JP2917335B2 - Manufacturing method of ceramic electronic components - Google Patents

Manufacturing method of ceramic electronic components

Info

Publication number
JP2917335B2
JP2917335B2 JP1316840A JP31684089A JP2917335B2 JP 2917335 B2 JP2917335 B2 JP 2917335B2 JP 1316840 A JP1316840 A JP 1316840A JP 31684089 A JP31684089 A JP 31684089A JP 2917335 B2 JP2917335 B2 JP 2917335B2
Authority
JP
Japan
Prior art keywords
manufacturing
mixing
drying
ceramic electronic
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1316840A
Other languages
Japanese (ja)
Other versions
JPH03177351A (en
Inventor
彰仁 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1316840A priority Critical patent/JP2917335B2/en
Publication of JPH03177351A publication Critical patent/JPH03177351A/en
Application granted granted Critical
Publication of JP2917335B2 publication Critical patent/JP2917335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気回路において自己発熱素子等の用途で
使われるチタン酸バリウム系PTCサーミスタ等のセラミ
ック電子部品の製造方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic electronic component such as a barium titanate-based PTC thermistor used for a self-heating element or the like in an electric circuit.

従来の技術 従来より、チタン酸バリウム系PTCサーミスタは第2
図に示される製造方法により製造されていた。
Conventional technology Barium titanate-based PTC thermistors
It was manufactured by the manufacturing method shown in the figure.

即ち、混合工程1により湿式混合された主成分及び添
加物を脱水・乾燥工程2により乾燥し、次にこれを仮焼
工程3により1次焼成した後、粉砕工程4により粉砕し
たものを造粒工程5により造粒し、これを成形工程6に
より成形し、更に焼成工程7で焼結させることにより製
造されていた。
That is, the main components and additives wet-mixed in the mixing step 1 are dried in the dehydration / drying step 2, and then this is subjected to primary calcination in the calcination step 3 and then crushed in the crushing step 4 to granulate. It has been produced by granulating in step 5, shaping it in forming step 6, and sintering in firing step 7.

発明が解決しようとする課題 しかしながら、上述した従来の製造方法では、原材料
のロット間ばらつき等より生じる常温比抵抗値変動への
対策は、造粒工程以前までに実施されていた。このた
め、量産時の造粒工程において、大型設備を用いて数百
kgの造粒を行った場合には、その造粒粉体を成形・焼成
して得られた焼結体の常温比抵抗値に、大きく目的値と
の差異があった場合に、この大量の造粒粉体がロットア
ウトになってしまうものであった。
Problems to be Solved by the Invention However, in the above-mentioned conventional manufacturing method, measures against room temperature resistivity change caused by lot-to-lot variation of raw materials were implemented before the granulation step. For this reason, in the granulation process during mass production, several hundreds of
When granulation of kg is carried out, if the room temperature resistivity value of the sintered body obtained by molding and firing the granulated powder greatly differs from the target value, this large amount The granulated powder was lot-out.

そこで本発明はこのような問題点を解決するもので、
一度造粒された造粒粉体の生産性向上を目的とするもの
である。
Therefore, the present invention solves such a problem,
The purpose is to improve the productivity of the granulated powder once granulated.

課題を解決するための手段 そして、この目的を達成するために本発明は、造粒工
程と、成形工程の間に新たに比抵抗調整剤を含浸させて
混合する2次混合工程を設けたことを特徴とするもので
ある。
Means for Solving the Problems In order to achieve this object, the present invention provides a granulation step and a secondary mixing step of newly impregnating and mixing a specific resistance adjusting agent between the molding step. It is characterized by the following.

作用 以上の手段によれば、一度造粒された造粒粉体の一部
を、当初に成形・焼成して得られた焼結体の常温比抵抗
値が目的とする比抵抗値を満たしていない場合等には、
造粒粉体にMnやCu等を硝酸塩或いは硫酸塩等の溶液状態
で含浸させて均一混合することにより、比抵抗値を調整
することができるものである。したがって、大量の造粒
粉体のロットアウトがなくなるものである。
According to the above-described means, the room temperature specific resistance of the sintered body obtained by initially forming and firing a part of the granulated powder once granulated satisfies the target specific resistance. If not,
The specific resistance can be adjusted by impregnating the granulated powder with Mn, Cu, or the like in a solution state of a nitrate, a sulfate, or the like and uniformly mixing the impregnated powder. Therefore, lot-out of a large amount of granulated powder is eliminated.

実施例 以下、本発明の一実施例について説明する。Example Hereinafter, an example of the present invention will be described.

第1図は本発明で行った工程のフローチャートを示
す。
FIG. 1 shows a flowchart of the steps performed in the present invention.

まず、混合工程8においては、あらかじめ主成分の
(Ba0.75Pb0.25)TiO3と、更に添加物として、Nb2O5,Si
O2,Mn(NO3を各々0.001〜0.024モルの組成としたも
のを配合し、ボールミルで湿式混合を行った。次に脱水
・乾燥工程9で乾燥させた混合粉を仮焼工程10で1000〜
1100℃で仮焼し、その後、粉砕工程11により、ボールミ
ルで粒子径が2.0μm以下になるまで湿式粉砕した。そ
して、これを乾燥させたものに、造粒工程12で5wt%の
P.V.A(ポリビニルアルコール)を原料に対して10wt%
添加して造粒した。
First, in the mixing step 8, (Ba 0.75 Pb 0.25 ) TiO 3 as a main component and Nb 2 O 5 , Si as additives are added in advance.
O 2, Mn (NO 3) blended those two each from 0.001 to 0.024 moles of the composition was carried out wet mixing in a ball mill. Next, the mixed powder dried in the dehydration / drying step 9 is
Calcination was performed at 1100 ° C., and thereafter, in a pulverizing step 11, wet pulverization was performed using a ball mill until the particle diameter became 2.0 μm or less. Then, 5% by weight of this was dried in the granulation step 12
PVA (polyvinyl alcohol) is 10wt% to the raw material
It was added and granulated.

そして、その一部をサンプリングし、直径17.5mm,厚
み4.0mmの円板状に1ton/cm2の圧力をかけて成形し、125
0℃〜1300℃空気中で1時間焼成した。
Then, a part of the sample was sampled and formed into a disk having a diameter of 17.5 mm and a thickness of 4.0 mm by applying a pressure of 1 ton / cm 2 ,
It baked for 1 hour in 0 degreeC-1300 degreeC air.

一方、2次混合工程13として、造粒粉の一部をサンプ
リングし、処理した。この時、比抵抗調整剤としてMn
(NO3溶液を使用し、造粒粉重量を粉砕粉重量に換
算した値をベースにして、Mn(NO3のwt%が1〜3
%になるように純水希釈し、Mnのモル数を多段階的に設
定し添加し、2次混合を行った(下記表1に示す)。
On the other hand, as the secondary mixing step 13, a part of the granulated powder was sampled and processed. At this time, Mn was used as a resistivity adjuster.
Using the (NO 3 ) 2 solution, the weight% of Mn (NO 3 ) 2 was 1 to 3 based on the value obtained by converting the weight of the granulated powder into the weight of the pulverized powder.
%, Diluted with pure water so as to obtain a molar ratio of Mn in multiple steps, and added, followed by secondary mixing (shown in Table 1 below).

添加方法としては、Mn(NO3溶液のモル数を体積
換算した量をホールピペットを用いて正確に計り取り、
これをサンプリングした造粒粉体のみに滴下或いは霧状
にして散布し、これをポリポット等に入れ乾式混合しよ
く分散,含浸させた。
As an addition method, the volume converted from the number of moles of the Mn (NO 3 ) 2 solution is accurately measured using a whole pipette,
This was dropped or sprayed only on the sampled granulated powder and dispersed in a polypot or the like, dry-mixed and thoroughly dispersed and impregnated.

そして、このようにして2次混合された粉体を最初に
サンプリングしたものと同様にして成形工程14で成形
し、次に焼成工程15で焼成した後、各々にオーミック性
Al電極を付与した。
Then, the secondary mixed powder is molded in the molding step 14 in the same manner as the first sampled powder, and then fired in the firing step 15, each of which has an ohmic property.
An Al electrode was provided.

下記表2には、2次混合工程13より作製された試料の
常温比抵抗値及び昇電圧破壊試験結果を示す。
Table 2 below shows the room-temperature specific resistance and the results of the voltage-breakdown test of the samples prepared in the secondary mixing step 13.

ここで、昇電圧破壊試験結果とは、試料電極面両端よ
り、電圧を100Vから30秒間隔で20Vステップで上昇させ
て行った時に素子が破壊した電圧値を耐電圧値として示
している。
Here, the results of the voltage-breakdown test indicate a voltage value at which the element was broken when the voltage was increased from 100 V from both ends of the sample electrode in steps of 20 V at intervals of 30 seconds at a step of 20 V as a withstand voltage value.

上記表2より明らかなように、2次混合を行っていな
い試料No.1に対して、試料No.2,3,4は表1に示すMn(NO
3の添加量に伴い段階的に常温比抵抗が高くなって
いることがわかる。また、このときの耐電圧値より、素
子の劣化等は起きていないことがわかる。
As is clear from Table 2 above, Sample Nos. 2, 3, and 4 showed Mn (NO
3 ) It can be seen that the room temperature resistivity increases stepwise with the addition amount of 2 . Further, it can be seen from the withstand voltage value at this time that no element deterioration or the like has occurred.

一方、これらの2次混合実施の適用範囲は、上記実施
例における組成以外のチタン酸バリウム系PTCサーミス
タ造粒粉に対しても同様に適用できることが実験により
確認された。
On the other hand, it was experimentally confirmed that the application range of the secondary mixing can be similarly applied to a barium titanate-based PTC thermistor granulated powder other than the composition in the above-described example.

発明の効果 以上のように、本発明は一度造粒された造粒粉体に対
して、それを成形・焼成して得られた焼結体の常温比抵
抗値が目的とする比抵抗値に満たない場合等に対して、
その造粒粉体に比抵抗調整に寄与する元素を含んだ溶液
を含浸させる等して常温比抵抗値を調整することが可能
となるものである。
Advantageous Effects of the Invention As described above, the present invention provides a method for forming a granulated powder that has been granulated once, and then setting the room temperature resistivity of the sintered body obtained by molding and firing the granulated powder to the target resistivity. If it is less than
The room temperature specific resistance can be adjusted by impregnating the granulated powder with a solution containing an element contributing to specific resistance adjustment.

したがって、一度造粒された造粒粉体をロットアウト
にすることがなくなり、生産性を向上させることのでき
るものとなった。
Therefore, the granulated powder that has been granulated once is not lot-out, and the productivity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例のフローチャート、第2図は
従来例のフローチャートである。 13……2次混合工程。
FIG. 1 is a flowchart of one embodiment of the present invention, and FIG. 2 is a flowchart of a conventional example. 13 Secondary mixing step.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主成分と1次添加物を湿式混合する混合工
程と、次に前記湿式混合されたものを脱水・乾燥する脱
水・乾燥工程と、次に前記脱水・乾燥されたものを1次
焼成する仮焼工程と、次に前記仮焼されたものを粉砕す
る粉砕工程と、次に前記粉砕されたものにバインダを加
え造粒する造粒工程と、次に前記造粒されたものに比抵
抗調整剤を含浸させて混合を行う2次混合工程と、次に
前記2次混合されたものを必要な形状にプレスする成形
工程と、次に前記成形されたものを焼結させる焼成工程
とから成るセラミック電子部品の製造方法。
1. A mixing step of wet-mixing a main component and a primary additive, a dehydration / drying step of dehydrating / drying the wet-mixed product, and a step of dehydrating / drying the dehydrated / dried product. A calcining step of next firing, a pulverizing step of pulverizing the calcined substance, a granulating step of adding a binder to the pulverized substance, and a granulating step, and then the pulverized substance A secondary mixing step of impregnating the mixture with a specific resistance adjuster, followed by a molding step of pressing the secondary-mixed product into a required shape, and then firing the molded product by sintering And a method of manufacturing a ceramic electronic component.
JP1316840A 1989-12-06 1989-12-06 Manufacturing method of ceramic electronic components Expired - Fee Related JP2917335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1316840A JP2917335B2 (en) 1989-12-06 1989-12-06 Manufacturing method of ceramic electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1316840A JP2917335B2 (en) 1989-12-06 1989-12-06 Manufacturing method of ceramic electronic components

Publications (2)

Publication Number Publication Date
JPH03177351A JPH03177351A (en) 1991-08-01
JP2917335B2 true JP2917335B2 (en) 1999-07-12

Family

ID=18081502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1316840A Expired - Fee Related JP2917335B2 (en) 1989-12-06 1989-12-06 Manufacturing method of ceramic electronic components

Country Status (1)

Country Link
JP (1) JP2917335B2 (en)

Also Published As

Publication number Publication date
JPH03177351A (en) 1991-08-01

Similar Documents

Publication Publication Date Title
JP2917335B2 (en) Manufacturing method of ceramic electronic components
JPS6255281B2 (en)
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH1092605A (en) Manufacture of positive temperature thermistor
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor
JPS622682B2 (en)
JP2612247B2 (en) Manufacturing method of NTC thermistor
JPH0369175A (en) Piezoelectric ceramic composition
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH0717443B2 (en) Method for manufacturing barium titanate-based semiconductor porcelain
JPH05291004A (en) Manufacture of ptc thermistor
JPH09330804A (en) Manufacture of positive characteristic thermistor
JPH05175007A (en) Manufacture of semiconductor porcelain component
JPH04280861A (en) Composition for barium titanate-based semiconductor porcelain and barium titanate-based semiconductor porcelain using the same composition
JPS6055963B2 (en) Manufacturing method of positive temperature coefficient thermistor
JPH01234360A (en) Production of ceramic material containing lead
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JPH10135006A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPS6328323B2 (en)
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH0253922B2 (en)
JPS62237707A (en) Manufacture of voltage nonlinear resistance element
JPH04196591A (en) Manufacture of barium titanate semiconductor porcelain
JPH01234361A (en) Production of ceramic material containing lead

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees