ていた。 本発明者等は、上述の要請に鑑み、鋭意研究の
結果、本発明に到達したものであり、その要旨
は、Pb(Mg1/3Nb2/3)O3―PbTiO3―Pb(Mg
1/2W1/2)O3系組成物でPb(Mg1/3Nb2/3)O3
―PbTiO3,PbTiO3―Pb(Mg1/2W1/2)O3,Pb
(Mg1/2W1/2)O3―Pb(Mg1/3Nb2/3)O3の各
二成分組成線上にある酸化物組成比を除き、三成
分組成図におけるA,B,C,D,Eに囲まれる
組成範囲内の酸化物で、 PbO 63.98〜73.09重量% Nb2O5 0.02〜26.96重量% MgO 0.45〜5.16重量% WO3 0.04〜23.7重量% TiO2 0.23〜23.52重量%の範囲の酸化物
に対してPb(Mn1/3Ta2/3)O3を0.05〜5.0重量
%添加含有したことを特徴とする高誘電率系磁器
組成物に関するものである。 すなわち、本発明者らはすでに低温度で焼結で
きるPb(Mg1/3Nb2/3)O3―PbTiO3―Pb(Mg
1/2W1/2)O3系からなる3成分系高誘電率系磁
器組成物を提案しているが、本発明はこの3成分
系と副成分としてMnOを添加含有せしめるもの
で絶縁抵抗を極めて高くせしめることによつて温
度特性が極めて安定したかつ焼結性の優れた高誘
電率系磁器組成物を提供するものである。すなわ
ち、本発明は850〜1050℃附近の低温度領域で極
めて安定して焼結することが可能で、かつ特性の
優れた高誘電率系磁器組成物を提供するものであ
る。 以下実施例によつて本発明を詳述する。 出発原料として酸化鉛(PbO)、酸化ニオブ
(Nb2O5)、酸化マグネシユム(MgO)、酸化タン
グステン(WO3)、酸化チタン(TiO2)、酸化マ
ンガン(MnO)、酸化タンタル(Ta2O5)を用い、
第1表に示した配合比となるように秤量した。こ
れ等の原料配合物を合成樹脂ボールミルで、湿式
混合した後、700〜850℃で2時間仮焼し、化学反
応を行なわせしめた。この反応物を、ふたたびボ
ールミルを用いて、粒子径数μ程度に粉砕混合す
る。 この混合物に粘結剤としてポリビニールアルコ
ール(PVA)を適当量加え、約3トン/cm3の成
形圧力で直径16.5mm、厚さ0.6mmの円板状成形物
を作成した。成形物は高温での鉛成分の蒸発を防
ぐ為、マグネシア磁器製容器に密閉して、約850
〜1050℃で2時間本焼成する。こうして得られた
磁器素体の両端面に銀電極を照付する。このよう
にして製造した試料を、それぞれ電気特性を測定
した結果を第1表に示す。 ここで誘電率εsおよび誘電体損失(tamδ)
は、周波数1KHzで測定した。絶縁抵抗は、直流
500Vを印加して、室温20℃で測定した。
The present invention relates to a high dielectric constant ceramic composition, in which Pb (Mg1/3
Nb2/3)O 3 ―PbTiO 3 ―Pb(Mg1/2W1/2)O 3
This is a Pb(Mn1/3Ta2/3)O 3 -based oxide, and relates to high-permittivity ceramic compositions that can be sintered at low temperatures, have a high dielectric constant, have low dielectric loss, and have excellent insulation resistance. be. Conventionally, high dielectric constant ceramic compositions have been made with BaTiO 3 as the main component, BaSnO 3 ,
Composite dielectric ceramics based on CaTiO 3 , PbTiO 3 , etc., and substituted solid solutions thereof or compounds having other crystal structures have been widely put into practical use to meet various required characteristics. For these porcelain dielectrics, if the dielectric constant at room temperature is maximized to improve the characteristics, the temperature change in the dielectric constant becomes large, while if the temperature change in the dielectric constant is made small, the maximum value of the dielectric constant decreases. There are various problems in practical use, and improvements have been desired. Furthermore, since it is mainly composed of BaTiO 3 , it requires sintering at a high temperature range of usually around 1200 to 1400℃, which requires a large amount of thermal energy during sintering. There were drawbacks such as severe thermal deterioration loss of the furnace material and therefore increased maintenance costs for the firing equipment. Furthermore, in the case of multilayer porcelain capacitors, which are rapidly becoming popular these days, the manufacturing method requires that the internal electrodes be sintered while being embedded in a porcelain dielectric, which is different from conventional porcelain capacitors whose sintering temperature exceeds 1200°C. For the dielectric, it was necessary to use precious metals such as platinum, palladium, or alloys of these, which are stable at high temperatures of 1,300°C or higher, but are expensive. If it is possible to use a ceramic dielectric material that can be sintered at a low temperature of about 1000℃ as a multilayer ceramic capacitor, use an inexpensive metal material such as silver, nickel, or aluminum for the embedded internal electrode. This is extremely advantageous in terms of manufacturing costs. Of course, the porcelain dielectric obtained by low-temperature sintering is required to have high insulation resistance, relatively large dielectric constant, small dielectric loss, and excellent temperature change rate. Hitherto, there have been few stable porcelain dielectrics produced by low-temperature sintering that meet these conditions, and the realization of such materials has been desired. In view of the above-mentioned demands, the present inventors have arrived at the present invention as a result of intensive research.
Pb(Mg1/3Nb2/ 3 )O3 in 1/2W1/2) O3 system composition
―PbTiO 3 ,PbTiO 3 ―Pb(Mg1/2W1/2)O 3 ,Pb
(Mg1/2W1/2)O 3 - Pb (Mg1/3Nb2/3)O 3 Excluding the oxide composition ratios on each binary composition line, A, B, C, D, and E in the ternary composition diagram Oxides in the composition ranges enclosed: PbO 63.98-73.09% by weight Nb 2 O 5 0.02-26.96% by weight MgO 0.45-5.16% by weight WO 3 0.04-23.7% by weight TiO 2 0.23-23.52% by weight The present invention relates to a high dielectric constant ceramic composition characterized in that Pb(Mn1/3Ta2/3)O 3 is added in an amount of 0.05 to 5.0% by weight. That is, the present inventors have already developed Pb(Mg1/3Nb2/3)O 3 -PbTiO 3 -Pb(Mg
A 3-component high dielectric constant ceramic composition consisting of 1/2W1/2)O 3 system has been proposed, but the present invention combines this 3-component system with MnO as a subcomponent to achieve extremely high insulation resistance. By increasing the temperature, a high dielectric constant ceramic composition with extremely stable temperature characteristics and excellent sinterability is provided. That is, the present invention provides a high dielectric constant ceramic composition that can be sintered extremely stably in a low temperature range of around 850 to 1050°C and has excellent properties. The present invention will be explained in detail below with reference to Examples. Lead oxide (PbO), niobium oxide (Nb 2 O 5 ), magnesium oxide (MgO), tungsten oxide (WO 3 ), titanium oxide (TiO 2 ), manganese oxide (MnO), tantalum oxide (Ta 2 O) as starting materials. 5 ) using
The ingredients were weighed to achieve the blending ratio shown in Table 1. These raw material mixtures were wet mixed in a synthetic resin ball mill and then calcined at 700 to 850°C for 2 hours to cause a chemical reaction. This reaction product is pulverized and mixed again using a ball mill to a particle size of about several μm. An appropriate amount of polyvinyl alcohol (PVA) was added as a binder to this mixture, and a disc-shaped molded product with a diameter of 16.5 mm and a thickness of 0.6 mm was produced at a molding pressure of about 3 tons/cm 3 . The molded product is sealed in a magnesia porcelain container to prevent the lead component from evaporating at high temperatures.
Main firing at ~1050°C for 2 hours. Silver electrodes are illuminated on both end faces of the porcelain body thus obtained. Table 1 shows the results of measuring the electrical properties of the samples produced in this way. Here, dielectric constant εs and dielectric loss (tamδ)
was measured at a frequency of 1KHz. Insulation resistance is DC
500V was applied and measurements were taken at room temperature of 20°C.

【表】【table】

【表】 第1表において、試料No.1,5,6,10,11,
15,16,20は本発明の範囲外のものであり、比較
の為示した。 第1表より明らかなように、本発明範囲内のも
のは、比誘電率(εs)が約3000〜9980の高い値
を示し、誘電体損失(tanδ)は0.3〜1.6%の極
めて小さな値を示し、絶縁抵抗(IR)が9×1011
Ωを示している状態でしかも1000℃未満の低温度
で焼結が可能である。すなわち、この組成範囲か
らはずれるものでは第1表に示すように望ましい
特性を得ることはできなかつた。 その限定理由を具体的に述べる。 Pb(Mn1/3Ta2/3)O3が0.05重量%以下では誘
行体損失(tanδ)及び絶縁抵抗(IR)の改善効
果がなく実用的でない。又5.0重量%以上では誘
電率(εs)が低下して好ましくなく誘電体損失
(tanδ)、絶縁抵抗(IR)が悪化して実用的でな
い。 なお、実施例においてMgO等は炭酸塩の形で
用いたが他の形の例えば硝酸塩のものでも本発明
の技術思想に包含されることは明らかである。 以上の様に本発明のPb(Mg1/3Nb2/3)O3
PbTiO3―Pb(Mg1/2W1/2)O3―Pb(Mn1/3Ta
2/3)O3系高誘電率磁器組成物によると、低温度
焼結が可能となり、かつ誘電率(εs)が高く、
誘電体損失(tanδ)、絶縁抵抗(IR)の極めて
良好な新規な磁器組成物が得られ、また積層磁器
コンデンサに使用した場合、埋込内部電極に銀
系・ニツケル系・アルミ系の如き低融点金属の使
用が可能となつた。 したがつて、従来の高温領域焼結材に比較し
て、多量の熱エネルギー、焼成炉材等の保全費に
格段の効果があるので省エネルギーの観点からコ
スト面で極めて有利な高誘電率系磁器組成物を提
供することができるので工業上の利益に大なるも
のがある。
[Table] In Table 1, sample No. 1, 5, 6, 10, 11,
Samples 15, 16, and 20 are outside the scope of the present invention and are shown for comparison. As is clear from Table 1, those within the range of the present invention exhibit high relative dielectric constants (εs) of about 3000 to 9980, and extremely small dielectric loss (tanδ) of 0.3 to 1.6%. and the insulation resistance (IR) is 9×10 11
It is possible to sinter at a low temperature of less than 1000°C while exhibiting Ω. That is, if the composition deviated from this range, it was not possible to obtain the desired properties as shown in Table 1. The reason for this limitation will be explained in detail. If Pb(Mn1/3Ta2/3)O 3 is less than 0.05% by weight, there is no effect of improving dielectric loss (tan δ) and insulation resistance (IR) and it is not practical. If it exceeds 5.0% by weight, the dielectric constant (εs) decreases, which is undesirable, and dielectric loss (tan δ) and insulation resistance (IR) deteriorate, making it impractical. Although MgO and the like were used in the form of carbonate in the examples, it is clear that other forms such as nitrate are also included in the technical idea of the present invention. As described above, the Pb(Mg1/3Nb2/3)O 3 of the present invention
PbTiO 3 ―Pb(Mg1/2W1/2)O 3 ―Pb(Mn1/3Ta
2/3) O 3 based high dielectric constant porcelain composition enables low temperature sintering, has a high dielectric constant (εs),
A new ceramic composition with extremely good dielectric loss (tanδ) and insulation resistance (IR) has been obtained, and when used in a multilayer ceramic capacitor, it is possible to use low-temperature materials such as silver, nickel, and aluminum for the embedded internal electrodes. It became possible to use melting point metals. Therefore, compared to conventional sintered materials in high-temperature ranges, high-permittivity porcelain is extremely effective in terms of cost from the perspective of energy saving, as it is significantly effective in reducing the amount of thermal energy and maintenance costs for firing furnace materials, etc. There are great industrial benefits as a result of the ability to provide compositions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるPb(Mg1/3Nb2/3)O3
―PbTiO3―Pb(Mg1/2W1/2)O3系高誘電率磁
器組成物の三成分組成図を示す。 第1図において点A,B,C,D,Eに囲まれ
る範囲が本発明の範囲である。(只しA・B,
B・C,C・D,D・A線上は除く)
Figure 1 shows Pb(Mg1/3Nb2/3)O 3 according to the present invention.
-PbTiO3 - Pb(Mg1/2W1/2) O3 -based high dielectric constant ceramic composition shows a three-component composition diagram. The range surrounded by points A, B, C, D, and E in FIG. 1 is the range of the present invention. (Just A/B,
(Except on B/C, C/D, D/A lines)

Claims (1)

【特許請求の範囲】 1 Pb(Mg1/3Nb2/3)O3―PbTiO3―Pb(Mg
1/2W1/2)O3系組成物でPb(Mg1/3Nb2/3)O3
―PbTiO3,PbTiO3―Pb(Mg1/2W1/2)O3,Pb
(Mg1/2W1/2)O3Pb(Mg1/3Nb2/3)O3の各二
成分組成線上にある酸化物組成比を除き、三成分
組成図におけるA,B,C,D,Eに囲まれる組
成範囲内の酸化物で、 PbO 63.98〜73.09重量% Nb2O5 0.02〜26.96重量% MgO 0.45〜5.16重量% WO3 0.04〜23.7重量% TiO2 0.23〜23.52重量%の範囲の酸化物
に対してPb(Mn1/3Ta2/3)O3を0.05〜5.0重量
%添加含有したことを特徴とする高誘電系磁器組
成物。
[Claims] 1 Pb(Mg1/3Nb2/3)O 3 —PbTiO 3 —Pb(Mg
Pb(Mg1/3Nb2/ 3 )O3 in 1/2W1/2) O3 system composition
―PbTiO 3 ,PbTiO 3 ―Pb(Mg1/2W1/2)O 3 ,Pb
(Mg1/2W1/2)O 3 Pb ( Mg1/3Nb2/3)O PbO 63.98-73.09% by weight Nb 2 O 5 0.02-26.96% MgO 0.45-5.16% WO 3 0.04-23.7% TiO 2 0.23-23.52% by weight A high dielectric ceramic composition characterized in that Pb(Mn1/3Ta2/3)O 3 is added in an amount of 0.05 to 5.0% by weight.
JP5325979A 1979-04-28 1979-04-28 High dielectric ceramic composition Granted JPS55144470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5325979A JPS55144470A (en) 1979-04-28 1979-04-28 High dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5325979A JPS55144470A (en) 1979-04-28 1979-04-28 High dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS55144470A JPS55144470A (en) 1980-11-11
JPS6138140B2 true JPS6138140B2 (en) 1986-08-27

Family

ID=12937776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5325979A Granted JPS55144470A (en) 1979-04-28 1979-04-28 High dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS55144470A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450240A (en) * 1982-03-17 1984-05-22 Nippon Electric Co., Ltd. Ceramic compositions having high dielectric constant and high specific resistivity

Also Published As

Publication number Publication date
JPS55144470A (en) 1980-11-11

Similar Documents

Publication Publication Date Title
JP3028503B2 (en) Non-reducing dielectric porcelain composition
JPH10310469A (en) Production of powdery starting material for dielectric ceramic and dielectric ceramic composition
JP2978580B2 (en) High dielectric constant dielectric porcelain composition
JPH05109319A (en) High dielectric constant dielectric porcilain composition
JPS6128619B2 (en)
JPS6128621B2 (en)
JPH0583508B2 (en)
JPS6211444B2 (en)
JPS6128620B2 (en)
JPS6211443B2 (en)
JPS6138140B2 (en)
JPS6135144B2 (en)
JPS6217805B2 (en)
JPS6211442B2 (en)
JPH0261434B2 (en)
JPS6216481B2 (en)
JP3321929B2 (en) Electronic components
JPS6346925B2 (en)
JPS6134206B2 (en)
JPS6216482B2 (en)
JPS629961B2 (en)
JPS6117087B2 (en)
JPS6223406B2 (en)
JPS6217804B2 (en)
JPS6216483B2 (en)