JPS60142502A - Method of baking barium titanate semiconductor porcelain - Google Patents

Method of baking barium titanate semiconductor porcelain

Info

Publication number
JPS60142502A
JPS60142502A JP58245935A JP24593583A JPS60142502A JP S60142502 A JPS60142502 A JP S60142502A JP 58245935 A JP58245935 A JP 58245935A JP 24593583 A JP24593583 A JP 24593583A JP S60142502 A JPS60142502 A JP S60142502A
Authority
JP
Japan
Prior art keywords
barium titanate
semiconductor porcelain
powder
firing
based semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58245935A
Other languages
Japanese (ja)
Other versions
JPH04566B2 (en
Inventor
幸宏 加藤
神谷 英夫
清 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58245935A priority Critical patent/JPS60142502A/en
Publication of JPS60142502A publication Critical patent/JPS60142502A/en
Publication of JPH04566B2 publication Critical patent/JPH04566B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業の利用分野及び発明の目的 本発明はPTC素子の素材であるチタン酸バリウム系半
導体磁器の焼成方法であって、その目的とする処は焼成
時に使用するパッド材を改良することによって焼成に伴
なう特性め・くラツキを大巾に低減する方法を提供する
ことにある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application and Purpose of the Invention The present invention is a method for firing barium titanate-based semiconductor porcelain, which is a material for PTC elements, and its purpose is to heat the pad material used during firing. It is an object of the present invention to provide a method for greatly reducing characteristic blurring and blurring caused by firing by improving the method.

従来技術 チタン酸バリウム系半導体磁器は定温加熱用ヒーターと
して広く用いられている。
BACKGROUND OF THE INVENTION Barium titanate-based semiconductor porcelain is widely used as a heater for constant temperature heating.

チタン酸バリウム系半導体磁器は、一般に第1図の如き
製造工程によって製造されている。
Barium titanate-based semiconductor ceramics are generally manufactured by a manufacturing process as shown in FIG.

そして前記工程中焼成工程は磁器の特性を大きく左右す
る。
The firing step during the process greatly influences the characteristics of the porcelain.

前記焼成工程は、チタン酸バリウム系半導体の成形体と
焼成容器との間に・くラド材をはさんで焼成するもので
、このパッド利にジルコニア粉末が用いられている。こ
のジルコニア粉末は、他のパッド材に比べて、チタン酸
バリウム系半導体磁器との反応性が小さい。
In the firing process, a cladding material is sandwiched between the barium titanate-based semiconductor molded body and a firing container, and zirconia powder is used for this padding. This zirconia powder has less reactivity with barium titanate semiconductor ceramics than other pad materials.

しかし、近年PTC素子の特性の要求精度の高まりから
、焼成工程におけるチタン酸バリウム系半導体磁器とジ
ルコニア粉末との反応を無視することができず、従って
新たなパッド材の開発が要望されている。
However, in recent years, due to the increasing precision required for the characteristics of PTC elements, the reaction between barium titanate semiconductor ceramics and zirconia powder during the firing process cannot be ignored, and there is therefore a demand for the development of new pad materials.

本発明の構成 チタン酸バリウノ・系半導体磁器の焼成に当り、ジルコ
ニア粉末に、チタン酸バリウム系半導体磁器の中間物プ
こる仮焼粉末20〜go、Lfit%を混合し、900
〜1000℃て1〜2時間焼成した粉末をパッド拐とし
て焼成することを7I+徴とするチタン酸バリウム系半
導体磁器の焼成方法である。
Constituent of the present invention When firing barium titanate-based semiconductor porcelain, zirconia powder is mixed with 20~go, Lfit% of calcined powder of barium titanate-based semiconductor porcelain.
This is a method for firing barium titanate-based semiconductor porcelain, in which the powder is fired at ~1000°C for 1 to 2 hours and then fired as a pad.

作用効果 ジルコニア粉末(100〜200メツシユ)に、チタン
酸バリウム系半導体磁器の中間反別である仮焼粉末20
〜80重量係配合する。この仮焼粉末は第1図に示され
た製造工程の常法による仮焼工程(1000〜1250
℃)によって得られたもので、ジルコニア粉末と均一混
合するだめジルコニア粉末と同様の粒径に粉砕したもの
を1時間以上乾式混合する。
Effects: Zirconia powder (100 to 200 meshes) is mixed with 20 calcined powders, which are intermediate pieces of barium titanate semiconductor porcelain.
~80% by weight is blended. This calcined powder is used in the calcining process (1000 to 1250
℃), and in order to uniformly mix it with the zirconia powder, it is ground to the same particle size as the zirconia powder and dry mixed for over 1 hour.

つぎに、前記混合物を900〜1000℃で、1〜2時
間焼成し、粉砕してパッド桐とする。
Next, the mixture is fired at 900 to 1000°C for 1 to 2 hours and pulverized to form pad paulownia.

前記パッド制を焼成容器に投入し、該パッド材−ににチ
タン酸バリウムの成形体を載置するか又は成形体をパッ
ド材中に埋め込んで焼成する。
The pad system is placed in a firing container, and a molded body of barium titanate is placed on the pad material or the molded body is embedded in the pad material and fired.

この場合の焼成は従来公知の方法によって焼成すればよ
い。
In this case, firing may be performed by a conventionally known method.

前記の如きパッド材を用いて焼成されたチタン酸バリウ
ム系半導体磁器は、PTC素子としての特性、特に突入
電流値は後述実施例に示すようにバラツキは小さく、従
って安定したものとして得られる。
The barium titanate-based semiconductor porcelain fired using the pad material as described above has small variations in characteristics as a PTC element, particularly in rush current value, as shown in Examples below, and is therefore stable.

寸だ、本発明でバッド拐に混合される仮焼粉末は、チタ
ン酸バリウム系半導体磁器の中間体であるから、何等別
箇の原料を使用する必要が々く、寸だその焼成工程も従
来と全く同様に処理でき、従ってPTC素子の特性のバ
ラツキの小さい安定した製品を簡単、かつ廉価に得るこ
とができる。
In fact, the calcined powder mixed with the bat powder in the present invention is an intermediate for barium titanate-based semiconductor porcelain, so it is necessary to use a separate raw material, and the firing process is similar to the conventional one. Therefore, stable products with small variations in the characteristics of PTC elements can be obtained simply and at low cost.

実Mji例 出発原料として市販の高純j象製品BaCO3+La2
O3,TiO2、Mll(NO3)2を、0,998 
、:o、o+s:+、oo:o、o2(モル比)の割合
で仕置し、ゴム内張りのボットミルにメノウ玉石と共に
投入して粉砕7混合した後乾燥し、1100℃で1時間
仮焼した。
Commercially available high-purity products BaCO3+La2 as starting materials
O3, TiO2, Mll(NO3)2, 0,998
, :o, o+s:+, oo:o, o2 (molar ratio), and put into a rubber-lined bot mill together with agate cobbles, crushed, mixed, dried, and calcined at 1100°C for 1 hour. .

前述仮焼粉末の一部を100〜200メツンユのジルコ
ニア粉末に対しO〜90重量係の範囲で配合し、乾式で
1時間以上混合し、さらに900〜1000℃で、1〜
2時間焼成し、粉砕してパッド材を得た。
A part of the above-mentioned calcined powder was blended with zirconia powder of 100 to 200 mcg in a weight range of O to 90, mixed dry for more than 1 hour, and then heated at 900 to 1000°C for 1 to 90 g.
It was baked for 2 hours and crushed to obtain a pad material.

他方、前記仮焼粉末を再びメノウ玉石と共にボッ)ミル
に投入して粉砕、乾燥し、乾燥原料に、バインダーとし
てPVA (ポリビニルアルコール)約5重量係を添加
し造粒後、油圧プレスでl l・ン/ cm2の圧力で
iG径13市、厚さ2 、mmの円板の成形体を得た。
On the other hand, the calcined powder was again put into the mill together with agate boulders, pulverized and dried. Approximately 5 parts by weight of PVA (polyvinyl alcohol) was added as a binder to the dry raw material, and after granulation, it was pulverized using a hydraulic press. A disc shaped body with an iG diameter of 13 mm and a thickness of 2 mm was obtained at a pressure of .cm/cm2.

この成形体を前述によって得られたバンド利上に載置し
、アルミナ製容器中で200℃/1時間の昇温速度で電
気炉中で昇温し、1300℃で1時間焼成した後、15
0℃/1時間の降温速度で冷却した後、第2図のように
前記成形体1両面にニッケル電極2を取利けてPTC素
子をイ好プζ2゜ とのP]’C素子に])C12Vの電圧を印加し、電流
値の経時変化をめる。第3図はその概略を示したもので
あって、このときの最大電流値(P)を突入電流値と称
し、素子の重要特性である。
This compact was placed on the band plate obtained as described above, heated in an electric furnace at a heating rate of 200°C/1 hour in an alumina container, and fired at 1300°C for 1 hour.
After cooling at a temperature decreasing rate of 0°C/1 hour, nickel electrodes 2 are placed on both sides of the molded body 1 as shown in Fig. 2 to convert the PTC element into a P]'C element with a desired shape of ζ2°. ) Apply a voltage of C12V and observe the change in current value over time. FIG. 3 schematically shows this, and the maximum current value (P) at this time is called the rush current value, and is an important characteristic of the element.

第4図はパッド材中のチタン酸ノクリウム仮焼粉末を5
0暇量係配合した場合の突入電流値の分布を示したもの
である。尚、第5図は比較のために従来のパッド拐(ジ
ルコニア粉末)を用いて前記実施例と同様にしてPTC
素子とし、これにl)CI 2 Vの電圧を印加した場
合の突入電流値の分布をめたものである。
Figure 4 shows the calcined powder of nocurium titanate in the pad material.
It shows the distribution of inrush current values when 0 time factor is mixed. For comparison, FIG. 5 shows a PTC test using conventional pad powder (zirconia powder) in the same manner as in the previous example.
The figure shows the distribution of inrush current values when a voltage of 1) CI 2 V is applied to the element.

第4図及び第5図の比較から明らかなように、本発明の
方法で得られた1)TC素子の突入電流値のバラツキは
6n−1(標準偏差)が従来品に比較して小さくなって
いることが認められる。
As is clear from the comparison of Figures 4 and 5, 1) The variation in the inrush current value of the TC element obtained by the method of the present invention is 6n-1 (standard deviation) smaller than that of the conventional product. It is recognized that

捷だ、第6図はパッド月中のチタン酸バリウム仮焼粉末
の配合率に、対する突入電流値を示しだものであるが、
該仮焼粉末の配合が20〜80重量係に於て突入電流値
のバラツギは小さく、20重量係以下及び80重量係以
」二では伺れもバラツキが大きく、特に80重量%以」
二ではパッド材自体の焼結が顕著で実用的ではなかった
Well, Figure 6 shows the inrush current value as a function of the blending ratio of barium titanate calcined powder during padding.
When the composition of the calcined powder is between 20 and 80% by weight, the variation in rush current value is small, but when the composition is below 20% by weight and above 80% by weight, the variation is large, especially above 80% by weight.
In the second method, the pad material itself was significantly sintered and was not practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はPTC素子の製造工程のフローシート、第2図
はPTC素子の断面図、第3図はPTC素子の電流値の
経時変化のグラフ、第4図は本発明によって得られた製
品の突入電流値の分布図、第5図は従来法による製品の
同様分布図、第6図は仮焼粉末の混合割合に対する突入
電流値のグラフである。 1゛成形、2:電極。 特許出願人 トヨタ自動車株式会社 代理人 市 川 理 吉 同 遠 rlt 達 也 第1図 俵料釦合 ↓ 晴1月
Fig. 1 is a flow sheet of the manufacturing process of the PTC element, Fig. 2 is a cross-sectional view of the PTC element, Fig. 3 is a graph of the change in current value of the PTC element over time, and Fig. 4 is a graph of the product obtained by the present invention. FIG. 5 is a distribution diagram of the inrush current value. FIG. 5 is a similar distribution diagram of a product made by the conventional method. FIG. 6 is a graph of the inrush current value with respect to the mixing ratio of calcined powder. 1. Molding, 2. Electrode. Patent Applicant Toyota Motor Corporation Agent Osamu Ichikawa Yoshido Ton Rlt Tatsuya Figure 1 Price Button ↓ Sunny January

Claims (1)

【特許請求の範囲】 チタン酸バリウム系半導体磁器の焼成に当り。 ジルコニア粉末に、チタン酸バリウム系半導体磁器の中
間物たるチタン酸バリウムの仮焼粉を20〜80取量係
混合し、900−10’00℃で1〜2時間焼成した粉
末をパッド材として焼成することを特徴とするチタン酸
バリウム系半導体磁器の焼成方法。
[Claims] For firing barium titanate-based semiconductor porcelain. Calcined barium titanate powder, which is an intermediate for barium titanate-based semiconductor porcelain, is mixed with zirconia powder in an amount of 20 to 80%, and fired at 900-10'00°C for 1 to 2 hours.The powder is then fired as a pad material. A method for firing barium titanate-based semiconductor porcelain.
JP58245935A 1983-12-29 1983-12-29 Method of baking barium titanate semiconductor porcelain Granted JPS60142502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58245935A JPS60142502A (en) 1983-12-29 1983-12-29 Method of baking barium titanate semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58245935A JPS60142502A (en) 1983-12-29 1983-12-29 Method of baking barium titanate semiconductor porcelain

Publications (2)

Publication Number Publication Date
JPS60142502A true JPS60142502A (en) 1985-07-27
JPH04566B2 JPH04566B2 (en) 1992-01-08

Family

ID=17141044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58245935A Granted JPS60142502A (en) 1983-12-29 1983-12-29 Method of baking barium titanate semiconductor porcelain

Country Status (1)

Country Link
JP (1) JPS60142502A (en)

Also Published As

Publication number Publication date
JPH04566B2 (en) 1992-01-08

Similar Documents

Publication Publication Date Title
US3044968A (en) Positive temperature coefficient thermistor materials
JPS64101B2 (en)
JPS60142502A (en) Method of baking barium titanate semiconductor porcelain
CN106365632B (en) Lead-free piezoceramic material of ternary system and preparation method thereof
CN1331803C (en) (Balx-ySrxYy) TiO3 based dielectrical ceramic material and preparation process thereof
JPH0339028B2 (en)
EP0486686A4 (en) Process for producing oxide powder and oxide superconductor.
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
KR970007509B1 (en) Ntc thermistor
JPH04154661A (en) Semiconductor porcelain and its production
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JP3237502B2 (en) Manufacturing method of grain boundary insulated semiconductor ceramic capacitor
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JPH02197181A (en) Ferroelectric porcelain body
JPH05217710A (en) Manufacture of ptc thermistor
JPH0338802A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH05175007A (en) Manufacture of semiconductor porcelain component
JPH02106903A (en) High-temperature ptc thermistor and manufacture thereof
JPS6121966A (en) Low temperature sintering method for dielectric ceramic composition
JPH0234516A (en) Production of tl-ba-ca-cu-o type superconducting ceramics
JP2917335B2 (en) Manufacturing method of ceramic electronic components
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor
JPH08293403A (en) Manufacture of voltage nonlinear resistor element
JPH0259462A (en) Composition for thermistor
JPH0383855A (en) Production of barium titanate-based semiconductor porcelain