WO2016125520A1 - Semiconductor element and method for manufacturing same - Google Patents

Semiconductor element and method for manufacturing same Download PDF

Info

Publication number
WO2016125520A1
WO2016125520A1 PCT/JP2016/050205 JP2016050205W WO2016125520A1 WO 2016125520 A1 WO2016125520 A1 WO 2016125520A1 JP 2016050205 W JP2016050205 W JP 2016050205W WO 2016125520 A1 WO2016125520 A1 WO 2016125520A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
semiconductor element
particles
internal electrode
ceramic body
Prior art date
Application number
PCT/JP2016/050205
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 深町
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016573240A priority Critical patent/JP6739353B2/en
Priority to CN201680007338.7A priority patent/CN107210105B/en
Priority to DE112016000618.7T priority patent/DE112016000618T5/en
Publication of WO2016125520A1 publication Critical patent/WO2016125520A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Definitions

  • the present invention relates to a semiconductor element and a manufacturing method thereof, and more particularly to a barium titanate-based semiconductor element and a manufacturing method thereof.
  • barium titanate-based semiconductor ceramics have a positive temperature characteristic, they are widely used in semiconductor elements such as a positive temperature coefficient thermistor (PTC thermistor).
  • PTC thermistor positive temperature coefficient thermistor
  • Patent Document 1 discloses a temperature characterized by discontinuously dispersing and adhering child particles made of metal particles that are in ohmic contact with the mother particles to the surface of the mother particles made of semiconductor particles having nonlinear temperature characteristics. A method for producing characteristic-functional composite particles is described. The composite particles described in Patent Document 1 are not subjected to high-temperature sintering, and the composite particles are dispersed in a solvent and applied, or as a green compact. It can be used as such.
  • Patent Document 2 discloses an insulating ceramic substrate, a thermistor thick film having a positive resistance temperature characteristic formed of a semiconductor ceramic sintered body formed on the insulating ceramic substrate, a thermistor thick film in contact with the thermistor thick film.
  • a positive temperature coefficient thermistor is described, comprising at least one pair of electrodes facing each other across at least a part of the film, wherein the thermistor thick film has a resistivity at room temperature of less than 10 k ⁇ ⁇ cm. .
  • the positive temperature coefficient thermistor described in Patent Document 2 can widen the contact area between crystal grains in the semiconductor ceramic constituting the thermistor thick film, and can reduce the resistance.
  • Patent Document 3 discloses a barium titanate-based semiconductor ceramic having an average ceramic particle size of 0.9 ⁇ m or less. Patent Document 3 describes that barium titanate semiconductor ceramics having an average ceramic particle size in the above range have a small specific resistance at room temperature and an excellent withstand voltage strength. Patent Document 3 discloses that the above-mentioned barium titanate-based semiconductor ceramic has a particle size of 0.1 ⁇ m or less, a crystal structure of cubic, a lattice constant of 4.020 angstroms or more, and a small amount of semiconductor. It is described that a barium titanate powder in which an agent is solid-solved or a product obtained by calcining the barium titanate powder is used as a raw material powder and is fired.
  • PTC thermistors are used in a wide variety of electronic devices to protect against overcurrent. With the recent increase in functionality of electronic devices, a PTC thermistor capable of handling particularly a large current has been demanded, and a PTC thermistor element having high withstand voltage characteristics has been developed. In order to improve the withstand voltage characteristics of the PTC thermistor, semiconductor ceramics constituting the PTC thermistor are made fine (Patent Document 3). However, as a result of repeated studies by the present inventor, it has been clarified that there is a problem that the specific resistance at room temperature of the PTC thermistor increases due to the formation of fine particles.
  • Patent Document 2 describes that the resistance is reduced by increasing the contact area between crystal grains in the semiconductor ceramic.
  • the crystal particles described in Patent Document 2 have a large particle size with an average particle size of 2 to 38 ⁇ m.
  • An object of the present invention is to provide a semiconductor device having a high withstand voltage characteristic and a low specific resistance at room temperature, and a method for manufacturing the same.
  • the present inventor conducted research while paying attention to the physical properties of perovskite type compound particles which are starting materials for manufacturing a semiconductor element.
  • the specific surface area of the perovskite-type compound particles and the ratio of the c-axis length to the a-axis length (tetragonal) c / a of the crystal lattice of the perovskite-type compound particles ceramics constituting the semiconductor element.
  • the inventors have found that it is possible to achieve both the fine particle formation of the ceramic sintered body particles contained in the element body and the improvement of the contact ratio of the ceramic sintered body particles, and have completed the present invention.
  • a ceramic body including ceramic sintered body particles; A first external electrode disposed on a first end face of the ceramic body, A semiconductor element including a second external electrode disposed on a second end face of the ceramic body, Ceramic sintered body particles are perovskite type compounds containing at least Ba and Ti, The average particle size of the ceramic sintered body particles is 0.4 ⁇ m or more and 1.0 ⁇ m or less, The total perimeter L G of ceramic sintered body particles present in one region, calculated by observing one region selected in one cross section of the semiconductor element with a scanning electron microscope, Total L NC of the perimeter of pores (pores) existing in the region, outer peripheral length L S of one region, and the following formula In represented, based on the value of the contact length L C of the ceramic sintered particles present in one area, the following formula A semiconductor element in which the contact ratio of the ceramic sintered body particles calculated by the above is 45% or more is provided.
  • the contact ratio of the ceramic sintered body particles is preferably 45% or more and 80% or less.
  • the semiconductor element described above may be a stacked semiconductor element in which one or more first internal electrodes and one or more second internal electrodes are arranged inside a ceramic body.
  • the first internal electrode is electrically connected to the first external electrode at the first end face of the ceramic body
  • the second internal electrode is connected to the second end face of the ceramic base body at the second end face. Electrically connected to the external electrode.
  • the first internal electrode and the second internal electrode may be Ni electrodes.
  • a method for manufacturing a semiconductor element Preparing perovskite-type compound particles containing at least Ba and Ti; Forming a green chip containing perovskite-type compound particles; Obtaining a ceramic body by firing a green chip; Forming a semiconductor element by forming external electrodes on both end faces of the ceramic body,
  • the specific surface area of the perovskite type compound particles is 4.0 m 2 / g or more and 14.0 m 2 / g or less,
  • a method is provided wherein the ratio c / a of the c-axis length to the a-axis length of the crystal lattice of the perovskite type compound particles is 1.005 or more and 1.009 or less.
  • the specific surface area of the perovskite type compound particles is preferably 4.0 m 2 / g or more and 11.0 m 2 / g or less.
  • the step of forming the green chip containing the perovskite type compound particles Producing a ceramic green sheet containing perovskite type compound particles; Applying a conductive paste for internal electrodes on the main surface of the ceramic green sheet; A step of obtaining a laminate by laminating a plurality of the ceramic green sheets coated with the internal electrode conductive paste; And placing a ceramic green sheet not coated with the internal electrode conductive paste on the upper and lower sides of the laminate and pressing the ceramic green sheet, and cutting to a predetermined size to obtain a green chip.
  • the above-mentioned internal electrode conductive paste may contain Ni metal powder as the conductive powder.
  • the semiconductor element according to the present invention has a high withstand voltage characteristic and a low specific resistance at room temperature due to the above configuration. Moreover, the manufacturing method of the semiconductor element which concerns on this invention can manufacture the semiconductor element which has a high withstand voltage characteristic and has a low specific resistance at room temperature by having the said structure.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a modification of the semiconductor device according to one embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of another modification of the semiconductor device according to one embodiment of the present invention.
  • 4, in one section of the ceramic body is a diagram showing a total L G around the length of the ceramic sintered particles present in the SEM observation region.
  • 5 in one section of the ceramic body is a diagram showing a total L NC of perimeter of the pores existing in SEM observation region.
  • FIG. 6 is a diagram showing the outer peripheral length L S of the SEM observation region in one cross section of the ceramic body.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor element 1 according to this embodiment.
  • the semiconductor element 1 according to this embodiment is a PTC thermistor.
  • a semiconductor element 1 shown in FIG. 1 is disposed on a ceramic body 2, a first external electrode 31 disposed on a first end surface 21 of the ceramic body 2, and a second end surface 22 of the ceramic body 2.
  • Second external electrode 32 is disposed on a ceramic body 2, a first external electrode 31 disposed on a first end surface 21 of the ceramic body 2, and a second end surface 22 of the ceramic body 2.
  • the ceramic body 2 includes ceramic sintered body particles.
  • the sintered ceramic particles are made of a ceramic material in which a donor element is added to barium titanate.
  • the ceramic sintered body particles are a perovskite type compound containing at least Ba and Ti.
  • the perovskite-type compound includes, in addition to Ba and Ti, at least one element selected from the group consisting of rare earth elements excluding Pm, Tm, Yb and Lu and / or a group consisting of Nb, W, Sb and Ta. It may contain at least one element selected.
  • At least one element selected from the group consisting of rare earth elements excluding Pm, Tm, Yb and Lu is at least one element selected from the group consisting of “element ⁇ ”, Nb, W, Sb and Ta Is also referred to as “element ⁇ ”.
  • the elements ⁇ and ⁇ are donors (semiconductor agents) for imparting PTC characteristics to the ceramic body 2.
  • the ceramic sintered body particles may include only one of the above-described element ⁇ and element ⁇ , or may include both elements ⁇ and ⁇ .
  • the ceramic body 2 preferably contains 99.5 mol parts or more and 100.5 mol parts or less of Ba when the total mol portion of Ti and ⁇ is 100 mol parts.
  • the ceramic body 2 may contain the above-described element ⁇ and / or element ⁇ in addition to Ba and Ti.
  • the ceramic body 2 contains the element ⁇ and / or the element ⁇ in such an amount that the total content of the elements ⁇ and ⁇ in the ceramic body 2 is 0.020 mol part or more and 0.500 mol part or less. Is preferred.
  • the ceramic body 2 may further contain Si derived from a sintering aid described later.
  • the ceramic body 2 may contain 3 mol parts or less of Si with respect to 100 mol parts of Ti.
  • the ceramic body 2 may further contain Zr that can inevitably be mixed in the manufacturing process. Zr may occur due to the use of zirconia balls as a grinding and dispersion medium when preparing a ceramic slurry described later.
  • the ceramic body 2 may contain 0.01 mol part or more and 1 mol part or less of Zr with respect to 100 mol parts of Ti.
  • the average particle diameter of the ceramic sintered body particles contained in the ceramic body 2 is 0.4 ⁇ m or more and 1.0 ⁇ m or less. When the average particle size is 0.4 ⁇ m or more, a low specific resistance can be achieved. When the average particle size is 1.0 ⁇ m or less, the semiconductor device 1 can achieve high withstand voltage characteristics.
  • the average particle diameter of the sintered ceramic particles can be calculated by observing a cross section of the semiconductor element with a scanning electron microscope (SEM) and performing image analysis.
  • the room temperature is low.
  • the specific resistance at (25 ° C.) can be lowered.
  • the contact rate of the ceramic sintered body particles is used as an index for evaluating the contact area between the ceramic sintered body particles.
  • the contact ratio of the ceramic sintered body particles can be calculated by the procedure described below. First, the semiconductor element 1 is polished to expose a cross section, and the cross section is observed with a scanning electron microscope (SEM). The cross section to be observed with the SEM is not particularly limited, and an arbitrary cross section may be selected.
  • the cross section is obtained by, for example, polishing the semiconductor element 1 in the LT plane (plane perpendicular to the W direction) to about 1/2 W point (about half the W dimension of the semiconductor element).
  • the cross section of the semiconductor element may be parallel to.
  • the region to be observed with the SEM is not particularly limited, but may be, for example, a region sandwiched between internal electrodes in the vicinity of the central portion of the ceramic body 2.
  • the size and magnification of the observation region can be set as appropriate so that the number of ceramic sintered particles in the measurement region can be counted from about 70 to about 200.
  • the outer perimeter length L S is obtained. Examples of the results of obtaining L G , L NC and L S by image analysis are shown in FIGS.
  • Total L NC around the length of the pores shown in Figure 5 the length of the portion not in contact with the adjacent ceramic sintered particles of perimeter of the ceramic sintered particles (hereinafter, "non-contact length It can be regarded as the sum of “
  • the outer peripheral length L S of the observation region is in contact with the ceramic sintered particles present in the observation region among the peripheral lengths of the ceramic sintered particles located at the outermost edge of the observation region.
  • the contact length of the ceramic sintered body particles is obtained.
  • the contact ratio of the ceramic sintered body particles can be calculated using the following formula. The higher the contact ratio of the ceramic sintered body particles, the larger the contact area between the ceramic sintered body particles. In the semiconductor element 1 according to this embodiment, the contact ratio of the ceramic sintered body particles is 45% or more.
  • the contact ratio is 45% or more, the specific resistance at room temperature (25 ° C.) can be lowered even when the average particle diameter of the ceramic sintered body particles is small.
  • the contact ratio of the ceramic sintered body particles is preferably 45% or more and 80% or less. When the contact ratio is 80% or less, high PTC (positive temperature coefficient) characteristics can be achieved.
  • the dimensions of the ceramic body 2 are not particularly limited, and can be set as appropriate according to the application.
  • the dimension of the ceramic body 2 may be, for example, L dimension 2.0 mm ⁇ W dimension 1.2 mm ⁇ T dimension 1.0 mm.
  • the direction from the first end face 21 to the second end face 22 of the ceramic body 2 is the “L direction”, and the direction perpendicular to the L direction in the horizontal plane. Is called the “W direction”, and the direction perpendicular to the L direction and the W direction is called the “T direction”.
  • the dimension of the ceramic body 2 in the L direction is referred to as “L dimension”, the dimension in the W direction as “W dimension”, and the dimension in the T direction as “T dimension”.
  • the semiconductor element 1 is a stacked semiconductor in which one or more first internal electrodes 41 and one or more second internal electrodes 42 are arranged inside a ceramic body 2. It may be an element.
  • the first internal electrode 41 and the second internal electrode 42 may be collectively referred to as “internal electrodes”.
  • the first internal electrode 41 is electrically connected to the first external electrode 31 at the first end face 21 of the ceramic body 2, and the second internal electrode 42 is the second end face 22 of the ceramic body 2. And electrically connected to the second external electrode 32.
  • the first internal electrode 41 extends from the first end face 21 of the ceramic body 2 toward the second end face 22, and the second internal electrode 42 extends from the second end face 22 of the ceramic body 2.
  • the first internal electrodes 41 and the second internal electrodes 42 are alternately arranged so as to face each other inside the ceramic body 2.
  • the number of internal electrodes (the total of the first internal electrode 41 and the second internal electrode 42) may be, for example, about 2 or more and 50 or less.
  • the distance between the adjacent first internal electrode 41 and second internal electrode 42 is not particularly limited, and can be appropriately set according to a desired application.
  • the distance between the adjacent first internal electrode 41 and second internal electrode 42 may be, for example, about 10 ⁇ m to 200 ⁇ m.
  • the composition of the internal electrode is not particularly limited, and may be set as appropriate according to the application.
  • the first internal electrode 41 and the second internal electrode 42 may be, for example, Ni electrodes that exhibit good ohmic properties with respect to a barium titanate-based semiconductor.
  • a glass layer 5 may be formed on the surface of the ceramic body 2 as shown in FIG.
  • the glass layer 5 has a function of improving environmental resistance and element strength.
  • the composition and thickness of the glass layer 5 are not particularly limited, and may be set as appropriate according to the application.
  • the first internal electrode 41 and the second internal electrode 42 are disposed inside the ceramic body 2, but the semiconductor element 1 according to the present embodiment is limited to this configuration. However, the configuration may be such that no internal electrode is provided.
  • plating layers 61 and 62 (described later) are formed on the surfaces of the first external electrode 31 and the second external electrode 32.
  • the semiconductor element 1 according to the present embodiment is It is not limited to this structure, The structure which does not have a plating layer may be sufficient.
  • the semiconductor element 1 includes a first external electrode 31 disposed on the first end surface 21 of the ceramic body 2 and a second external surface disposed on the second end surface 22 of the ceramic body 2. Electrode 32.
  • the first external electrode 31 and the second external electrode 32 may be formed so as to extend to a part of the side surface of the ceramic body 2 as shown in FIG.
  • the “side surface” of the ceramic body 2 refers to a surface other than the first end surface 21 and the second end surface 22 of the ceramic body 2.
  • the first external electrode 31 and the second external electrode 32 may be collectively referred to as “external electrode”.
  • the composition and configuration of the external electrode can be appropriately set according to the type of the ceramic body 2 or the internal electrodes (the first internal electrode 41 and the second internal electrode 42) when present.
  • the first external electrode 31 and the second external electrode 32 may have, for example, a multilayer structure in which NiCr, NiCu alloy, and Ag are sequentially stacked.
  • plating layers 61 and 62 may be formed on the surfaces of the first external electrode 31 and the second external electrode 32 as shown in FIG.
  • the plating layers 61 and 62 have a function of improving solder wettability and heat resistance during mounting.
  • the composition of the plating layers 61 and 62 can be appropriately selected according to the composition of the external electrode, and may be, for example, a Sn plating layer, a Ni plating layer, or a combination of two or more thereof.
  • the first internal electrode 41 and the second internal electrode 42 are disposed inside the ceramic body 2, but the semiconductor element 1 according to the present embodiment is limited to this configuration. However, the configuration may be such that no internal electrode is provided.
  • the glass layer 5 is formed on the surface of the ceramic body 2, but the semiconductor element 1 according to the present embodiment is not limited to this configuration. The structure which does not have may be sufficient.
  • the method for manufacturing a semiconductor device includes a step of preparing perovskite type compound particles, a step of forming a green chip containing perovskite type compound particles, and a step of obtaining a ceramic body by firing the green chip. And forming a semiconductor element by forming external electrodes on both end faces of the ceramic body.
  • a method for manufacturing a stacked PTC thermistor having an internal electrode will be mainly described.
  • the method for manufacturing a semiconductor element according to the present invention is not limited to the following method. Absent.
  • perovskite compound particles containing at least Ba and Ti are prepared as raw materials for the ceramic body constituting the semiconductor element.
  • the perovskite type compound particles as the raw material may contain at least one element selected from the group consisting of rare earth elements excluding Pm, Tm, Yb and Lu and / or Nb, W, Sb and Ta in addition to Ba and Ti. It may contain at least one element selected from the group consisting of:
  • Each raw material of the perovskite type compound particles is weighed so that the composition of the ceramic sintered body particles contained in the ceramic body constituting the finally obtained semiconductor element becomes the target composition.
  • the composition of the target ceramic sintered body particles is as follows.
  • ICP-AES Inductively-Coupled-Plasma-Atomic-Emission-Spectrometry
  • It may be a composition represented by the formula (1).
  • is at least one element selected from the group consisting of rare earth elements excluding Pm, Tm, Yb and Lu, and ⁇ is at least one selected from the group consisting of Nb, W, Sb and Ta Elements.
  • m Ba is 99.50 ⁇ m Ba ⁇ 100.5
  • the range of m ( ⁇ + ⁇ ) is 0.020 ⁇ m ( ⁇ + ⁇ ) ⁇ 0.500
  • m is 0.995 ⁇ m ⁇ 1.005.
  • the ceramic sintered body particles contained in the ceramic body constituting the finally obtained semiconductor element contain the elements ⁇ and / or ⁇ as donors (semiconductor agents).
  • the raw material perovskite type compound particles may contain neither element ⁇ nor element ⁇ , or the total amount of element ⁇ and / or element ⁇ necessary for obtaining ceramic sintered particles having a desired composition may be included. It does not have to be included.
  • the amount of element ⁇ and / or ⁇ chloride, hydroxide, oxide, carbonate, alkoxide, ionized aqueous solution, etc. necessary for preparation of the ceramic slurry described later can be adjusted to the desired composition. it can.
  • the method for preparing the raw material perovskite type compound particles is not particularly limited, and a solid-phase synthesis method or a hydrothermal synthesis method such as a hydrothermal synthesis method or an oxalic acid method is appropriately used depending on the desired specific surface area and c / a. You can choose.
  • the raw material perovskite type compound particles may be prepared, for example, by the procedure described below. Each of the above-mentioned raw materials weighed is put into a ball mill together with PSZ (partially stabilized zirconia) balls and pure water. At this time, a sintering aid such as SiO 2 may be added as appropriate.
  • the raw materials in the ball mill are sufficiently mixed and pulverized by a wet process and dried to obtain a mixed powder.
  • the mixed powder is calcined at a temperature of 800 ° C. or higher and 1100 ° C. or lower to obtain raw material perovskite type compound particles as calcined powder.
  • the calcination temperature can be appropriately set according to the specific surface area of the target perovskite type compound particles and the value of c / a.
  • the specific surface area of the raw material perovskite compound particles is preferably 4.0 m 2 / g or more and 14.0 m 2 / g or less.
  • the specific surface area is 4.0 m 2 / g or more
  • the ceramic sintered body particles in the ceramic body constituting the obtained semiconductor element can be made a small particle diameter having an average particle diameter of 1.0 ⁇ m or less.
  • the specific surface area is 14.0 m 2 / g or less, the number of grain boundaries between the sintered particles in the ceramic body can be reduced, and the contact ratio of the sintered particles can be increased. As a result, the specific resistance at room temperature of the semiconductor element can be lowered.
  • the specific surface area of the perovskite compound particles is more preferably 4.0 m 2 / g or more and 11.0 m 2 / g or less. When the specific surface area is 11.0 m 2 / g or less, the specific resistance value at room temperature of the obtained semiconductor element can be further reduced.
  • the specific surface area of the perovskite compound particles can be measured by a gas adsorption method such as a BET method.
  • Raw material perovskite type compound particles have a highly tetragonal crystal structure.
  • perovskite type compound particles having a highly tetragonal crystal structure As a raw material, the specific resistance of the semiconductor element at room temperature (25 ° C.) can be lowered.
  • the ratio c / a of the c-axis length to the a-axis length of the crystal lattice of the raw material perovskite compound particles is preferably 1.005 or more and 1.009 or less.
  • c / a is more preferably 1.006 or more and 1.009 or less.
  • the c / a of the raw material perovskite compound particles can be calculated by conducting a qualitative analysis using a powder X-ray diffractometer and performing a Rietveld analysis.
  • the raw material perovskite type compound particles contain one or more rare earth elements as donors.
  • a green chip containing raw material perovskite type compound particles is formed.
  • a step of forming a green chip containing perovskite compound particles includes a step of producing a ceramic green sheet containing perovskite compound particles, and a main part of the ceramic green sheet.
  • a step of applying a conductive paste for internal electrodes on a surface a step of obtaining a laminate by laminating a plurality of ceramic green sheets coated with a conductive paste for internal electrodes, and a conductivity for internal electrodes above and below the laminate. And placing a ceramic green sheet to which a paste has not been applied, press-bonding, and cutting to a predetermined size to obtain a green chip.
  • a ceramic green sheet containing perovskite type compound particles is prepared according to the following procedure.
  • An organic binder, a dispersant and water are added to the raw material perovskite type compound particles and mixed with zirconia balls for several hours to obtain a ceramic slurry.
  • the raw material perovskite type compound particles do not contain both element ⁇ and element ⁇ , or the total amount of element ⁇ and / or element ⁇ necessary for obtaining ceramic sintered particles having a desired composition
  • a predetermined amount of chloride, hydroxide, oxide, carbonate, alkoxide, ionized aqueous solution, or the like of the element ⁇ and / or ⁇ may be added as a donor during the preparation of the ceramic slurry.
  • the above-mentioned ceramic slurry is formed into a sheet by the doctor blade method and dried to produce a ceramic green sheet.
  • the thickness of the ceramic green sheet is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • a conductive paste for internal electrodes is applied on the main surface of the ceramic green sheet.
  • conductive powder such as metal powder and an organic binder are dispersed in an organic solvent to prepare a conductive paste for internal electrodes.
  • metal powder such as Ni metal powder can be appropriately used.
  • this internal electrode conductive paste on the main surface of the ceramic green sheet.
  • the coating thickness of the internal electrode conductive paste is set so that the thickness of the internal electrode in the finally obtained semiconductor element is 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the conductive paste for internal electrodes may be applied by a method such as screen printing.
  • a plurality of ceramic green sheets coated with the internal electrode conductive paste are laminated to obtain a laminate.
  • the number of laminated ceramic green sheets coated with the internal electrode conductive paste may be set according to the number of internal electrodes that the finally obtained semiconductor element should have.
  • ceramic green sheets not coated with the internal electrode conductive paste are disposed on and under the laminate, for example, 20 sheets at a time, and subjected to pressure bonding, with predetermined dimensions so that the dimensions after firing become a desired value. Cut to get green chips.
  • the size of the ceramic body obtained by firing the green chip may be, for example, L size 2.0 mm ⁇ W size 1.2 mm ⁇ T size 1.0 mm.
  • a plurality of ceramic green sheets not coated with the internal electrode conductive paste are stacked, pressed, and cut to a predetermined size to produce a green chip. It's okay.
  • the ceramic body is obtained by firing the green chip.
  • the green chip is degreased at a temperature of 300 ° C. to 450 ° C. for 10 hours to 15 hours in an air atmosphere.
  • the green chip after the degreasing treatment is 0 at a temperature of 1000 ° C. or higher and 1300 ° C. or lower in a reducing atmosphere such as H 2 / N 2 / H 2 O mixed gas, Ar / H 2 , N 2 / H 2 / H 2 O, or the like. Baking for 5 hours or more and 3 hours or less to obtain a ceramic body.
  • the obtained ceramic body is glass-coated and heat-treated at a temperature of 600 ° C. or more and 900 ° C. or less in an air atmosphere to form a glass layer on the surface of the ceramic body, and at the same time, Reoxidation may be performed.
  • external electrodes are formed on both end faces of the ceramic body.
  • the ceramic body is barrel-polished.
  • External electrodes are formed on both end faces of the ceramic body after barrel polishing.
  • the composition and formation method of the external electrode are not particularly limited, and can be appropriately selected according to the purpose.
  • the external electrode can be formed by sputtering Cr, NiCu alloy and Ag in this order on both end faces of the ceramic body.
  • the external electrode may be formed by applying a paste containing a resin component and a metal (such as Ag) and baking it at an appropriate temperature.
  • a plating layer may be formed on the surface of the formed external electrode by a method such as electrolytic plating.
  • the composition of the plating layer can be appropriately selected according to the composition of the external electrode, and may be, for example, a Sn plating layer, a Ni plating layer, or a combination of two or more thereof. In this way, the semiconductor element according to this embodiment is obtained.
  • the semiconductor elements of Comparative Examples 1 and 2 and Examples 1 to 9 were produced by the following procedure.
  • the semiconductor elements of Comparative Examples 1 and 2 and Examples 1 to 9 are all laminated PTC thermistors.
  • Each of the above-mentioned raw materials weighed was put into a ball mill together with PSZ (partially stabilized zirconia) balls and pure water, sufficiently mixed and pulverized in a wet manner, and dried to obtain a mixed powder.
  • This mixed powder was calcined at a temperature of 800 ° C. or higher and 1100 ° C. or lower to obtain raw material perovskite type compound particles as calcined powder.
  • the obtained perovskite compound particles had a specific surface area of 2.1 m 2 / g and c / a of 1.010.
  • the specific surface area of the raw material perovskite type compound particles was measured using a Macsorb (registered trademark) manufactured by Mountec Co., Ltd.
  • the c / a of the raw material perovskite type compound particles was determined by conducting a qualitative analysis using a powder X-ray diffraction apparatus (RINT2500 manufactured by Rigaku Corporation) and performing a Rietveld analysis.
  • An organic binder, a dispersant and water were added to the obtained raw material perovskite type compound particles and mixed with zirconia balls for several hours to obtain a ceramic slurry.
  • This ceramic slurry was formed into a sheet by a doctor blade method and dried to prepare a ceramic green sheet having a thickness of 30 ⁇ m.
  • Ni metal powder and an organic binder were dispersed in an organic solvent to prepare a conductive paste for internal electrodes.
  • This internal electrode conductive paste was applied on the main surface of the ceramic green sheet by screen printing.
  • the coating thickness of the internal electrode conductive paste was adjusted so that the thickness of the internal electrode in the finally obtained semiconductor element was 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the ceramic green sheet coated with the internal electrode conductive paste and the ceramic green sheet not coated with the internal electrode conductive paste are included so that 24 internal electrodes are included and the distance between the internal electrodes is 30 ⁇ m. To obtain a laminate.
  • This green chip was degreased at 300 ° C. for 12 hours in an air atmosphere.
  • the green chip after the degreasing treatment was baked at a temperature of 1000 ° C. or higher and 1300 ° C. or lower for 2 hours in a reducing atmosphere using a H 2 / N 2 / H 2 O mixed gas to obtain a ceramic body.
  • the obtained ceramic body was glass-coated and heat-treated at a temperature of 800 ° C. or lower in an air atmosphere, thereby forming a glass layer on the surface of the ceramic body and simultaneously re-oxidizing the ceramic body.
  • the ceramic body on which the glass layer was formed was barrel polished. External electrodes were formed by sputtering Cr, NiCu alloy and Ag in this order on both end faces of the ceramic body after barrel polishing. An Sn plating layer was formed on the surface of the formed external electrode by electrolytic plating. In this way, a semiconductor element of Comparative Example 1 was obtained.
  • Comparative Example 2 and Examples 1 to 9 Semiconductor devices of Comparative Example 2 and Examples 1 to 9 were manufactured in the same procedure as Comparative Example 1 except that perovskite type compound particles having specific surface areas and c / a values shown in Table 1 described later were used as raw materials. .
  • the average particle diameter and contact rate of the ceramic sintered body particles were measured.
  • the average particle size of the sintered ceramic particles was measured by the following procedure. First, the semiconductor element is polished to about 1/2 W point (about half the W dimension of the semiconductor element) in the direction of the LT plane (plane perpendicular to the W direction), and the semiconductor element cross section parallel to the LT plane is exposed. I let you. This cross section was observed using a scanning electron microscope (Hitachi SU-8040) under the conditions of an acceleration voltage of 1 kV and a magnification of 10,000 times to obtain an SEM image.
  • the size of the region (observation region) observed by SEM was set to a size that allows counting of 80 to 200 ceramics sintered body particles.
  • This SEM image was subjected to image analysis using an analyzer (“A Image-kun” manufactured by Asahi Kasei Engineering Co., Ltd.), and the area of ceramic sintered body particles in the SEM image was determined.
  • An equivalent area equivalent circle diameter (Heywood diameter) calculated based on the obtained area was defined as the particle diameter of the ceramic sintered body particles.
  • the average value of the particle diameters of the ceramic sintered body particles completely contained in the observation region was defined as the average particle diameter of the ceramic sintered body particles.
  • the average particle diameter of the ceramic sintered body particles was obtained in the above-mentioned semiconductor element cross section, but the same result can be obtained even when the average particle diameter is obtained in other semiconductor element cross sections. You can think of it.
  • the contact ratio of the ceramic sintered body particles was measured using the same cross section as that of the semiconductor element used for obtaining the average particle diameter.
  • the portion sandwiched between the internal electrodes in the vicinity of the central portion of the ceramic body 2 was observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the cross section to be observed with the SEM is not particularly limited, and an arbitrary cross section may be selected.
  • the cross section is obtained by, for example, polishing the semiconductor element 1 in the LT plane (plane perpendicular to the W direction) to about 1/2 W point (about half the W dimension of the semiconductor element).
  • the cross section of the semiconductor element may be parallel to.
  • the region to be observed with the SEM is not particularly limited, but may be, for example, a region sandwiched between internal electrodes in the vicinity of the central portion of the ceramic body 2.
  • the dimension of the observation region of SEM was set to a dimension that allows the number of sintered ceramic particles to be counted from 80 to 200 at an observation magnification of 10,000.
  • the resulting SEM image, and image analysis using an analysis apparatus manufactured by Asahi Kasei Engineering Corporation "A picture kun"
  • the total L G around the length of the ceramic sintered particles present in the observation region, the observation region The total peripheral length L NC of the pores existing inside and the outer peripheral length L S of the observation region were determined.
  • Examples of the results of obtaining L G , L NC and L S by image analysis are shown in FIGS. 4 to 6, respectively.
  • the following formula was used to determine the contact ratio of the ceramic sintered body particles.
  • the average particle diameter of the ceramic sintered body particles contained in the obtained semiconductor element can be 0.4 ⁇ m or more and 1.0 ⁇ m or less, and the contact ratio of the ceramic sintered body particles is 45% or more. I understand that I was able to.
  • Comparative Example 1 in which the specific surface area of the raw material perovskite compound particles was less than 4.0 m 2 / g and c / a was greater than 1.009, the ceramic sintered body contained in the obtained semiconductor element The average particle diameter of the particles was larger than 1.0 ⁇ m, and the contact ratio of the ceramic sintered body particles was less than 45%. Further, in Comparative Example 2 in which the specific surface area of the raw material perovskite compound particles was less than 4.0 m 2 / g, the contact ratio of the ceramic sintered body particles contained in the obtained semiconductor element was less than 45%. It was.
  • the semiconductor elements of Examples 1 to 9 in which the average particle size of the sintered ceramic particles was 0.4 ⁇ m or more and 1.0 ⁇ m or less and the contact rate was 45% or more were 71 ⁇ at room temperature.
  • the specific resistance value was as low as cm or less.
  • the semiconductor elements of Examples 1 to 9 had high withstand voltage characteristics of 1000 V / mm or more.
  • the semiconductor element of Comparative Example 1 in which the average particle diameter of the ceramic sintered body particles was larger than 1.0 ⁇ m and the contact rate was less than 45% had low withstand voltage characteristics of less than 1000 V / mm.
  • the semiconductor element of Comparative Example 2 in which the contact ratio of the ceramic sintered body particles was less than 45% exhibited a high specific resistance value exceeding 80 ⁇ ⁇ cm at room temperature.
  • the semiconductor element according to the present invention has both a high withstand voltage characteristic and a low specific resistance value at room temperature, and can be suitably used in a wide range of applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A semiconductor element which comprises: a ceramic element that contains sintered ceramic particles; and a first external electrode and a second external electrode that are respectively arranged on the end faces of the ceramic element. The sintered ceramic particles are composed of a perovskite compound that contains at least Ba and Ti, and have an average particle diameter of 0.4-1.0 μm. When a region in a cross-section of the semiconductor element is selected and observed with a scanning electron microscope, the contact ratio of the sintered ceramic particles as calculated on the basis of the total of the peripheral lengths of the sintered ceramic particles present within the region, the total of the peripheral lengths of the pores present within the region, the outer peripheral length of the region and the contact lengths of the sintered ceramic particles present within the region is 45% or more.

Description

半導体素子およびその製造方法Semiconductor device and manufacturing method thereof
 本発明は、半導体素子およびその製造方法に関し、特にチタン酸バリウム系半導体素子およびその製造方法に関する。 The present invention relates to a semiconductor element and a manufacturing method thereof, and more particularly to a barium titanate-based semiconductor element and a manufacturing method thereof.
 チタン酸バリウム系半導体磁器は正の温度特性を有するため、正特性サーミスタ(PTCサーミスタ)等の半導体素子に広く用いられている。 Since barium titanate-based semiconductor ceramics have a positive temperature characteristic, they are widely used in semiconductor elements such as a positive temperature coefficient thermistor (PTC thermistor).
 例えば、特許文献1には、非線形温度特性を有する半導体粒子からなる母粒子の表面に、この母粒子とオーミック接合する金属粒子からなる子粒子を非連続に分散付着させることを特徴とする、温度特性機能複合粒子の製造方法が記載されている。特許文献1に記載の複合粒子は、高温焼結することなく、この複合粒子を溶媒に分散させて塗布したまま、あるいは圧粉体のまま、さらには低温加熱により、非線形温度特性機能素子やヒータなどとして使用可能なものである。 For example, Patent Document 1 discloses a temperature characterized by discontinuously dispersing and adhering child particles made of metal particles that are in ohmic contact with the mother particles to the surface of the mother particles made of semiconductor particles having nonlinear temperature characteristics. A method for producing characteristic-functional composite particles is described. The composite particles described in Patent Document 1 are not subjected to high-temperature sintering, and the composite particles are dispersed in a solvent and applied, or as a green compact. It can be used as such.
 特許文献2には、絶縁体セラミック基板と、絶縁体セラミック基板上に形成された、半導体セラミック焼結体からなる正の抵抗温度特性を示すサーミスタ厚膜と、サーミスタ厚膜に接し、かつサーミスタ厚膜の少なくとも一部を挟んで対向する、少なくとも1対の電極とを備え、サーミスタ厚膜の室温での抵抗率は10kΩ・cm未満であることを特徴とする、正特性サーミスタが記載されている。特許文献2に記載の正特性サーミスタは、サーミスタ厚膜を構成する半導体セラミック中の結晶粒子間の接触面積を広くすることができ、低抵抗化を図ることができるものである。 Patent Document 2 discloses an insulating ceramic substrate, a thermistor thick film having a positive resistance temperature characteristic formed of a semiconductor ceramic sintered body formed on the insulating ceramic substrate, a thermistor thick film in contact with the thermistor thick film. A positive temperature coefficient thermistor is described, comprising at least one pair of electrodes facing each other across at least a part of the film, wherein the thermistor thick film has a resistivity at room temperature of less than 10 kΩ · cm. . The positive temperature coefficient thermistor described in Patent Document 2 can widen the contact area between crystal grains in the semiconductor ceramic constituting the thermistor thick film, and can reduce the resistance.
 特許文献3には、平均磁器粒径が0.9μm以下であるチタン酸バリウム系半導体磁器が開示されている。特許文献3には、平均磁器粒径が上記範囲にあるチタン酸バリウム系半導体磁器は室温において比抵抗が小さく、かつ優れた耐電圧強度を有することが記載されている。また、特許文献3には、上述のチタン酸バリウム系半導体磁器は、粒子径が0.1μm以下であり、結晶構造が立方晶であり、格子定数が4.020オングストローム以上であり、微量の半導体化剤が固溶しているチタン酸バリウム粉末、または該チタン酸バリウム粉末を仮焼したものを原料粉末とし、これを焼成することによって得られることが記載されている。 Patent Document 3 discloses a barium titanate-based semiconductor ceramic having an average ceramic particle size of 0.9 μm or less. Patent Document 3 describes that barium titanate semiconductor ceramics having an average ceramic particle size in the above range have a small specific resistance at room temperature and an excellent withstand voltage strength. Patent Document 3 discloses that the above-mentioned barium titanate-based semiconductor ceramic has a particle size of 0.1 μm or less, a crystal structure of cubic, a lattice constant of 4.020 angstroms or more, and a small amount of semiconductor. It is described that a barium titanate powder in which an agent is solid-solved or a product obtained by calcining the barium titanate powder is used as a raw material powder and is fired.
特開平9-100169号公報Japanese Patent Laid-Open No. 9-100169 国際公開第2012/111386号公報International Publication No. 2012/111386 特開平11-116327号公報JP-A-11-116327
 PTCサーミスタは過電流に対する保護のために幅広い種類の電子機器に用いられている。近年の電子機器の高機能化に伴い、特に大電流に対応可能なPTCサーミスタが求められており、高い耐電圧特性を有するPTCサーミスタ素子の開発が行われている。PTCサーミスタの耐電圧特性を向上させるため、PTCサーミスタを構成する半導体磁器の微粒子化が行われている(特許文献3)。しかし、本発明者が検討を重ねた結果、微粒子化によりPTCサーミスタの室温における比抵抗が高くなってしまうという問題があることが明らかになった。 PTC thermistors are used in a wide variety of electronic devices to protect against overcurrent. With the recent increase in functionality of electronic devices, a PTC thermistor capable of handling particularly a large current has been demanded, and a PTC thermistor element having high withstand voltage characteristics has been developed. In order to improve the withstand voltage characteristics of the PTC thermistor, semiconductor ceramics constituting the PTC thermistor are made fine (Patent Document 3). However, as a result of repeated studies by the present inventor, it has been clarified that there is a problem that the specific resistance at room temperature of the PTC thermistor increases due to the formation of fine particles.
 一方、特許文献2には、半導体セラミック中の結晶粒子間の接触面積を広くすることにより低抵抗化を図ることが記載されている。しかし、特許文献2に記載の結晶粒子は、平均粒径2μm~38μmの大粒径を有する。 On the other hand, Patent Document 2 describes that the resistance is reduced by increasing the contact area between crystal grains in the semiconductor ceramic. However, the crystal particles described in Patent Document 2 have a large particle size with an average particle size of 2 to 38 μm.
 本発明は、高い耐電圧特性を有し且つ室温において低い比抵抗を示す半導体素子およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a semiconductor device having a high withstand voltage characteristic and a low specific resistance at room temperature, and a method for manufacturing the same.
 本発明者は、上記目的を達成するため、半導体素子を製造するための出発物質であるペロブスカイト型化合物粒子の物性に着目して研究を重ねた。その結果、ペロブスカイト型化合物粒子の比表面積と、ペロブスカイト型化合物粒子の結晶格子のa軸長に対するc軸長の比(正方晶性)c/aとを制御することにより、半導体素子を構成するセラミックス素体に含まれるセラミックス焼結体粒子の微粒子化と、セラミックス焼結体粒子の接触率の向上とを両立することができることを見出し、本発明を完成させるに至った。 In order to achieve the above-mentioned object, the present inventor conducted research while paying attention to the physical properties of perovskite type compound particles which are starting materials for manufacturing a semiconductor element. As a result, by controlling the specific surface area of the perovskite-type compound particles and the ratio of the c-axis length to the a-axis length (tetragonal) c / a of the crystal lattice of the perovskite-type compound particles, ceramics constituting the semiconductor element The inventors have found that it is possible to achieve both the fine particle formation of the ceramic sintered body particles contained in the element body and the improvement of the contact ratio of the ceramic sintered body particles, and have completed the present invention.
 本発明の第1の要旨によれば、セラミックス焼結体粒子を含むセラミックス素体と、
 セラミックス素体の第1の端面に配置される第1の外部電極と、
 セラミックス素体の第2の端面に配置される第2の外部電極と
を含む半導体素子であって、
 セラミックス焼結体粒子は、BaおよびTiを少なくとも含むペロブスカイト型化合物であり、
 セラミックス焼結体粒子の平均粒径が0.4μm以上1.0μm以下であり、
 半導体素子の一の断面において選択される一の領域を走査型電子顕微鏡で観察することにより算出される、一の領域内に存在するセラミックス焼結体粒子の周囲長さの合計L、一の領域内に存在するポア(細孔)の周囲長さの合計LNC、一の領域の外周長さL、および下記式
Figure JPOXMLDOC01-appb-M000003
で表される、一の領域内に存在するセラミックス焼結体粒子の接触長さLの値に基づいて、下記式
Figure JPOXMLDOC01-appb-M000004
により算出されるセラミックス焼結体粒子の接触率が45%以上である、半導体素子が提供される。
According to a first aspect of the present invention, a ceramic body including ceramic sintered body particles;
A first external electrode disposed on a first end face of the ceramic body,
A semiconductor element including a second external electrode disposed on a second end face of the ceramic body,
Ceramic sintered body particles are perovskite type compounds containing at least Ba and Ti,
The average particle size of the ceramic sintered body particles is 0.4 μm or more and 1.0 μm or less,
The total perimeter L G of ceramic sintered body particles present in one region, calculated by observing one region selected in one cross section of the semiconductor element with a scanning electron microscope, Total L NC of the perimeter of pores (pores) existing in the region, outer peripheral length L S of one region, and the following formula
Figure JPOXMLDOC01-appb-M000003
In represented, based on the value of the contact length L C of the ceramic sintered particles present in one area, the following formula
Figure JPOXMLDOC01-appb-M000004
A semiconductor element in which the contact ratio of the ceramic sintered body particles calculated by the above is 45% or more is provided.
 セラミックス焼結体粒子の接触率は、好ましくは45%以上80%以下である。 The contact ratio of the ceramic sintered body particles is preferably 45% or more and 80% or less.
 上述の半導体素子は、セラミックス素体の内部に1以上の第1の内部電極および1以上の第2の内部電極が配置された積層型半導体素子であってよい。このとき、第1の内部電極は、セラミックス素体の第1の端面において第1の外部電極と電気的に接続し、第2の内部電極は、セラミックス素体の第2の端面において第2の外部電極と電気的に接続する。第1の内部電極および第2の内部電極は、Ni電極であってよい。 The semiconductor element described above may be a stacked semiconductor element in which one or more first internal electrodes and one or more second internal electrodes are arranged inside a ceramic body. At this time, the first internal electrode is electrically connected to the first external electrode at the first end face of the ceramic body, and the second internal electrode is connected to the second end face of the ceramic base body at the second end face. Electrically connected to the external electrode. The first internal electrode and the second internal electrode may be Ni electrodes.
 本発明の第2の要旨によれば、半導体素子の製造方法であって、
 BaおよびTiを少なくとも含むペロブスカイト型化合物粒子を調製する工程と、
 ペロブスカイト型化合物粒子を含むグリーンチップを形成する工程と、
 グリーンチップを焼成することによりセラミックス素体を得る工程と、
 セラミックス素体の両端面に外部電極を形成することにより半導体素子を得る工程と
を含み、
 ペロブスカイト型化合物粒子の比表面積が4.0m/g以上14.0m/g以下であり、
 ペロブスカイト型化合物粒子の結晶格子のa軸長に対するc軸長の比c/aが1.005以上1.009以下である、方法が提供される。
According to a second aspect of the present invention, there is provided a method for manufacturing a semiconductor element,
Preparing perovskite-type compound particles containing at least Ba and Ti;
Forming a green chip containing perovskite-type compound particles;
Obtaining a ceramic body by firing a green chip;
Forming a semiconductor element by forming external electrodes on both end faces of the ceramic body,
The specific surface area of the perovskite type compound particles is 4.0 m 2 / g or more and 14.0 m 2 / g or less,
A method is provided wherein the ratio c / a of the c-axis length to the a-axis length of the crystal lattice of the perovskite type compound particles is 1.005 or more and 1.009 or less.
 ペロブスカイト型化合物粒子の比表面積は4.0m/g以上11.0m/g以下であることが好ましい。 The specific surface area of the perovskite type compound particles is preferably 4.0 m 2 / g or more and 11.0 m 2 / g or less.
 上述の方法において、ペロブスカイト型化合物粒子を含むグリーンチップを形成する工程は、
 ペロブスカイト型化合物粒子を含むセラミックスグリーンシートを作製する工程と、
 セラミックスグリーンシートの主面上に内部電極用導電性ペーストを塗布する工程と、
 内部電極用導電性ペーストを塗布した前記セラミックスグリーンシートを複数枚積層して積層体を得る工程と、
 積層体の上下に内部電極用導電性ペーストを塗布していないセラミックスグリーンシートを配置して圧着し、所定の寸法に切断してグリーンチップを得る工程と
を含んでよい。このような方法により、セラミックス素体の内部に内部電極が配置された積層型の半導体素子を製造することができる。上述の内部電極用導電性ペーストは、導電性粉末としてNi金属粉末を含んでよい。
In the above method, the step of forming the green chip containing the perovskite type compound particles,
Producing a ceramic green sheet containing perovskite type compound particles;
Applying a conductive paste for internal electrodes on the main surface of the ceramic green sheet;
A step of obtaining a laminate by laminating a plurality of the ceramic green sheets coated with the internal electrode conductive paste;
And placing a ceramic green sheet not coated with the internal electrode conductive paste on the upper and lower sides of the laminate and pressing the ceramic green sheet, and cutting to a predetermined size to obtain a green chip. By such a method, it is possible to manufacture a stacked semiconductor element in which internal electrodes are arranged inside a ceramic body. The above-mentioned internal electrode conductive paste may contain Ni metal powder as the conductive powder.
 本発明に係る半導体素子は、上記構成を有することにより、高い耐電圧特性を有し且つ室温において低い比抵抗を示す。また、本発明に係る半導体素子の製造方法は、上記構成を有することにより、高い耐電圧特性を有し且つ室温において低い比抵抗を示す半導体素子を製造することができる。 The semiconductor element according to the present invention has a high withstand voltage characteristic and a low specific resistance at room temperature due to the above configuration. Moreover, the manufacturing method of the semiconductor element which concerns on this invention can manufacture the semiconductor element which has a high withstand voltage characteristic and has a low specific resistance at room temperature by having the said structure.
図1は、本発明の一の実施形態に係る半導体素子の概略断面図である。FIG. 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention. 図2は、本発明の一の実施形態に係る半導体素子の一の変形例の概略断面図である。FIG. 2 is a schematic cross-sectional view of a modification of the semiconductor device according to one embodiment of the present invention. 図3は、本発明の一の実施形態に係る半導体素子のもう1つの変形例の概略断面図である。FIG. 3 is a schematic cross-sectional view of another modification of the semiconductor device according to one embodiment of the present invention. 図4は、セラミックス素体の一の断面における、SEM観察領域内に存在するセラミックス焼結体粒子の周囲長さの合計Lを示す図である。4, in one section of the ceramic body is a diagram showing a total L G around the length of the ceramic sintered particles present in the SEM observation region. 図5は、セラミックス素体の一の断面における、SEM観察領域内に存在するポアの周囲長さの合計LNCを示す図である。5, in one section of the ceramic body is a diagram showing a total L NC of perimeter of the pores existing in SEM observation region. 図6は、セラミックス素体の一の断面における、SEM観察領域の外周長さLを示す図である。FIG. 6 is a diagram showing the outer peripheral length L S of the SEM observation region in one cross section of the ceramic body.
 以下、図面を参照して、本発明の一の実施形態に係る半導体素子について説明する。但し、以下に示す実施形態は例示を目的とするものであり、本発明は以下の実施形態に限定されるものではない。以下に説明する構成要素の寸法、材質、形状、相対的配置等は、特定的な記載がない限りは本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。また、各図面が示す構成要素の大きさ、形状、位置関係等は説明を明確にするため誇張していることがある。各部材の寸法は、以下に示す値を必ずしも正確に示すものではなく、公差を有するものとする。 Hereinafter, a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings. However, the embodiment shown below is for the purpose of illustration, and the present invention is not limited to the following embodiment. The dimensions, materials, shapes, relative arrangements, and the like of the constituent elements described below are not merely intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. In addition, the size, shape, positional relationship, and the like of components illustrated in each drawing may be exaggerated for clarity of explanation. The dimension of each member does not necessarily indicate the following values accurately, but has tolerances.
 [半導体素子]
 図1に、本実施形態に係る半導体素子1の概略断面図を示す。本実施形態に係る半導体素子1はPTCサーミスタである。図1に示す半導体素子1は、セラミックス素体2と、セラミックス素体2の第1の端面21に配置される第1の外部電極31と、セラミックス素体2の第2の端面22に配置される第2の外部電極32とを含む。
[Semiconductor element]
FIG. 1 is a schematic cross-sectional view of a semiconductor element 1 according to this embodiment. The semiconductor element 1 according to this embodiment is a PTC thermistor. A semiconductor element 1 shown in FIG. 1 is disposed on a ceramic body 2, a first external electrode 31 disposed on a first end surface 21 of the ceramic body 2, and a second end surface 22 of the ceramic body 2. Second external electrode 32.
 (セラミックス素体)
 セラミックス素体2は、セラミックス焼結体粒子を含む。セラミックス焼結体粒子は、チタン酸バリウムにドナー元素が添加されたセラミックス材料で構成される。セラミックス焼結体粒子は、BaおよびTiを少なくとも含むペロブスカイト型化合物である。ペロブスカイト型化合物は、BaおよびTiに加えて、更にPm、Tm、YbおよびLuを除く希土類元素からなる群から選択される少なくとも1種の元素ならびに/またはNb、W、SbおよびTaからなる群から選択される少なくとも1種の元素を含み得る。以下、Pm、Tm、YbおよびLuを除く希土類元素からなる群から選択される少なくとも1種の元素を「元素α」、Nb、W、SbおよびTaからなる群から選択される少なくとも1種の元素を「元素β」ともよぶ。元素αおよび元素βは、セラミックス素体2にPTC特性を付与するためのドナー(半導体化剤)である。セラミックス焼結体粒子は、上述の元素αまたは元素βのいずれか一方のみを含んでよく、元素αおよびβの両方を含んでもよい。
(Ceramic body)
The ceramic body 2 includes ceramic sintered body particles. The sintered ceramic particles are made of a ceramic material in which a donor element is added to barium titanate. The ceramic sintered body particles are a perovskite type compound containing at least Ba and Ti. The perovskite-type compound includes, in addition to Ba and Ti, at least one element selected from the group consisting of rare earth elements excluding Pm, Tm, Yb and Lu and / or a group consisting of Nb, W, Sb and Ta. It may contain at least one element selected. Hereinafter, at least one element selected from the group consisting of rare earth elements excluding Pm, Tm, Yb and Lu is at least one element selected from the group consisting of “element α”, Nb, W, Sb and Ta Is also referred to as “element β”. The elements α and β are donors (semiconductor agents) for imparting PTC characteristics to the ceramic body 2. The ceramic sintered body particles may include only one of the above-described element α and element β, or may include both elements α and β.
 セラミックス素体2はTiおよびβの合計モル部を100モル部とした場合に、99.5モル部以上100.5モル部以下のBaを含むことが好ましい。Baの含有量が99.5モル部以上100.5モル部以下であると、セラミックス素体の室温比抵抗が低くなり、高い耐電圧特性を得ることができる。セラミックス素体2は、BaおよびTiに加えて上述の元素αおよび/または元素βを含んでよい。セラミックス素体2は、セラミックス素体2における元素αおよび元素βの含有量の合計が0.020モル部以上0.500モル部以下となるような量の元素αおよび/または元素βを含むことが好ましい。元素αおよび元素βの含有量の合計が0.020モル部以上であると、セラミックス素体2に好適なPTC(正温度係数)特性を付与することができる。元素αおよび元素βの含有量の合計が0.500モル部以下であると、セラミックス素体2の比抵抗を低くすることができる。 The ceramic body 2 preferably contains 99.5 mol parts or more and 100.5 mol parts or less of Ba when the total mol portion of Ti and β is 100 mol parts. When the content of Ba is 99.5 mol parts or more and 100.5 mol parts or less, the room temperature specific resistance of the ceramic body is lowered, and high withstand voltage characteristics can be obtained. The ceramic body 2 may contain the above-described element α and / or element β in addition to Ba and Ti. The ceramic body 2 contains the element α and / or the element β in such an amount that the total content of the elements α and β in the ceramic body 2 is 0.020 mol part or more and 0.500 mol part or less. Is preferred. When the total content of the element α and the element β is 0.020 mol part or more, suitable PTC (positive temperature coefficient) characteristics can be imparted to the ceramic body 2. When the total content of the elements α and β is 0.500 mol part or less, the specific resistance of the ceramic body 2 can be lowered.
 セラミックス素体2は更に、後述する焼結助材に由来するSiを含んでもよい。セラミックス素体2は、Ti100モル部に対して3モル部以下のSiを含んでよい。 The ceramic body 2 may further contain Si derived from a sintering aid described later. The ceramic body 2 may contain 3 mol parts or less of Si with respect to 100 mol parts of Ti.
 セラミックス素体2は更に、製造工程において不可避に混入し得るZrを含み得る。Zrの混入は、後述のセラミックススラリー調製時に粉砕および分散用メディアとしてジルコニアボールを使用することに起因して起こり得る。セラミックス素体2は、Ti100モル部に対して0.01モル部以上1モル部以下のZrを含み得る。 The ceramic body 2 may further contain Zr that can inevitably be mixed in the manufacturing process. Zr may occur due to the use of zirconia balls as a grinding and dispersion medium when preparing a ceramic slurry described later. The ceramic body 2 may contain 0.01 mol part or more and 1 mol part or less of Zr with respect to 100 mol parts of Ti.
 セラミックス素体2に含まれるセラミックス焼結体粒子の平均粒径は0.4μm以上1.0μm以下である。平均粒径が0.4μm以上であると、低い比抵抗を達成することができる。平均粒径が1.0μm以下であると、半導体素子1において高い耐電圧特性を達成することができる。セラミックス焼結体粒子の平均粒径は、半導体素子断面を走査型電子顕微鏡(SEM)で観察し、画像解析を行うことにより算出することができる。 The average particle diameter of the ceramic sintered body particles contained in the ceramic body 2 is 0.4 μm or more and 1.0 μm or less. When the average particle size is 0.4 μm or more, a low specific resistance can be achieved. When the average particle size is 1.0 μm or less, the semiconductor device 1 can achieve high withstand voltage characteristics. The average particle diameter of the sintered ceramic particles can be calculated by observing a cross section of the semiconductor element with a scanning electron microscope (SEM) and performing image analysis.
 本実施形態に係る半導体素子1において、セラミックス素体2に含まれるセラミックス焼結体粒子同士の接触する面積が大きいことにより、セラミックス焼結体粒子の平均粒径が小さい場合であっても、室温(25℃)における比抵抗を低くすることができる。本明細書において、セラミックス焼結体粒子同士の接触する面積を評価するための指標として、セラミックス焼結体粒子の接触率を用いる。セラミックス焼結体粒子の接触率は、以下に説明する手順で算出することができる。まず、半導体素子1を研磨して断面を露出させ、その断面を走査型電子顕微鏡(SEM)で観察する。SEMで観察すべき断面は特に限定されるものではなく、任意の断面を選択してよい。断面は、例えば、半導体素子1をLT面(W方向に対して垂直な面)方向に約1/2W地点(半導体素子のW寸の約半分の地点)まで研磨することにより得られる、LT面に平行な半導体素子断面であってよい。半導体素子1の断面において、SEMで観察すべき領域は、特に限定されるものではないが、例えば、セラミックス素体2の中央部付近における、内部電極に挟まれた領域であってよい。観察領域の寸法および倍率は、測定領域内においてセラミックス焼結体粒子の数が約70個以上約200個以下程度カウント可能であるように適宜設定することができる。得られるSEM像を画像解析することにより、観察領域内に存在するセラミックス焼結体粒子の周囲長さの合計L、観察領域内に存在するポアの周囲長さの合計LNC、および観察領域の外周長さLを求める。画像解析によりL、LNCおよびLを求めた結果の一例を図4~6に示す。図5に示すポアの周囲長さの合計LNCは、セラミックス焼結体粒子の周囲長さのうち隣接するセラミックス焼結体粒子と接触していない部分の長さ(以下、「非接触長さ」とよぶ)の合計であるとみなすことができる。図6に示すように、観察領域の外周長さLは、観察領域の最外縁に位置するセラミックス焼結体粒子の周囲長さのうち、観察領域内に存在するセラミックス焼結体粒子と接触していない部分の長さの合計で構成される。求めたL、LNCおよびLの値に基づいて、観察領域内に存在するセラミックス焼結体粒子の周囲長さのうち隣接するセラミックス焼結体粒子と接触している部分の長さ(以下、「接触長さ」とよぶ)の合計Lを求める。Lは下記式で表される。
Figure JPOXMLDOC01-appb-M000005
求めたLおよびLNCの値に基づいて、セラミックス焼結体粒子の接触率を求める。セラミックス焼結体粒子の接触率は、下記式を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000006
セラミックス焼結体粒子の接触率が高いほど、セラミックス焼結体粒子同士の接触面積が大きいことを意味する。本実施形態に係る半導体素子1において、セラミックス焼結体粒子の接触率は45%以上である。接触率が45%以上であると、セラミックス焼結体粒子の平均粒径が小さい場合であっても、室温(25℃)における比抵抗を低くすることができる。セラミックス焼結体粒子の接触率は、好ましくは45%以上80%以下である。接触率が80%以下であると、高いPTC(正温度係数)特性を達成することができる。
In the semiconductor element 1 according to the present embodiment, even if the average particle size of the ceramic sintered body particles is small due to the large contact area between the ceramic sintered body particles included in the ceramic body 2, the room temperature is low. The specific resistance at (25 ° C.) can be lowered. In this specification, the contact rate of the ceramic sintered body particles is used as an index for evaluating the contact area between the ceramic sintered body particles. The contact ratio of the ceramic sintered body particles can be calculated by the procedure described below. First, the semiconductor element 1 is polished to expose a cross section, and the cross section is observed with a scanning electron microscope (SEM). The cross section to be observed with the SEM is not particularly limited, and an arbitrary cross section may be selected. The cross section is obtained by, for example, polishing the semiconductor element 1 in the LT plane (plane perpendicular to the W direction) to about 1/2 W point (about half the W dimension of the semiconductor element). The cross section of the semiconductor element may be parallel to. In the cross section of the semiconductor element 1, the region to be observed with the SEM is not particularly limited, but may be, for example, a region sandwiched between internal electrodes in the vicinity of the central portion of the ceramic body 2. The size and magnification of the observation region can be set as appropriate so that the number of ceramic sintered particles in the measurement region can be counted from about 70 to about 200. By analyzing the obtained SEM image, the total circumference L G of the ceramic sintered body particles existing in the observation area, the total circumference L NC of the pores existing in the observation area, and the observation area The outer perimeter length L S is obtained. Examples of the results of obtaining L G , L NC and L S by image analysis are shown in FIGS. Total L NC around the length of the pores shown in Figure 5, the length of the portion not in contact with the adjacent ceramic sintered particles of perimeter of the ceramic sintered particles (hereinafter, "non-contact length It can be regarded as the sum of “ As shown in FIG. 6, the outer peripheral length L S of the observation region is in contact with the ceramic sintered particles present in the observation region among the peripheral lengths of the ceramic sintered particles located at the outermost edge of the observation region. It consists of the total length of the parts that are not. Based on the obtained values of L G , L NC and L S , the length of the portion in contact with the adjacent ceramic sintered body particles in the peripheral length of the ceramic sintered body particles existing in the observation region ( hereinafter, the sum is L C of called "contact length"). L C is represented by the following formula.
Figure JPOXMLDOC01-appb-M000005
Based on the obtained L C and L NC values, the contact ratio of the ceramic sintered body particles is obtained. The contact ratio of the ceramic sintered body particles can be calculated using the following formula.
Figure JPOXMLDOC01-appb-M000006
The higher the contact ratio of the ceramic sintered body particles, the larger the contact area between the ceramic sintered body particles. In the semiconductor element 1 according to this embodiment, the contact ratio of the ceramic sintered body particles is 45% or more. When the contact ratio is 45% or more, the specific resistance at room temperature (25 ° C.) can be lowered even when the average particle diameter of the ceramic sintered body particles is small. The contact ratio of the ceramic sintered body particles is preferably 45% or more and 80% or less. When the contact ratio is 80% or less, high PTC (positive temperature coefficient) characteristics can be achieved.
 セラミックス素体2の寸法は特に限定されるものではなく、用途に応じて適宜設定することができる。セラミックス素体2の寸法は、例えばL寸2.0mm×W寸1.2mm×T寸1.0mmであってよい。なお、本明細書において、図1に示すように、セラミックス素体2の第1の端面21から第2の端面22に向かう方向を「L方向」、水平面内においてL方向に対して垂直な方向を「W方向」、L方向およびW方向に対して垂直な方向を「T方向」とよぶ。また、セラミックス素体2のL方向の寸法を「L寸」、W方向の寸法を「W寸」、T方向の寸法を「T寸」とよぶ。 The dimensions of the ceramic body 2 are not particularly limited, and can be set as appropriate according to the application. The dimension of the ceramic body 2 may be, for example, L dimension 2.0 mm × W dimension 1.2 mm × T dimension 1.0 mm. In the present specification, as shown in FIG. 1, the direction from the first end face 21 to the second end face 22 of the ceramic body 2 is the “L direction”, and the direction perpendicular to the L direction in the horizontal plane. Is called the “W direction”, and the direction perpendicular to the L direction and the W direction is called the “T direction”. The dimension of the ceramic body 2 in the L direction is referred to as “L dimension”, the dimension in the W direction as “W dimension”, and the dimension in the T direction as “T dimension”.
 本実施形態に係る半導体素子1は、図2に示すように、セラミックス素体2の内部に1以上の第1の内部電極41および1以上の第2の内部電極42が配置された積層型半導体素子であってよい。本明細書において、第1の内部電極41および第2の内部電極42をまとめて「内部電極」とよぶことがある。第1の内部電極41は、セラミックス素体2の第1の端面21において第1の外部電極31と電気的に接続し、第2の内部電極42は、セラミックス素体2の第2の端面22において第2の外部電極32と電気的に接続する。
第1の内部電極41は、セラミックス素体2の第1の端面21から第2の端面22に向かって延在し、第2の内部電極42は、セラミックス素体2の第2の端面22から第1の端面21に向かって延在する。第1の内部電極41と第2の内部電極42とは、セラミックス素体2の内部において互いに対向するように交互に配置される。図2に示す変形例において、セラミックス素体2の内部に第1の内部電極41および第2の内部電極42が2つずつ配置されているが、内部電極の数はこれに限定されるものではなく、所望の特性に応じて適宜設定することができる。内部電極の数(第1の内部電極41および第2の内部電極42の合計)は、例えば2以上50以下程度であってよい。隣り合う第1の内部電極41と第2の内部電極42との間の距離は特に限定されるものではなく、所望の用途に応じて適宜設定することができる。隣り合う第1の内部電極41と第2の内部電極42との間の距離は、例えば10μm以上200μm以下程度であってよい。
As shown in FIG. 2, the semiconductor element 1 according to the present embodiment is a stacked semiconductor in which one or more first internal electrodes 41 and one or more second internal electrodes 42 are arranged inside a ceramic body 2. It may be an element. In the present specification, the first internal electrode 41 and the second internal electrode 42 may be collectively referred to as “internal electrodes”. The first internal electrode 41 is electrically connected to the first external electrode 31 at the first end face 21 of the ceramic body 2, and the second internal electrode 42 is the second end face 22 of the ceramic body 2. And electrically connected to the second external electrode 32.
The first internal electrode 41 extends from the first end face 21 of the ceramic body 2 toward the second end face 22, and the second internal electrode 42 extends from the second end face 22 of the ceramic body 2. It extends toward the first end face 21. The first internal electrodes 41 and the second internal electrodes 42 are alternately arranged so as to face each other inside the ceramic body 2. In the modification shown in FIG. 2, two first internal electrodes 41 and two second internal electrodes 42 are arranged inside the ceramic body 2, but the number of internal electrodes is not limited to this. And can be appropriately set according to desired characteristics. The number of internal electrodes (the total of the first internal electrode 41 and the second internal electrode 42) may be, for example, about 2 or more and 50 or less. The distance between the adjacent first internal electrode 41 and second internal electrode 42 is not particularly limited, and can be appropriately set according to a desired application. The distance between the adjacent first internal electrode 41 and second internal electrode 42 may be, for example, about 10 μm to 200 μm.
 内部電極の組成は特に限定されるものではなく、用途に応じて適宜設定してよい。第1の内部電極41および第2の内部電極42は、例えば、チタン酸バリウム系半導体に対して良好なオーミック性を示すNi電極であってよい。 The composition of the internal electrode is not particularly limited, and may be set as appropriate according to the application. The first internal electrode 41 and the second internal electrode 42 may be, for example, Ni electrodes that exhibit good ohmic properties with respect to a barium titanate-based semiconductor.
 本実施形態に係る半導体素子1において、図3に示すように、セラミックス素体2の表面にガラス層5が形成されていてもよい。ガラス層5は、耐環境性能や素子強度を向上させる機能を有する。ガラス層5の組成および厚さは特に限定されるものではなく、用途に応じて適宜設定してよい。なお、図3に示す変形例において、セラミックス素体2の内部に第1の内部電極41および第2の内部電極42が配置されているが、本実施形態に係る半導体素子1はこの構成に限定されるものではなく、内部電極を有しない構成であってもよい。また、図3に示す変形例において、第1の外部電極31および第2の外部電極32の表面にめっき層61および62(後述)が形成されているが、本実施形態に係る半導体素子1はこの構成に限定されるものではなく、めっき層を有しない構成であってもよい。 In the semiconductor element 1 according to this embodiment, a glass layer 5 may be formed on the surface of the ceramic body 2 as shown in FIG. The glass layer 5 has a function of improving environmental resistance and element strength. The composition and thickness of the glass layer 5 are not particularly limited, and may be set as appropriate according to the application. In the modification shown in FIG. 3, the first internal electrode 41 and the second internal electrode 42 are disposed inside the ceramic body 2, but the semiconductor element 1 according to the present embodiment is limited to this configuration. However, the configuration may be such that no internal electrode is provided. In the modification shown in FIG. 3, plating layers 61 and 62 (described later) are formed on the surfaces of the first external electrode 31 and the second external electrode 32. The semiconductor element 1 according to the present embodiment is It is not limited to this structure, The structure which does not have a plating layer may be sufficient.
 (外部電極)
 本実施形態に係る半導体素子1は、セラミックス素体2の第1の端面21に配置される第1の外部電極31と、セラミックス素体2の第2の端面22に配置される第2の外部電極32とを含む。第1の外部電極31および第2の外部電極32は、図1に示すようにセラミックス素体2の側面の一部に延在するように形成されてよい。なお、本明細書において、セラミックス素体2の「側面」は、セラミックス素体2の第1の端面21および第2の端面22以外の面を指す。本明細書において、第1の外部電極31および第2の外部電極32をまとめて「外部電極」とよぶことがある。外部電極の組成および構成は、セラミックス素体2または存在する場合には内部電極(第1の内部電極41および第2の内部電極42)の種類に応じて適宜設定することができる。第1の外部電極31および第2の外部電極32は、例えば、NiCr、NiCu合金およびAgを順番に積層した多層構造を有してよい。
(External electrode)
The semiconductor element 1 according to the present embodiment includes a first external electrode 31 disposed on the first end surface 21 of the ceramic body 2 and a second external surface disposed on the second end surface 22 of the ceramic body 2. Electrode 32. The first external electrode 31 and the second external electrode 32 may be formed so as to extend to a part of the side surface of the ceramic body 2 as shown in FIG. In the present specification, the “side surface” of the ceramic body 2 refers to a surface other than the first end surface 21 and the second end surface 22 of the ceramic body 2. In the present specification, the first external electrode 31 and the second external electrode 32 may be collectively referred to as “external electrode”. The composition and configuration of the external electrode can be appropriately set according to the type of the ceramic body 2 or the internal electrodes (the first internal electrode 41 and the second internal electrode 42) when present. The first external electrode 31 and the second external electrode 32 may have, for example, a multilayer structure in which NiCr, NiCu alloy, and Ag are sequentially stacked.
 本実施形態に係る半導体素子1において、図3に示すように、第1の外部電極31および第2の外部電極32の表面にめっき層61および62が形成されてよい。めっき層61および62は、実装時のはんだ濡れ性や耐熱性を向上させる機能を有する。めっき層61および62の組成は外部電極の組成に応じて適宜選択することができ、例えば、Snめっき層、Niめっき層またはこれらの2以上の組み合わせであってよい。なお、図3に示す変形例において、セラミックス素体2の内部に第1の内部電極41および第2の内部電極42が配置されているが、本実施形態に係る半導体素子1はこの構成に限定されるものではなく、内部電極を有しない構成であってもよい。また、図3に示す変形例において、セラミックス素体2の表面にガラス層5が形成されているが、本実施形態に係る半導体素子1はこの構成に限定されるものではなく、ガラス層5を有しない構成であってもよい。 In the semiconductor element 1 according to the present embodiment, plating layers 61 and 62 may be formed on the surfaces of the first external electrode 31 and the second external electrode 32 as shown in FIG. The plating layers 61 and 62 have a function of improving solder wettability and heat resistance during mounting. The composition of the plating layers 61 and 62 can be appropriately selected according to the composition of the external electrode, and may be, for example, a Sn plating layer, a Ni plating layer, or a combination of two or more thereof. In the modification shown in FIG. 3, the first internal electrode 41 and the second internal electrode 42 are disposed inside the ceramic body 2, but the semiconductor element 1 according to the present embodiment is limited to this configuration. However, the configuration may be such that no internal electrode is provided. In the modification shown in FIG. 3, the glass layer 5 is formed on the surface of the ceramic body 2, but the semiconductor element 1 according to the present embodiment is not limited to this configuration. The structure which does not have may be sufficient.
 [半導体素子の製造方法]
 以下、本実施形態に係る半導体素子の製造方法の一例について以下に説明するが、本発明に係る半導体素子の製造方法は以下に示す方法に限定されるものではない。本実施形態に係る半導体素子の製造方法は、ペロブスカイト型化合物粒子を調製する工程と、ペロブスカイト型化合物粒子を含むグリーンチップを形成する工程と、グリーンチップを焼成することによりセラミックス素体を得る工程と、セラミックス素体の両端面に外部電極を形成することにより半導体素子を得る工程とを含む。なお、本実施形態においては、例示的に、内部電極を有する積層型PTCサーミスタの製造方法を主に説明するが、本発明に係る半導体素子の製造方法は以下に示す方法に限定されるものではない。
[Method for Manufacturing Semiconductor Device]
Hereinafter, although an example of the manufacturing method of the semiconductor element which concerns on this embodiment is demonstrated below, the manufacturing method of the semiconductor element which concerns on this invention is not limited to the method shown below. The method for manufacturing a semiconductor device according to the present embodiment includes a step of preparing perovskite type compound particles, a step of forming a green chip containing perovskite type compound particles, and a step of obtaining a ceramic body by firing the green chip. And forming a semiconductor element by forming external electrodes on both end faces of the ceramic body. In this embodiment, for example, a method for manufacturing a stacked PTC thermistor having an internal electrode will be mainly described. However, the method for manufacturing a semiconductor element according to the present invention is not limited to the following method. Absent.
 まず、半導体素子を構成するセラミックス素体の原料として、BaおよびTiを少なくとも含むペロブスカイト型化合物粒子(以下、「原料のペロブスカイト型化合物粒子」ともよぶ)を調製する。原料のペロブスカイト型化合物粒子は、BaおよびTiに加えて、更にPm、Tm、YbおよびLuを除く希土類元素からなる群から選択される少なくとも1種の元素ならびに/またはNb、W、SbおよびTaからなる群から選択される少なくとも1種の元素を含み得る。ペロブスカイト型化合物粒子の各原材料を、最終的に得られる半導体素子を構成するセラミックス素体に含まれるセラミックス焼結体粒子の組成が目的とする組成となるように秤量する。目的とするセラミックス焼結体粒子の組成は、内部電極を含むセラミック素子素体を溶解し、例えばICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)により定量分析したときに各元素の含有比が下記の(1)式で表されるような組成であってよい。 First, perovskite compound particles containing at least Ba and Ti (hereinafter, also referred to as “raw perovskite compound particles”) are prepared as raw materials for the ceramic body constituting the semiconductor element. The perovskite type compound particles as the raw material may contain at least one element selected from the group consisting of rare earth elements excluding Pm, Tm, Yb and Lu and / or Nb, W, Sb and Ta in addition to Ba and Ti. It may contain at least one element selected from the group consisting of: Each raw material of the perovskite type compound particles is weighed so that the composition of the ceramic sintered body particles contained in the ceramic body constituting the finally obtained semiconductor element becomes the target composition. The composition of the target ceramic sintered body particles is as follows. When the ceramic element body including the internal electrode is dissolved and quantitative analysis is performed by, for example, ICP-AES (Inductively-Coupled-Plasma-Atomic-Emission-Spectrometry), It may be a composition represented by the formula (1).
Figure JPOXMLDOC01-appb-C000007
式中、αはPm、Tm、YbおよびLuを除く希土類元素からなる群から選択される少なくとも1種の元素であり、βはNb、W、SbおよびTaからなる群から選択される少なくとも1種の元素である。Ba、α、α+β、Ti+βの含有モル部を、mBa、mα、m(α+β)、m(Ti+β)とし、m=(mBa+m(α+β))/m(Ti+β)をモル比と定義する。この定義の下で、Tiおよびβの合計モル部を100モル部とした場合に、mBaは99.50≦mBa≦100.5であり、m(α+β)の範囲は、0.020≦m(α+β)≦0.500であり、mは0.995≦m≦1.005である。
Figure JPOXMLDOC01-appb-C000007
In the formula, α is at least one element selected from the group consisting of rare earth elements excluding Pm, Tm, Yb and Lu, and β is at least one selected from the group consisting of Nb, W, Sb and Ta Elements. The content molar part of Ba, α, α + β, Ti + β is defined as m Ba , m α , m (α + β) , m (Ti + β), and m = (m Ba + m (α + β) ) / m (Ti + β) is defined as the molar ratio. To do. Under this definition, when the total mole part of Ti and β is 100 mole parts, m Ba is 99.50 ≦ m Ba ≦ 100.5, and the range of m (α + β) is 0.020 ≦ m (α + β) ≦ 0.500, and m is 0.995 ≦ m ≦ 1.005.
 ペロブスカイト型化合物粒子を調製するための原材料としては、Ba、Ti、元素αおよびβの塩化物、水酸化物、酸化物、炭酸塩、アルコキシド等を適宜用いることができる。なお、上記式(1)に示すように、最終的に得られる半導体素子を構成するセラミックス素体に含まれるセラミックス焼結体粒子はドナー(半導体化剤)として元素αおよび/またはβを含むが、原料のペロブスカイト型化合物粒子は元素αおよび元素βをいずれも含まなくてよく、あるいは所望の組成を有するセラミックス焼結体粒子を得るのに必要な元素αおよび/または元素βの量の全量を含まなくてもよい。これらの場合、後述のセラミックススラリー調製時に必要な量の元素αおよび/またはβの塩化物、水酸化物、酸化物、炭酸塩、アルコキシド、イオン化水溶液等を添加することで所望の組成に調整ができる。 As raw materials for preparing perovskite type compound particles, Ba, Ti, chlorides of elements α and β, hydroxides, oxides, carbonates, alkoxides and the like can be used as appropriate. As shown in the above formula (1), the ceramic sintered body particles contained in the ceramic body constituting the finally obtained semiconductor element contain the elements α and / or β as donors (semiconductor agents). The raw material perovskite type compound particles may contain neither element α nor element β, or the total amount of element α and / or element β necessary for obtaining ceramic sintered particles having a desired composition may be included. It does not have to be included. In these cases, the amount of element α and / or β chloride, hydroxide, oxide, carbonate, alkoxide, ionized aqueous solution, etc. necessary for preparation of the ceramic slurry described later can be adjusted to the desired composition. it can.
 原料のペロブスカイト型化合物粒子の調製方法は特に限定されるものではなく、所望の比表面積およびc/aに応じて固相合成法または水熱合成法およびシュウ酸法等の液中合成法を適宜選択することができる。原料のペロブスカイト型化合物粒子は、例えば以下に説明する手順で調製してよい。秤量した上述の各原材料を、PSZ(部分安定化ジルコニア)ボールおよび純水と共にボールミルに投入する。このとき、SiO等の焼結助材を適宜添加してよい。ボールミル内の原材料を湿式で十分に混合粉砕し、乾燥させて混合粉体を得る。この混合粉体を800℃以上1100℃以下の温度で仮焼処理して、仮焼粉として原料のペロブスカイト型化合物粒子を得る。仮焼処理温度は、目的とするペロブスカイト型化合物粒子の比表面積およびc/aの値に応じて適宜設定することができる。 The method for preparing the raw material perovskite type compound particles is not particularly limited, and a solid-phase synthesis method or a hydrothermal synthesis method such as a hydrothermal synthesis method or an oxalic acid method is appropriately used depending on the desired specific surface area and c / a. You can choose. The raw material perovskite type compound particles may be prepared, for example, by the procedure described below. Each of the above-mentioned raw materials weighed is put into a ball mill together with PSZ (partially stabilized zirconia) balls and pure water. At this time, a sintering aid such as SiO 2 may be added as appropriate. The raw materials in the ball mill are sufficiently mixed and pulverized by a wet process and dried to obtain a mixed powder. The mixed powder is calcined at a temperature of 800 ° C. or higher and 1100 ° C. or lower to obtain raw material perovskite type compound particles as calcined powder. The calcination temperature can be appropriately set according to the specific surface area of the target perovskite type compound particles and the value of c / a.
 原料のペロブスカイト型化合物粒子の比表面積は、4.0m/g以上14.0m/g以下であることが好ましい。比表面積が4.0m/g以上であると、得られる半導体素子を構成するセラミックス素体中のセラミックス焼結体粒子を平均粒径1.0μm以下の小粒径にすることができる。比表面積が14.0m/g以下であると、セラミックス素体中の焼結体粒子同士の粒界数を減らすことができ、かつ焼結体粒子の接触率を高くすることができる。その結果、半導体素子の室温における比抵抗を低くすることができる。ペロブスカイト型化合物粒子の比表面積は、より好ましくは4.0m/g以上11.0m/g以下である。比表面積が11.0m/g以下であると、得られる半導体素子の室温における比抵抗値をより一層低くすることができる。ペロブスカイト型化合物粒子の比表面積は、例えばBET法等の気体吸着法により測定することができる。 The specific surface area of the raw material perovskite compound particles is preferably 4.0 m 2 / g or more and 14.0 m 2 / g or less. When the specific surface area is 4.0 m 2 / g or more, the ceramic sintered body particles in the ceramic body constituting the obtained semiconductor element can be made a small particle diameter having an average particle diameter of 1.0 μm or less. When the specific surface area is 14.0 m 2 / g or less, the number of grain boundaries between the sintered particles in the ceramic body can be reduced, and the contact ratio of the sintered particles can be increased. As a result, the specific resistance at room temperature of the semiconductor element can be lowered. The specific surface area of the perovskite compound particles is more preferably 4.0 m 2 / g or more and 11.0 m 2 / g or less. When the specific surface area is 11.0 m 2 / g or less, the specific resistance value at room temperature of the obtained semiconductor element can be further reduced. The specific surface area of the perovskite compound particles can be measured by a gas adsorption method such as a BET method.
 原料のペロブスカイト型化合物粒子は正方晶性の高い結晶構造を有する。正方晶性の高い結晶構造を有するペロブスカイト型化合物粒子を原料として用いることにより、半導体素子の室温(25℃)における比抵抗を低くすることができる。原料のペロブスカイト型化合物粒子の結晶格子のa軸長に対するc軸長の比c/aは、1.005以上1.009以下であることが好ましい。c/aが1.005以上であると、半導体素子の室温における比抵抗値をより低くすることができる。c/aは、より好ましくは1.006以上1.009以下である。c/aが1.006以上であると、半導体素子の室温における比抵抗値をより一層低くすることができる。原料のペロブスカイト型化合物粒子のc/aは、粉末X線回折装置を用いて定性分析を行い、リートベルト解析することにより算出することができる。原料のペロブスカイト型化合物粒子は、ドナーとして1種類以上の希土類元素を含む。 Raw material perovskite type compound particles have a highly tetragonal crystal structure. By using perovskite type compound particles having a highly tetragonal crystal structure as a raw material, the specific resistance of the semiconductor element at room temperature (25 ° C.) can be lowered. The ratio c / a of the c-axis length to the a-axis length of the crystal lattice of the raw material perovskite compound particles is preferably 1.005 or more and 1.009 or less. When c / a is 1.005 or more, the specific resistance value of the semiconductor element at room temperature can be further reduced. c / a is more preferably 1.006 or more and 1.009 or less. When c / a is 1.006 or more, the specific resistance value of the semiconductor element at room temperature can be further reduced. The c / a of the raw material perovskite compound particles can be calculated by conducting a qualitative analysis using a powder X-ray diffractometer and performing a Rietveld analysis. The raw material perovskite type compound particles contain one or more rare earth elements as donors.
 次に、原料のペロブスカイト型化合物粒子を含むグリーンチップを形成する。半導体素子として内部電極を有する積層型PTCサーミスタを製造する場合、ペロブスカイト型化合物粒子を含むグリーンチップを形成する工程は、ペロブスカイト型化合物粒子を含むセラミックスグリーンシートを作製する工程と、セラミックスグリーンシートの主面上に内部電極用導電性ペーストを塗布する工程と、内部電極用導電性ペーストを塗布したセラミックスグリーンシートを複数枚積層して積層体を得る工程と、積層体の上下に内部電極用導電性ペーストを塗布していないセラミックスグリーンシートを配置して圧着し、所定の寸法に切断してグリーンチップを得る工程とを含む。 Next, a green chip containing raw material perovskite type compound particles is formed. When manufacturing a stacked PTC thermistor having an internal electrode as a semiconductor element, a step of forming a green chip containing perovskite compound particles includes a step of producing a ceramic green sheet containing perovskite compound particles, and a main part of the ceramic green sheet. A step of applying a conductive paste for internal electrodes on a surface, a step of obtaining a laminate by laminating a plurality of ceramic green sheets coated with a conductive paste for internal electrodes, and a conductivity for internal electrodes above and below the laminate. And placing a ceramic green sheet to which a paste has not been applied, press-bonding, and cutting to a predetermined size to obtain a green chip.
 まず、以下に示す手順でペロブスカイト型化合物粒子を含むセラミックスグリーンシートを作製する。原料のペロブスカイト型化合物粒子に有機バインダー、分散剤および水を加え、ジルコニアボールと共に数時間混合して、セラミックススラリーを得る。なお、原料のペロブスカイト型化合物粒子が元素αおよび元素βをいずれも含んでいない場合、あるいは所望の組成を有するセラミックス焼結体粒子を得るのに必要な元素αおよび/または元素βの量の全量を含んでいない場合、セラミックススラリーの調製時にドナーとして元素αおよび/またはβの塩化物、水酸化物、酸化物、炭酸塩、アルコキシド、イオン化水溶液等を所定量添加してよい。 First, a ceramic green sheet containing perovskite type compound particles is prepared according to the following procedure. An organic binder, a dispersant and water are added to the raw material perovskite type compound particles and mixed with zirconia balls for several hours to obtain a ceramic slurry. In addition, when the raw material perovskite type compound particles do not contain both element α and element β, or the total amount of element α and / or element β necessary for obtaining ceramic sintered particles having a desired composition When the ceramic slurry is not included, a predetermined amount of chloride, hydroxide, oxide, carbonate, alkoxide, ionized aqueous solution, or the like of the element α and / or β may be added as a donor during the preparation of the ceramic slurry.
 上述のセラミックススラリーを、ドクターブレード法によりシート状に成形し、乾燥させてセラミックスグリーンシートを作製する。セラミックスグリーンシートの厚さは10μm以上50μm以下であることが好ましい。 The above-mentioned ceramic slurry is formed into a sheet by the doctor blade method and dried to produce a ceramic green sheet. The thickness of the ceramic green sheet is preferably 10 μm or more and 50 μm or less.
 次に、セラミックスグリーンシートの主面上に内部電極用導電性ペーストを塗布する。まず、金属粉末等の導電性粉末および有機バインダーを有機溶媒に分散させて、内部電極用導電性ペーストを調製する。導電性粉末としては、例えばNi金属粉末等の金属粉末等を適宜用いることができる。 Next, a conductive paste for internal electrodes is applied on the main surface of the ceramic green sheet. First, conductive powder such as metal powder and an organic binder are dispersed in an organic solvent to prepare a conductive paste for internal electrodes. As the conductive powder, for example, metal powder such as Ni metal powder can be appropriately used.
 この内部電極用導電性ペーストをセラミックスグリーンシートの主面上に塗布する。内部電極用導電性ペーストの塗布厚さは、最終的に得られる半導体素子における内部電極の厚さが0.5μm以上2μm以下となるように設定する。内部電極用導電性ペーストの塗布は、スクリーン印刷等の方法により行ってよい。 ¡Apply this internal electrode conductive paste on the main surface of the ceramic green sheet. The coating thickness of the internal electrode conductive paste is set so that the thickness of the internal electrode in the finally obtained semiconductor element is 0.5 μm or more and 2 μm or less. The conductive paste for internal electrodes may be applied by a method such as screen printing.
 次に、内部電極用導電性ペーストを塗布したセラミックスグリーンシートを複数枚積層して積層体を得る。内部電極用導電性ペーストを塗布したセラミックスグリーンシートの積層枚数は、最終的に得られる半導体素子が有するべき内部電極の数に応じて設定してよい。 Next, a plurality of ceramic green sheets coated with the internal electrode conductive paste are laminated to obtain a laminate. The number of laminated ceramic green sheets coated with the internal electrode conductive paste may be set according to the number of internal electrodes that the finally obtained semiconductor element should have.
 次に、積層体の上下に、内部電極用導電性ペーストを塗布していないセラミックスグリーンシートを、例えば20枚ずつ配置して圧着し、焼成後の寸法が所望の値となるように所定の寸法に切断してグリーンチップを得る。グリーンチップを焼成して得られるセラミックス素体の寸法は、例えばL寸2.0mm×W寸1.2mm×T寸1.0mmであってよい。 Next, ceramic green sheets not coated with the internal electrode conductive paste are disposed on and under the laminate, for example, 20 sheets at a time, and subjected to pressure bonding, with predetermined dimensions so that the dimensions after firing become a desired value. Cut to get green chips. The size of the ceramic body obtained by firing the green chip may be, for example, L size 2.0 mm × W size 1.2 mm × T size 1.0 mm.
 なお、内部電極を有しない半導体素子を製造する場合、内部電極用導電性ペーストを塗布していないセラミックスグリーンシートを複数枚積層し、圧着した後所定の寸法に切断することによりグリーンチップを作製してよい。 When manufacturing a semiconductor element having no internal electrode, a plurality of ceramic green sheets not coated with the internal electrode conductive paste are stacked, pressed, and cut to a predetermined size to produce a green chip. It's okay.
 次に、グリーンチップを焼成することによりセラミックス素体を得る、まず、焼成に先立って、グリーンチップを大気雰囲気下にて300℃以上450以下の温度で10時間以上15時間以下脱脂処理する。脱脂処理後のグリーンチップを、H/N/HO混合ガス、Ar/H,N/H/HO等の還元雰囲気の下1000℃以上1300℃以下の温度で0.5時間以上3時間以下焼成し、セラミックス素体を得る。 Next, the ceramic body is obtained by firing the green chip. First, prior to firing, the green chip is degreased at a temperature of 300 ° C. to 450 ° C. for 10 hours to 15 hours in an air atmosphere. The green chip after the degreasing treatment is 0 at a temperature of 1000 ° C. or higher and 1300 ° C. or lower in a reducing atmosphere such as H 2 / N 2 / H 2 O mixed gas, Ar / H 2 , N 2 / H 2 / H 2 O, or the like. Baking for 5 hours or more and 3 hours or less to obtain a ceramic body.
 場合により、得られたセラミックス素体をガラスコートし、大気雰囲気下にて600℃以上900℃以下の温度で熱処理することにより、セラミックス素体の表面にガラス層を形成すると同時に、セラミックス素体の再酸化を行ってよい。 In some cases, the obtained ceramic body is glass-coated and heat-treated at a temperature of 600 ° C. or more and 900 ° C. or less in an air atmosphere to form a glass layer on the surface of the ceramic body, and at the same time, Reoxidation may be performed.
 次いで、セラミックス素体の両端面に外部電極を形成する。まず、外部電極の形成に先立って、セラミックス素体をバレル研磨する。バレル研磨後のセラミックス素体の両端面に外部電極を形成する。外部電極の組成および形成方法は特に限定されるものではなく、目的に応じて適宜選択することができる。例えば、外部電極は、セラミックス素体の両端面にCr、NiCu合金およびAgをこの順番にスパッタリングすることにより形成することができる。別法として、外部電極は、樹脂成分および金属(Ag等)を含むペーストを塗布し、適当な温度で焼きつけることにより形成してもよい。形成された外部電極の表面に、電解めっき等の方法によりめっき層を形成してよい。めっき層の組成は外部電極の組成に応じて適宜選択することができ、例えば、Snめっき層、Niめっき層またはこれらの2以上の組み合わせであってよい。このようにして、本実施形態に係る半導体素子が得られる。 Next, external electrodes are formed on both end faces of the ceramic body. First, prior to the formation of the external electrode, the ceramic body is barrel-polished. External electrodes are formed on both end faces of the ceramic body after barrel polishing. The composition and formation method of the external electrode are not particularly limited, and can be appropriately selected according to the purpose. For example, the external electrode can be formed by sputtering Cr, NiCu alloy and Ag in this order on both end faces of the ceramic body. Alternatively, the external electrode may be formed by applying a paste containing a resin component and a metal (such as Ag) and baking it at an appropriate temperature. A plating layer may be formed on the surface of the formed external electrode by a method such as electrolytic plating. The composition of the plating layer can be appropriately selected according to the composition of the external electrode, and may be, for example, a Sn plating layer, a Ni plating layer, or a combination of two or more thereof. In this way, the semiconductor element according to this embodiment is obtained.
 以下に示す手順で比較例1および2ならびに実施例1~9の半導体素子を作製した。なお、比較例1および2ならびに実施例1~9の半導体素子はいずれも、積層型PTCサーミスタである。 The semiconductor elements of Comparative Examples 1 and 2 and Examples 1 to 9 were produced by the following procedure. The semiconductor elements of Comparative Examples 1 and 2 and Examples 1 to 9 are all laminated PTC thermistors.
 [比較例1]
まず、最終的に得られる半導体素子を構成するセラミックス素体に含まれるセラミックス焼結体粒子の組成が下記の(2)式で表される組成となるように、BaCO、TiOおよびLaを秤量した。比較例1において、α=Laであり、mBa=100、mα=mLa=0.2、m=0.999となるように各原料を秤量した。
[Comparative Example 1]
First, BaCO 3 , TiO 2, and La 2 so that the composition of the ceramic sintered body particles contained in the ceramic body constituting the finally obtained semiconductor element is a composition represented by the following formula (2). O 3 was weighed. In Comparative Example 1, each raw material was weighed so that α = La, m Ba = 100, m α = m La = 0.2, and m = 0.999.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 秤量した上述の各原材料を、PSZ(部分安定化ジルコニア)ボールおよび純水と共にボールミルに投入し、湿式で十分に混合粉砕し、乾燥させて混合粉体を得た。この混合粉体を800℃以上1100℃以下の温度で仮焼処理して、仮焼粉として原料のペロブスカイト型化合物粒子を得た。得られた原料のペロブスカイト型化合物粒子の比表面積は2.1m/g、c/aは1.010であった。原料のペロブスカイト型化合物粒子の比表面積は、株式会社マウンテック製のMacsorb(登録商標)を用いて脱気温度250℃の条件下で測定した。原料のペロブスカイト型化合物粒子のc/aは、粉末X線回折装置(リガク社製RINT2500)を用いて定性分析を行い、リートベルト解析することにより求めた。 Each of the above-mentioned raw materials weighed was put into a ball mill together with PSZ (partially stabilized zirconia) balls and pure water, sufficiently mixed and pulverized in a wet manner, and dried to obtain a mixed powder. This mixed powder was calcined at a temperature of 800 ° C. or higher and 1100 ° C. or lower to obtain raw material perovskite type compound particles as calcined powder. The obtained perovskite compound particles had a specific surface area of 2.1 m 2 / g and c / a of 1.010. The specific surface area of the raw material perovskite type compound particles was measured using a Macsorb (registered trademark) manufactured by Mountec Co., Ltd. under a degassing temperature of 250 ° C. The c / a of the raw material perovskite type compound particles was determined by conducting a qualitative analysis using a powder X-ray diffraction apparatus (RINT2500 manufactured by Rigaku Corporation) and performing a Rietveld analysis.
 得られた原料のペロブスカイト型化合物粒子に有機バインダー、分散剤および水を加え、ジルコニアボールと共に数時間混合して、セラミックススラリーを得た。このセラミックススラリーを、ドクターブレード法によりシート状に成形し、乾燥させて、厚さ30μmのセラミックスグリーンシートを作製した。 An organic binder, a dispersant and water were added to the obtained raw material perovskite type compound particles and mixed with zirconia balls for several hours to obtain a ceramic slurry. This ceramic slurry was formed into a sheet by a doctor blade method and dried to prepare a ceramic green sheet having a thickness of 30 μm.
 次に、Ni金属粉末および有機バインダーを有機溶媒に分散させて、内部電極用導電性ペーストを調製した。この内部電極用導電性ペーストを、スクリーン印刷によりセラミックスグリーンシートの主面上に塗布した。内部電極用導電性ペーストの塗布厚さは、最終的に得られる半導体素子における内部電極の厚さが0.5μm以上2μm以下となるように調節した。このように内部電極用導電性ペーストを塗布したセラミックスグリーンシート、および内部電極用導電性ペーストを塗布していないセラミックスグリーンシートを、内部電極が24枚含まれ且つ内部電極間距離が30μmとなるように積層して積層体を得た。この積層体の上下に、内部電極用導電性ペーストを塗布していないセラミックスグリーンシートを5枚ずつ配置して圧着し、焼成後の寸法がL寸2.0mm×W寸1.2mm×T寸1.0mmとなるように寸法に切断してグリーンチップを得た。 Next, Ni metal powder and an organic binder were dispersed in an organic solvent to prepare a conductive paste for internal electrodes. This internal electrode conductive paste was applied on the main surface of the ceramic green sheet by screen printing. The coating thickness of the internal electrode conductive paste was adjusted so that the thickness of the internal electrode in the finally obtained semiconductor element was 0.5 μm or more and 2 μm or less. The ceramic green sheet coated with the internal electrode conductive paste and the ceramic green sheet not coated with the internal electrode conductive paste are included so that 24 internal electrodes are included and the distance between the internal electrodes is 30 μm. To obtain a laminate. Five ceramic green sheets not coated with the internal electrode conductive paste are placed on the upper and lower sides of this laminate and pressed, and the dimensions after firing are L dimension 2.0 mm × W dimension 1.2 mm × T dimension. A green chip was obtained by cutting into a size of 1.0 mm.
 このグリーンチップを大気雰囲気下にて300℃で12時間脱脂処理した。脱脂処理後のグリーンチップを、H/N/HO混合ガスを用いて還元雰囲気下にて1000℃以上1300℃以下の温度で2時間焼成し、セラミックス素体を得た。 This green chip was degreased at 300 ° C. for 12 hours in an air atmosphere. The green chip after the degreasing treatment was baked at a temperature of 1000 ° C. or higher and 1300 ° C. or lower for 2 hours in a reducing atmosphere using a H 2 / N 2 / H 2 O mixed gas to obtain a ceramic body.
 得られたセラミックス素体をガラスコートし、大気雰囲気下にて800℃以下の温度で熱処理することにより、セラミックス素体の表面にガラス層を形成すると同時に、セラミックス素体の再酸化を行った。 The obtained ceramic body was glass-coated and heat-treated at a temperature of 800 ° C. or lower in an air atmosphere, thereby forming a glass layer on the surface of the ceramic body and simultaneously re-oxidizing the ceramic body.
 ガラス層が形成されたセラミックス素体をバレル研磨した。バレル研磨後のセラミックス素体の両端面にCr、NiCu合金およびAgをこの順番にスパッタリングすることにより、外部電極を形成した。形成された外部電極の表面に、電解めっきによりSnめっき層を形成した。このようにして、比較例1の半導体素子を得た。 The ceramic body on which the glass layer was formed was barrel polished. External electrodes were formed by sputtering Cr, NiCu alloy and Ag in this order on both end faces of the ceramic body after barrel polishing. An Sn plating layer was formed on the surface of the formed external electrode by electrolytic plating. In this way, a semiconductor element of Comparative Example 1 was obtained.
 [比較例2および実施例1~9]
 後述の表1に示す比表面積およびc/aの値を有するペロブスカイト型化合物粒子を原料として用いた以外は比較例1と同様の手順で比較例2および実施例1~9の半導体素子を製造した。
[Comparative Example 2 and Examples 1 to 9]
Semiconductor devices of Comparative Example 2 and Examples 1 to 9 were manufactured in the same procedure as Comparative Example 1 except that perovskite type compound particles having specific surface areas and c / a values shown in Table 1 described later were used as raw materials. .
 比較例1および2ならびに実施例1~9の半導体素子の各々について、セラミックス焼結体粒子の平均粒径および接触率を測定した。セラミックス焼結体粒子の平均粒径は以下の手順で測定した。まず、半導体素子をLT面(W方向に対して垂直な面)方向に約1/2W地点(半導体素子のW寸の約半分の地点)まで研磨し、LT面に平行な半導体素子断面を露出させた。この断面を、走査型電子顕微鏡(日立製SU-8040)を用いて加速電圧1kV、倍率10000倍の条件で観察し、SEM画像を得た。SEMにより観察した領域(観察領域)の寸法は、セラミックス焼結体粒子数が80個以上200個以下カウント可能である寸法に設定した。このSEM画像を、解析装置(旭化成エンジニアリング株式会社製「A像くん」)を用いて画像解析し、SEM画像におけるセラミックス焼結体粒子の面積を求めた。求めた面積に基づいて算出した等面積円相当径(Heywood径)をセラミックス焼結体粒子の粒径とした。観察領域の中に完全に収まっているセラミックス焼結体粒子の粒径の平均値を、セラミックス焼結体粒子の平均粒径とした。なお、本実施例において、上述の半導体素子断面においてセラミックス焼結体粒子の平均粒径を求めたが、他の半導体素子断面において平均粒径を求めた場合であっても同様の結果が得られると考えて差し支えない。 For each of the semiconductor elements of Comparative Examples 1 and 2 and Examples 1 to 9, the average particle diameter and contact rate of the ceramic sintered body particles were measured. The average particle size of the sintered ceramic particles was measured by the following procedure. First, the semiconductor element is polished to about 1/2 W point (about half the W dimension of the semiconductor element) in the direction of the LT plane (plane perpendicular to the W direction), and the semiconductor element cross section parallel to the LT plane is exposed. I let you. This cross section was observed using a scanning electron microscope (Hitachi SU-8040) under the conditions of an acceleration voltage of 1 kV and a magnification of 10,000 times to obtain an SEM image. The size of the region (observation region) observed by SEM was set to a size that allows counting of 80 to 200 ceramics sintered body particles. This SEM image was subjected to image analysis using an analyzer (“A Image-kun” manufactured by Asahi Kasei Engineering Co., Ltd.), and the area of ceramic sintered body particles in the SEM image was determined. An equivalent area equivalent circle diameter (Heywood diameter) calculated based on the obtained area was defined as the particle diameter of the ceramic sintered body particles. The average value of the particle diameters of the ceramic sintered body particles completely contained in the observation region was defined as the average particle diameter of the ceramic sintered body particles. In this example, the average particle diameter of the ceramic sintered body particles was obtained in the above-mentioned semiconductor element cross section, but the same result can be obtained even when the average particle diameter is obtained in other semiconductor element cross sections. You can think of it.
 セラミックス焼結体粒子の接触率は、平均粒径を求めるのに用いた半導体素子断面と同じ断面を用いて測定した。半導体素子断面のうち、セラミックス素体2の中央部付近における、内部電極に挟まれた部分を走査型電子顕微鏡(SEM)で観察した。SEMで観察すべき断面は特に限定されるものではなく、任意の断面を選択してよい。断面は、例えば、半導体素子1をLT面(W方向に対して垂直な面)方向に約1/2W地点(半導体素子のW寸の約半分の地点)まで研磨することにより得られる、LT面に平行な半導体素子断面であってよい。半導体素子1の断面において、SEMで観察すべき領域は、特に限定されるものではないが、例えば、セラミックス素体2の中央部付近における、内部電極に挟まれた領域であってよい。SEMの観察領域の寸法は、観察倍率10000倍においてセラミックス焼結体粒子数が80個以上200個以下カウント可能である寸法に設定した。得られたSEM像を、解析装置(旭化成エンジニアリング株式会社製「A像くん」)を用いて画像解析し、観察領域内に存在するセラミックス焼結体粒子の周囲長さの合計L、観察領域内に存在するポアの周囲長さの合計LNC、および観察領域の外周長さLを求めた。画像解析によりL、LNCおよびLを求めた結果の一例をそれぞれ図4~6に示す。求めたL、LNCおよびLの値に基づいて、下記式
Figure JPOXMLDOC01-appb-M000009
を用いて観察領域内に存在するセラミックス焼結体粒子の接触長さの合計Lを求めた。求めたLの値およびLNCの値に基づいて、下記式
Figure JPOXMLDOC01-appb-M000010
を用いてセラミックス焼結体粒子の接触率を求めた。
The contact ratio of the ceramic sintered body particles was measured using the same cross section as that of the semiconductor element used for obtaining the average particle diameter. Of the cross section of the semiconductor element, the portion sandwiched between the internal electrodes in the vicinity of the central portion of the ceramic body 2 was observed with a scanning electron microscope (SEM). The cross section to be observed with the SEM is not particularly limited, and an arbitrary cross section may be selected. The cross section is obtained by, for example, polishing the semiconductor element 1 in the LT plane (plane perpendicular to the W direction) to about 1/2 W point (about half the W dimension of the semiconductor element). The cross section of the semiconductor element may be parallel to. In the cross section of the semiconductor element 1, the region to be observed with the SEM is not particularly limited, but may be, for example, a region sandwiched between internal electrodes in the vicinity of the central portion of the ceramic body 2. The dimension of the observation region of SEM was set to a dimension that allows the number of sintered ceramic particles to be counted from 80 to 200 at an observation magnification of 10,000. The resulting SEM image, and image analysis using an analysis apparatus (manufactured by Asahi Kasei Engineering Corporation "A picture kun"), the total L G around the length of the ceramic sintered particles present in the observation region, the observation region The total peripheral length L NC of the pores existing inside and the outer peripheral length L S of the observation region were determined. Examples of the results of obtaining L G , L NC and L S by image analysis are shown in FIGS. 4 to 6, respectively. Based on the obtained values of L G , L NC and L S ,
Figure JPOXMLDOC01-appb-M000009
The total L C of the contact length of the ceramic sintered particles present in the observation area using the determined. Based on the values and L NC of obtained L C, the following formula
Figure JPOXMLDOC01-appb-M000010
Was used to determine the contact ratio of the ceramic sintered body particles.
 比較例1および2ならびに実施例1~9の半導体素子の各々について、4端子法により室温(25℃)における比抵抗を測定した。以上の測定結果を表1に示す。 For each of the semiconductor elements of Comparative Examples 1 and 2 and Examples 1 to 9, the specific resistance at room temperature (25 ° C.) was measured by the 4-terminal method. The above measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1より、原料のペロブスカイト型化合物粒子の比表面積が4.0m/g以上14.0m/g以下であり且つc/aが1.005以上1.009以下であった実施例1~9において、得られた半導体素子に含まれるセラミックス焼結体粒子の平均粒径を0.4μm以上1.0μm以下にすることができ、且つセラミックス焼結体粒子の接触率を45%以上にすることができたことがわかる。一方、原料のペロブスカイト型化合物粒子の比表面積が4.0m/g未満であり、c/aが1.009より大きかった比較例1においては、得られた半導体素子に含まれるセラミックス焼結体粒子の平均粒径は1.0μmより大きく、セラミックス焼結体粒子の接触率は45%未満であった。また、原料のペロブスカイト型化合物粒子の比表面積が4.0m/g未満であった比較例2においては、得られた半導体素子に含まれるセラミックス焼結体粒子の接触率は45%未満であった。 From Table 1, Examples 1 to 1 in which the specific surface area of the raw material perovskite type compound particles was 4.0 m 2 / g or more and 14.0 m 2 / g or less and c / a was 1.005 or more and 1.009 or less. 9, the average particle diameter of the ceramic sintered body particles contained in the obtained semiconductor element can be 0.4 μm or more and 1.0 μm or less, and the contact ratio of the ceramic sintered body particles is 45% or more. I understand that I was able to. On the other hand, in Comparative Example 1 in which the specific surface area of the raw material perovskite compound particles was less than 4.0 m 2 / g and c / a was greater than 1.009, the ceramic sintered body contained in the obtained semiconductor element The average particle diameter of the particles was larger than 1.0 μm, and the contact ratio of the ceramic sintered body particles was less than 45%. Further, in Comparative Example 2 in which the specific surface area of the raw material perovskite compound particles was less than 4.0 m 2 / g, the contact ratio of the ceramic sintered body particles contained in the obtained semiconductor element was less than 45%. It was.
 表1に示すように、セラミックス焼結体粒子の平均粒径が0.4μm以上1.0μm以下であり且つ接触率が45%以上であった実施例1~9の半導体素子は、室温において71Ω・cm以下の低い比抵抗値を示した。また、実施例1~9の半導体素子は、1000V/mm以上の高い耐電圧特性を有した。更に、原料のペロブスカイト型化合物粒子の比表面積が4.0m/g以上11.0m/g以下であった実施例1~8の半導体素子は、室温において32Ω・cm以下の更に低い比抵抗値を示した。一方、セラミックス焼結体粒子の平均粒径が1.0μmより大きく且つ接触率が45%未満であった比較例1の半導体素子は、1000V/mm未満の低い耐電圧特性を有した。また、セラミックス焼結体粒子の接触率が45%未満であった比較例2の半導体素子は、室温において80Ω・cmを超える高い比抵抗値を示した。 As shown in Table 1, the semiconductor elements of Examples 1 to 9 in which the average particle size of the sintered ceramic particles was 0.4 μm or more and 1.0 μm or less and the contact rate was 45% or more were 71 Ω at room temperature. -The specific resistance value was as low as cm or less. Further, the semiconductor elements of Examples 1 to 9 had high withstand voltage characteristics of 1000 V / mm or more. Further, the semiconductor elements of Examples 1 to 8, in which the specific surface area of the raw material perovskite compound particles was 4.0 m 2 / g or more and 11.0 m 2 / g or less, had a lower specific resistance of 32 Ω · cm or less at room temperature. The value is shown. On the other hand, the semiconductor element of Comparative Example 1 in which the average particle diameter of the ceramic sintered body particles was larger than 1.0 μm and the contact rate was less than 45% had low withstand voltage characteristics of less than 1000 V / mm. In addition, the semiconductor element of Comparative Example 2 in which the contact ratio of the ceramic sintered body particles was less than 45% exhibited a high specific resistance value exceeding 80 Ω · cm at room temperature.
 本発明に係る半導体素子は、高い耐電圧特性と室温における低い比抵抗値とを両立しており、幅広い用途において好適に用いることができる。 The semiconductor element according to the present invention has both a high withstand voltage characteristic and a low specific resistance value at room temperature, and can be suitably used in a wide range of applications.
 1 半導体素子
 2 セラミックス素体
 21 セラミックス素体の第1の端面
 22 セラミックス素体の第2の端面
 31 第1の外部電極
 32 第2の外部電極
 41 第1の内部電極
 42 第2の内部電極
 5 ガラス層
 61、62 めっき層
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Ceramic body 21 First end surface of ceramic body 22 Second end surface of ceramic body 31 First external electrode 32 Second external electrode 41 First internal electrode 42 Second internal electrode 5 Glass layer 61, 62 Plating layer

Claims (8)

  1.  セラミックス焼結体粒子を含むセラミックス素体と、
     前記セラミックス素体の第1の端面に配置される第1の外部電極と、
     前記セラミックス素体の第2の端面に配置される第2の外部電極と
    を含む半導体素子であって、
     前記セラミックス焼結体粒子は、BaおよびTiを少なくとも含むペロブスカイト型化合物であり、
     前記セラミックス焼結体粒子の平均粒径が0.4μm以上1.0μm以下であり、
     前記半導体素子の一の断面において選択される一の領域を走査型電子顕微鏡で観察することにより算出される、前記一の領域内に存在する前記セラミックス焼結体粒子の周囲長さの合計L、前記一の領域内に存在するポアの周囲長さの合計LNC、前記一の領域の外周長さL、および下記式
    Figure JPOXMLDOC01-appb-M000001
    で表される、前記一の領域内に存在する前記セラミックス焼結体粒子の接触長さLの値に基づいて、下記式
    Figure JPOXMLDOC01-appb-M000002
    により算出される前記セラミックス焼結体粒子の接触率が45%以上である、半導体素子。
    A ceramic body including ceramic sintered body particles;
    A first external electrode disposed on a first end surface of the ceramic body,
    A semiconductor element including a second external electrode disposed on a second end face of the ceramic body,
    The ceramic sintered body particles are perovskite type compounds containing at least Ba and Ti,
    The ceramic sintered body particles have an average particle size of 0.4 μm or more and 1.0 μm or less,
    Total perimeter L G of the ceramic sintered body particles present in the one region calculated by observing one region selected in one cross section of the semiconductor element with a scanning electron microscope , The total peripheral length L NC of the pores existing in the one region, the outer peripheral length L S of the one region, and the following formula
    Figure JPOXMLDOC01-appb-M000001
    Based on the value of the contact length L C of the ceramic sintered body particles present in the one region represented by
    Figure JPOXMLDOC01-appb-M000002
    The semiconductor element whose contact rate of the said ceramic sintered compact particle | grain calculated by is 45% or more.
  2.  前記セラミックス焼結体粒子の接触率が45%以上80%以下である、請求項1に記載の半導体素子。 The semiconductor element according to claim 1, wherein a contact ratio of the ceramic sintered body particles is 45% or more and 80% or less.
  3.  前記半導体素子が、前記セラミックス素体の内部に1以上の第1の内部電極および1以上の第2の内部電極が配置された積層型半導体素子であり、
     前記第1の内部電極は、前記セラミックス素体の前記第1の端面において前記第1の外部電極と電気的に接続し、
     前記第2の内部電極は、前記セラミックス素体の前記第2の端面において前記第2の外部電極と電気的に接続する、請求項1または2に記載の半導体素子。
    The semiconductor element is a stacked semiconductor element in which one or more first internal electrodes and one or more second internal electrodes are disposed inside the ceramic body,
    The first internal electrode is electrically connected to the first external electrode at the first end face of the ceramic body;
    3. The semiconductor element according to claim 1, wherein the second internal electrode is electrically connected to the second external electrode at the second end face of the ceramic body.
  4.  前記第1の内部電極および前記第2の内部電極がNi電極である、請求項3に記載の半導体素子。 The semiconductor element according to claim 3, wherein the first internal electrode and the second internal electrode are Ni electrodes.
  5.  半導体素子の製造方法であって、
     BaおよびTiを少なくとも含むペロブスカイト型化合物粒子を調製する工程と、
     前記ペロブスカイト型化合物粒子を含むグリーンチップを形成する工程と、
     前記グリーンチップを焼成することによりセラミックス素体を得る工程と、
     前記セラミックス素体の両端面に外部電極を形成することにより半導体素子を得る工程と
    を含み、
     前記ペロブスカイト型化合物粒子の比表面積が4.0m/g以上14.0m/g以下であり、
     前記ペロブスカイト型化合物粒子の結晶格子のa軸長に対するc軸長の比c/aが1.005以上1.009以下である、方法。
    A method for manufacturing a semiconductor device, comprising:
    Preparing perovskite-type compound particles containing at least Ba and Ti;
    Forming a green chip containing the perovskite type compound particles;
    Obtaining a ceramic body by firing the green chip;
    Forming a semiconductor element by forming external electrodes on both end faces of the ceramic body,
    The perovskite compound particles have a specific surface area of 4.0 m 2 / g or more and 14.0 m 2 / g or less,
    A method in which the ratio c / a of the c-axis length to the a-axis length of the crystal lattice of the perovskite type compound particles is 1.005 or more and 1.009 or less.
  6.  前記ペロブスカイト型化合物粒子の比表面積が4.0m/g以上11.0m/g以下である、請求項5に記載の方法。 The method according to claim 5, wherein the perovskite compound particles have a specific surface area of 4.0 m 2 / g or more and 11.0 m 2 / g or less.
  7.  前記ペロブスカイト型化合物粒子を含むグリーンチップを形成する工程が、
     前記ペロブスカイト型化合物粒子を含むセラミックスグリーンシートを作製する工程と、
     前記セラミックスグリーンシートの主面上に内部電極用導電性ペーストを塗布する工程と、
     前記内部電極用導電性ペーストを塗布した前記セラミックスグリーンシートを複数枚積層して積層体を得る工程と、
     前記積層体の上下に前記内部電極用導電性ペーストを塗布していないセラミックスグリーンシートを配置して圧着し、所定の寸法に切断してグリーンチップを得る工程と
    を含む、請求項5または6に記載の方法。
    Forming a green chip containing the perovskite type compound particles,
    Producing a ceramic green sheet containing the perovskite type compound particles;
    Applying a conductive paste for internal electrodes on the main surface of the ceramic green sheet;
    Laminating a plurality of the ceramic green sheets coated with the internal electrode conductive paste to obtain a laminate; and
    A ceramic green sheet not coated with the internal electrode conductive paste is disposed on and under the laminated body, and is bonded and cut to a predetermined size to obtain a green chip. The method described.
  8.  前記内部電極用導電性ペーストが、導電性粉末としてNi金属粉末を含む、請求項7に記載の方法。 The method according to claim 7, wherein the internal electrode conductive paste contains Ni metal powder as the conductive powder.
PCT/JP2016/050205 2015-02-06 2016-01-06 Semiconductor element and method for manufacturing same WO2016125520A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016573240A JP6739353B2 (en) 2015-02-06 2016-01-06 Semiconductor element and manufacturing method thereof
CN201680007338.7A CN107210105B (en) 2015-02-06 2016-01-06 Semiconductor element and its manufacturing method
DE112016000618.7T DE112016000618T5 (en) 2015-02-06 2016-01-06 Semiconductor element and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-022350 2015-02-06
JP2015022350 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016125520A1 true WO2016125520A1 (en) 2016-08-11

Family

ID=56563872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050205 WO2016125520A1 (en) 2015-02-06 2016-01-06 Semiconductor element and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP6739353B2 (en)
CN (1) CN107210105B (en)
DE (1) DE112016000618T5 (en)
WO (1) WO2016125520A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3535739B1 (en) 2016-12-06 2020-10-28 MACO Technologie GmbH Security device for monitoring the position of a wing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220902A (en) * 1994-02-07 1995-08-18 Murata Mfg Co Ltd Barium titanate semiconductor ceramic
JP2001031471A (en) * 1999-05-20 2001-02-06 Murata Mfg Co Ltd Barium titanate-based semiconductor ceramic powder and lamination type semiconductor ceramic element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326102A (en) * 2000-05-15 2001-11-22 Murata Mfg Co Ltd Laminated semiconductor ceramic device and method of manufacturing the same
JP4211510B2 (en) * 2002-08-13 2009-01-21 株式会社村田製作所 Manufacturing method of laminated PTC thermistor
EP2439181A4 (en) * 2009-06-05 2018-03-28 Murata Manufacturing Co., Ltd. Barium titanate semiconductor ceramic composition and barium titanate semiconductor ceramic element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220902A (en) * 1994-02-07 1995-08-18 Murata Mfg Co Ltd Barium titanate semiconductor ceramic
JP2001031471A (en) * 1999-05-20 2001-02-06 Murata Mfg Co Ltd Barium titanate-based semiconductor ceramic powder and lamination type semiconductor ceramic element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3535739B1 (en) 2016-12-06 2020-10-28 MACO Technologie GmbH Security device for monitoring the position of a wing

Also Published As

Publication number Publication date
JP6739353B2 (en) 2020-08-12
JPWO2016125520A1 (en) 2017-09-14
DE112016000618T5 (en) 2017-11-02
CN107210105A (en) 2017-09-26
CN107210105B (en) 2019-09-03

Similar Documents

Publication Publication Date Title
CN108735508B (en) Multilayer ceramic capacitor and method for manufacturing the same
CN109326442B (en) Multilayer ceramic capacitor and method for manufacturing the same
TWI402872B (en) Electrolyte procelain, laminated ceramic capacitor and methods for manufacturing electrolyte porcelain and laminated ceramic capacitor
JP5067401B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
KR102363231B1 (en) Multilayer ceramic capacitor, ceramic powder, manufacturing method of multilayer ceramic capacitor and manufacturing method of ceramic powder
JP7131955B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPH11273986A (en) Dielectric ceramic and its manufacture and laminated ceramic electronic part and its manufacture
CN112216510B (en) Ceramic electronic device and method for manufacturing the same
JPH11273985A (en) Dielectric ceramic and its manufacture, and laminated ceramic electronic part and its manufacture
TWI441791B (en) Dielectric ceramic and laminated ceramic capacitor
JP6523930B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
CN110776317B (en) Dielectric ceramic composition and laminated ceramic electronic component
WO2013022064A1 (en) Dielectric ceramic, layered ceramic electronic part, layered ceramic capacitor, and method for producing layered ceramic capacitor
JP2017028254A (en) Multilayer ceramic capacitor
TW201821387A (en) Dielectric ceramic composition and ceramic electronic component
KR20080109643A (en) Laminated ptc thermistor and method of producing same
JP6394702B2 (en) Chip ceramic semiconductor electronic components
JP4710096B2 (en) Multilayer positive temperature coefficient thermistor
JP6636744B2 (en) Dielectric ceramic composition and electronic device using the same
JP4780306B2 (en) Multilayer thermistor and manufacturing method thereof
JP2015222780A (en) Piezoelectric ceramic, method for manufacturing the same, and piezoelectric material device
JP6739353B2 (en) Semiconductor element and manufacturing method thereof
JPH06151103A (en) Laminated semiconductor porcelain composition
JP4710097B2 (en) Multilayer positive temperature coefficient thermistor
CN115403367A (en) Dielectric composition and laminated ceramic electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573240

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016000618

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746351

Country of ref document: EP

Kind code of ref document: A1