JPH09330804A - Manufacture of positive characteristic thermistor - Google Patents

Manufacture of positive characteristic thermistor

Info

Publication number
JPH09330804A
JPH09330804A JP8146954A JP14695496A JPH09330804A JP H09330804 A JPH09330804 A JP H09330804A JP 8146954 A JP8146954 A JP 8146954A JP 14695496 A JP14695496 A JP 14695496A JP H09330804 A JPH09330804 A JP H09330804A
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
coefficient thermistor
raw material
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8146954A
Other languages
Japanese (ja)
Inventor
Taiji Goto
泰司 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8146954A priority Critical patent/JPH09330804A/en
Publication of JPH09330804A publication Critical patent/JPH09330804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive characteristic thermistor which is low in its resistive value especially at room temperature and is large in its breakdown voltage. SOLUTION: At least one of rare earth elements and Nb, Bi, Sb oxides as semiconductor formation elements is added to and mixed with such a raw material powder as to generate barium titanate or its solid solution, the raw material powder is calcined in a temperature range of 1200-1300 deg.C in an air or reducing atmosphere to form a composition, oxides of Si, Mn and Ti are added to the calcined composition and mixed therewith, the mixture is properly burned at a temperature above 1300 deg.C, and raw material containing the semiconductor formation elements having particle diameters of 1.0μm or less and SiO2 having particle diameters of 3.0μm or less is used to form a positive characteristic thermistor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、室温での抵抗値が
低く、耐電圧の高い正特性サーミスタの製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a positive temperature coefficient thermistor having a low resistance value at room temperature and a high withstand voltage.

【0002】[0002]

【従来の技術】まずチタン酸バリウムを主成分とし、半
導体化させるために希土類元素を微量添加した原料を湿
式ボールミルやディスパーミルなどを用いて混合し、フ
ィルタープレス、ドラムドライヤー等で脱水乾燥した
後、これらの混合粉末を仮焼する。次に、この仮焼粉末
を湿式ボールミルやサンドミル等により粉砕し、バイン
ダーを加えスラリー状にしたものをスプレードライヤー
等により造粒し、所望の形状に成形した後、本焼成を行
い、得られた焼結体に電極を形成させ最終製品としてい
た。
2. Description of the Related Art First, a raw material containing barium titanate as a main component and a trace amount of a rare earth element added to form a semiconductor is mixed by using a wet ball mill or a disper mill, and dehydrated and dried by a filter press, a drum dryer or the like. Calcination of these mixed powders is performed. Next, the calcined powder was pulverized by a wet ball mill or a sand mill or the like, and a slurry was added to the binder, granulated by a spray drier or the like, formed into a desired shape, and then subjected to main baking. An electrode was formed on the sintered body to obtain a final product.

【0003】[0003]

【発明が解決しようとする課題】正特性サーミスタは、
過電流防止用素子、温度制御用素子、モータ起動用素
子、消磁用素子、ヒータ用素子といったさまざまな用途
に応用されてきている。特に過電流防止用素子あるいは
消磁用素子においては、その小型化を図るため、室温で
の比抵抗が小さいこと、抵抗温度係数が高く耐電圧が高
いことが要望されている。このような正特性サーミスタ
を得るため、従来より組成面および工法面より鋭意研究
されているが、上記方法で製造した正特性サーミスタ
は、室温での比抵抗が低いものは耐電圧が低く、耐電圧
が高いものは室温での比抵抗が高くなり、現在実用化さ
れているもので、室温の比抵抗が5Ωcmで耐電圧が30
〜40V/mmのものが限界であった。
The positive temperature coefficient thermistor is
It has been applied to various uses such as an overcurrent prevention element, a temperature control element, a motor starting element, a demagnetizing element, and a heater element. In particular, in order to reduce the size of the overcurrent preventing element or the degaussing element, it is required that the specific resistance at room temperature is low, the resistance temperature coefficient is high, and the withstand voltage is high. In order to obtain such a positive temperature coefficient thermistor, research has been conducted intensively from the aspect of composition and construction method, but the positive temperature coefficient thermistor manufactured by the above method has low withstand voltage and low withstand voltage if the specific resistance at room temperature is low. The one with a high voltage has a high resistivity at room temperature and is currently in practical use. The resistivity at room temperature is 5 Ωcm and the withstand voltage is 30.
The limit was about 40 V / mm.

【0004】そこで本発明は、比抵抗が小さくかつ耐電
圧の高い正特性サーミスタを提供することを目的とする
ものである。より具体的には、比抵抗が5Ωcm以下で、
かつ耐電圧が40V/mm以上の、従来にない優れた正特
性サーミスタを提供することにある。
Therefore, an object of the present invention is to provide a positive temperature coefficient thermistor having a small specific resistance and a high withstand voltage. More specifically, if the specific resistance is 5 Ωcm or less,
Another object is to provide an unprecedented excellent positive temperature coefficient thermistor having a withstand voltage of 40 V / mm or more.

【0005】[0005]

【課題を解決するための手段】正特性サーミスタにおけ
る半導体化の機構に関しては、Y,Laなどの希土類元
素やNb,Sbなどの金属元素が主成分であるチタン酸
バリウムに固溶したときに生ずる電子が伝導に寄与して
いるという、いわゆる原子価制御により説明されてき
た。しかしこのような半導体化元素の濃度には最適な範
囲が存在し、濃度が低くても、逆に高くても半導体化し
づらい傾向があった。従って、正特性サーミスタの低抵
抗化の課題に対しては、この半導体化元素をいかにチタ
ン酸バリウムに固溶させるかがポイントであった。一
方、耐電圧向上に関しては、電気的特性からは抵抗温度
係数を大きくすること、又磁器的には結晶粒子径を均
一、微細にすることがポイントであった。
The mechanism of semiconductor conversion in a thermistor with a positive characteristic is caused when a rare earth element such as Y or La or a metal element such as Nb or Sb is dissolved in barium titanate as a main component. It has been explained by the so-called valence control that electrons contribute to conduction. However, there is an optimum range for the concentration of such a semiconducting element, and it tends to be difficult to be a semiconducting element even if the concentration is low or high. Therefore, the point of solving the problem of lowering the resistance of the positive temperature coefficient thermistor was how to dissolve the semiconductor-forming element in barium titanate. On the other hand, with respect to the improvement of the withstand voltage, it was important to increase the temperature coefficient of resistance in view of the electrical characteristics, and to make the crystal grain diameter uniform and fine in porcelain.

【0006】そこで上記目的を達成するために、本発明
の正特性サーミスタの製造方法は、チタン酸バリウム又
はその固溶体を生じさせる原料に、半導体化元素として
希土類元素あるいはNb,Sb,Biの酸化物の内少な
くとも一種類を添加、混合した原料粉末を1200〜1
300℃の温度範囲にて空気中で仮焼して仮焼粉を得、
次にこの仮焼粉に少なくともSiとMnの酸化物を添
加、混合した後成形して成形体を得、次いでこの成形体
を1300℃以上で焼成するものであり、これにより上
記目的を達成することができる。
In order to achieve the above object, therefore, the method for producing a positive temperature coefficient thermistor according to the present invention uses a rare earth element or an oxide of Nb, Sb or Bi as a semiconducting element as a raw material for producing barium titanate or its solid solution. At least one of the above is added to and mixed with the raw material powder from 1200 to 1
Calcined in air at a temperature range of 300 ° C to obtain calcined powder,
Next, at least Si and Mn oxides are added to and mixed with the calcined powder, and then molded to obtain a molded body, and then this molded body is fired at 1300 ° C. or higher, thereby achieving the above object. be able to.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、チタン酸バリウム又はその固溶体を生じさせる原料
に、半導体化元素として希土類元素あるいはNb,S
b,Biの酸化物の内少なくとも一種類を添加、混合し
た原料粉末を本焼成の温度以下である1200〜130
0℃の温度範囲にて空気中で仮焼して仮焼粉を得、次に
この仮焼粉に少なくともSiとMnの酸化物を添加、混
合した後成形して成形体を得、次いでこの成形体を13
00℃以上で焼成する正特性サーミスタの製造方法であ
り、半導体化元素の主成分への固溶が進行しやすくな
り、低抵抗化が図れる。また、SiとMnの酸化物を添
加することにより、粒界付近にこれらの酸化物が偏析す
るためPTC特性が向上し、低抵抗で耐電圧の高い正特
性サーミスタを得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is a raw material for producing barium titanate or a solid solution thereof, wherein a rare earth element or Nb, S is used as a semiconductor element.
The raw material powder obtained by adding and mixing at least one of the oxides of b and Bi is 1200 to 130, which is lower than the temperature of the main calcination.
Calcination is performed in the temperature range of 0 ° C. in the air to obtain a calcined powder, and then, at least oxides of Si and Mn are added to and mixed with the calcined powder to obtain a compact, and then the compact is obtained. Molded body 13
This is a method of manufacturing a positive temperature coefficient thermistor that is fired at a temperature of 00 ° C. or higher, which facilitates solid solution of the semiconducting element to the main component, thereby achieving low resistance. Further, by adding the oxides of Si and Mn, these oxides segregate near the grain boundaries, so that the PTC characteristics are improved, and a positive temperature coefficient thermistor having low resistance and high withstand voltage can be obtained.

【0008】請求項5に記載の発明は、チタン酸バリウ
ム又はその固溶体を生じさせる原料に、半導体化元素と
して希土類元素あるいはNb,Sb,Biの酸化物の内
少なくとも一種類を添加混合した原料粉末を1200〜
1300℃の温度範囲にて還元雰囲気中で仮焼して仮焼
粉を得、次にこの仮焼粉に少なくともSiとMnの酸化
物を添加混合した後成形して成形体を得、次いでこの成
形体を1300℃以上で焼成する正特性サーミスタの製
造方法であり、還元雰囲気中で仮焼することにより酸素
欠陥に伴う伝導電子が生成し、より低抵抗な正特性サー
ミスタを得ることができる。
According to a fifth aspect of the present invention, a raw material powder obtained by adding and mixing at least one of rare earth elements or oxides of Nb, Sb and Bi as a semiconducting element to a raw material for producing barium titanate or a solid solution thereof. To 1200
Calcination is performed in a reducing atmosphere in the temperature range of 1300 ° C. to obtain a calcined powder, and then the calcined powder is mixed with at least oxides of Si and Mn and then molded to obtain a molded body. This is a method of manufacturing a positive temperature coefficient thermistor in which a molded body is fired at 1300 ° C. or higher. By calcination in a reducing atmosphere, conduction electrons are generated due to oxygen defects, and a positive temperature coefficient thermistor having a lower resistance can be obtained.

【0009】請求項2と6に記載の発明は、仮焼粉にさ
らにTi酸化物を添加する請求項1に記載の正特性サー
ミスタの製造方法であり、MnとTiの反応によりアク
セプター濃度が高められ抵抗温度係数が大きくなり、よ
り耐電圧の高い正特性サーミスタが得られる。
The inventions described in claims 2 and 6 are the method for manufacturing the positive temperature coefficient thermistor according to claim 1 in which Ti oxide is further added to the calcined powder, and the acceptor concentration is increased by the reaction of Mn and Ti. The temperature coefficient of resistance is increased, and a positive temperature coefficient thermistor having a higher withstand voltage can be obtained.

【0010】請求項3と7に記載の発明は、半導体化元
素の平均粒子径が1.0μm以下のものを用いる正特性
サーミスタの製造方法であり、半導体化元素の主成分へ
の固溶が促進されることにより、更なる低抵抗化を図る
ことができる。
The invention described in claims 3 and 7 is a method of manufacturing a positive temperature coefficient thermistor using an average particle diameter of a semiconducting element of 1.0 μm or less. By being promoted, the resistance can be further reduced.

【0011】請求項4と8に記載の発明は、Siの酸化
物の平均粒子径が3.0μm以下のものを用いる正特性
サーミスタの製造方法であり、本焼成後の結晶粒子径が
均一微細化し、耐電圧の高い、低抵抗の正特性サーミス
タを得ることができる。
The invention described in claims 4 and 8 is a method for producing a positive temperature coefficient thermistor using an Si oxide having an average particle diameter of 3.0 μm or less, wherein the crystal particle diameter after the main firing is uniform and fine. It is possible to obtain a positive temperature coefficient thermistor having high withstand voltage and low resistance.

【0012】以下本発明の実施の形態について説明す
る。 (実施の形態1)まず、(Ba0.90Ca0.10)TiO3
+0.002Y23の組成となるようにBaCO3,C
aCO3,TiO2,Y23をそれぞれ秤量し、ボールミ
ルにて湿式混合する。次にこの混合物を乾燥した後、
(表1)の試料番号2〜8に示した温度(以下、仮焼温
度という)で空気中にて仮焼する。
Embodiments of the present invention will be described below. (Embodiment 1) First, (Ba 0.90 Ca 0.10 ) TiO 3
BaCO 3 , C so that the composition becomes + 0.002Y 2 O 3.
Each of aCO 3 , TiO 2 , and Y 2 O 3 is weighed and wet mixed with a ball mill. Then after drying the mixture,
Calcination is performed in air at the temperatures shown in Sample Nos. 2 to 8 of Table 1 (hereinafter referred to as calcination temperature).

【0013】[0013]

【表1】 [Table 1]

【0014】さらにこの仮焼粉に主成分(Ba0.90Ca
0.10)TiO31モルに対してSiO2を0.02モルと
MnO2を0.0005モル添加混合した後、再びボー
ルミルにて湿式粉砕し乾燥する。次にこの乾燥粉砕粉に
ポリビニルアルコールからなるバインダーを添加造粒
し、1平方センチメートル当たり800kgの圧力で直径
20mm、厚さ2.5mmの円板状に成形した。次にこれら
の成形体を(表1)に示した温度にて2時間本焼成を行
い焼結体を得た。この焼結体にNiメッキを施した後、
銀ペーストを印刷塗布、焼き付けし電極とした。尚、
(表1)の試料番号1の試料に関しては、従来法の比較
として(Ba0.90Ca0.10)TiO3+0.002Y2
3+0.02SiO2+0.0005MnO2の組成とな
るように上記と同様な原料を用いてボールミルにて湿式
混合した後、乾燥し1200℃で仮焼する。その後の試
料作製工程は本実施の形態と同様な方法で行った。次
に、このように作製された試料の各種の電気特性を測定
する。その抵抗温度特性より、室温抵抗値R25、抵抗温
度係数α、耐電圧VBDを評価する。その評価結果を(表
1)に示した。
Furthermore, the main component (Ba 0.90 Ca
0.10 ). TiO 3 ( 1 mol), SiO 2 (0.02 mol) and MnO 2 (0.0005 mol) were added and mixed, and then wet pulverized with a ball mill and dried. Next, a binder made of polyvinyl alcohol was added to the dried and pulverized powder, and the mixture was granulated at a pressure of 800 kg / cm 2 to form a disc having a diameter of 20 mm and a thickness of 2.5 mm. Next, these compacts were baked for 2 hours at the temperatures shown in Table 1 to obtain sintered compacts. After applying Ni plating to this sintered body,
A silver paste was applied by printing and baked to form an electrode. still,
Regarding the sample of Sample No. 1 in (Table 1), as a comparison with the conventional method, (Ba 0.90 Ca 0.10 ) TiO 3 + 0.002Y 2 O
The same raw materials as described above are wet-mixed in a ball mill so as to have a composition of 3 + 0.02SiO 2 +0.0005 MnO 2 , then dried and calcined at 1200 ° C. Subsequent sample preparation steps were performed by the same method as this embodiment. Next, various electrical characteristics of the sample thus manufactured are measured. From the resistance temperature characteristic, the room temperature resistance value R 25 , the resistance temperature coefficient α, and the withstand voltage V BD are evaluated. The evaluation results are shown in (Table 1).

【0015】ここで、抵抗温度係数については次式に従
い求めた。 [ln(R2/R1)/(T2−T1)]×100(%/
℃) 但し、R1,T1;R25の2倍の抵抗値およびその時の温
度 R2,T2;(T1+30)℃の抵抗値およびその時の温
度である。
Here, the temperature coefficient of resistance was determined according to the following equation. [Ln (R 2 / R 1 ) / (T 2 −T 1 )] × 100 (% /
C) where R 1 , T 1 ; a resistance value twice as high as R 25 and the temperature at that time R 2 , T 2 ; the resistance value at (T 1 +30) ° C. and the temperature at that time.

【0016】(表1)より明らかなように、仮焼温度お
よび本焼成温度が本発明の範囲内である試料番号4〜6
の正特性サーミスタは、低抵抗で耐電圧が高いが、試料
番号1〜3および7,8の本発明の範囲外の正特性サー
ミスタにはその効果は認められない。
As is clear from (Table 1), sample numbers 4 to 6 whose calcination temperature and main calcination temperature are within the range of the present invention.
The positive temperature coefficient thermistor of (1) has a low resistance and a high withstand voltage, but the positive temperature coefficient thermistors of Sample Nos. 1 to 3 and 7, 8 outside the scope of the present invention have no effect.

【0017】(実施の形態2)(実施の形態1)と同様
な組成で原料を秤量し、ボールミルにて湿式混合し乾燥
する。次に(表2)に示した試料番号9〜16の温度に
て仮焼する。
(Embodiment 2) Raw materials having the same composition as in (Embodiment 1) are weighed, wet mixed in a ball mill and dried. Next, calcination is performed at the temperatures of sample numbers 9 to 16 shown in (Table 2).

【0018】[0018]

【表2】 [Table 2]

【0019】ただしこのときの焼成雰囲気を水素10%
のグリーンガス中で行うものとする。以降の試料作製工
程は上記(実施の形態1)と同様に、粉砕、造粒、成形
し(表2)に示した温度にて2時間本焼成を行い、得ら
れた焼結体に電極を形成した。尚、従来法の比較例とし
ては、(実施の形態1)と同様な方法で試料を作製し
た。
However, the firing atmosphere at this time is 10% hydrogen.
Shall be performed in the green gas of. In the subsequent sample preparation process, similarly to the above-described (Embodiment 1), pulverization, granulation, and molding were performed, and main firing was performed for 2 hours at the temperature shown in (Table 2), and an electrode was added to the obtained sintered body. Formed. As a comparative example of the conventional method, a sample was prepared by the same method as in (Embodiment 1).

【0020】ただし、仮焼時の焼成雰囲気を水素10%
のグリーンガス中で行った。次に、このように作製した
試料の各種電気特性を(実施の形態1)と同様な方法で
評価した。その結果を(表2)に示した。
However, the firing atmosphere during calcination is 10% hydrogen.
I went in the green gas. Next, various electrical characteristics of the sample thus manufactured were evaluated in the same manner as in the first embodiment. The results are shown in (Table 2).

【0021】(表2)より明らかなように、本発明の範
囲内である試料番号12〜14の正特性サーミスタは低
抵抗で耐電圧の高いものであるが、試料番号9〜11お
よび15,16の本発明の範囲外である正特性サーミス
タにはその効果は認められない。
As is clear from (Table 2), the positive temperature coefficient thermistors of sample numbers 12 to 14 within the scope of the present invention have low resistance and high withstand voltage, but sample numbers 9 to 11 and 15, No effect is observed in 16 PTC thermistors which are outside the scope of the present invention.

【0022】(実施の形態3)まず、仮焼粉体を(実施
の形態1)と同様な組成および工程条件にて作製する。
次にこの仮焼粉に主成分1モルに対してSiO2を0.
02モルとMnO2を0.0005モルさらにTiO2
0.01モル添加混合した後、再びボールミルにて湿式
粉砕し、乾燥する。その後の試料作製工程に関しては
(実施の形態1)と同様な条件にて、造粒、成形し(表
3)に示した温度にて2時間本焼成を行い、得られた焼
結体に電極を形成した。
(Embodiment 3) First, a calcined powder is produced under the same composition and process conditions as in (Embodiment 1).
Next, SiO 2 was added to this calcined powder in an amount of 0.
02 mol and 0.0005 mol of MnO 2 and 0.01 mol of TiO 2 are added and mixed, and then wet-milled again by a ball mill and dried. Regarding the subsequent sample preparation process, under the same conditions as in (Embodiment 1), granulation and molding were performed and main firing was performed for 2 hours at the temperature shown in (Table 3), and the obtained sintered body was subjected to electrode formation. Was formed.

【0023】[0023]

【表3】 [Table 3]

【0024】尚、(表3)の試料番号17の試料に関し
ては、従来法の比較として(Ba0. 90Ca0.10)TiO
3+0.002Y23+0.02SiO2+0.0005
MnO2+0.01TiO2の組成となるように(実施の
形態1)と同様な原料を用いてボールミルにて湿式混合
した後、乾燥し、空気中1200℃で仮焼する。その後
の試料作製工程は上記実施の形態と同様な方法で行っ
た。次に、このように作製された試料の各種電気特性を
測定し、その抵抗温度特性より、室温抵抗値R25、抵抗
温度係数α、耐電圧VBDを評価する。その評価結果を
(表3)に示した。
[0024] With respect to the sample of the sample No. 17 (Table 3), as compared to the conventional method (Ba 0. 90 Ca 0.10) TiO
3 + 0.002Y 2 O 3 + 0.02SiO 2 +0.0005
The same raw material as in (Embodiment 1) is wet mixed in a ball mill so as to have a composition of MnO 2 + 0.01TiO 2 , dried, and calcined at 1200 ° C. in air. Subsequent sample preparation steps were performed in the same manner as in the above embodiment. Next, various electrical characteristics of the sample thus manufactured are measured, and the room temperature resistance value R 25 , the temperature coefficient of resistance α, and the withstand voltage V BD are evaluated from the resistance temperature characteristics. The evaluation results are shown in (Table 3).

【0025】(表3)より明らかなように、仮焼温度お
よび本焼成温度が本発明の範囲内である試料番号20〜
22の正特性サーミスタは、低抵抗で耐電圧が高いが、
試料番号17〜19および23,24の本発明の範囲外
の正特性サーミスタにはその効果が認められない。
As is clear from (Table 3), sample Nos. 20 to 20 whose calcination temperature and main calcination temperature are within the range of the present invention.
22 PTC thermistor has low resistance and high withstand voltage,
The effect is not observed in the positive temperature coefficient thermistors of the sample numbers 17 to 19 and 23 and 24 outside the scope of the present invention.

【0026】(実施の形態4)(実施の形態3)と同様
な組成で原料を秤量し、ボールミルにて湿式混合し、乾
燥する。次に(表4)に示した試料番号25〜32の温
度にて仮焼する。
(Embodiment 4) Raw materials having the same composition as in (Embodiment 3) are weighed, wet mixed in a ball mill and dried. Next, calcination is performed at the temperatures of sample numbers 25 to 32 shown in (Table 4).

【0027】[0027]

【表4】 [Table 4]

【0028】ただしこのときの焼成雰囲気を水素10%
のグリーンガス中で行うものとする。以降の試料作製工
程は上記(実施の形態3)と同様に、粉砕、造粒、成形
し(表4)に示した温度にて2時間本焼成を行い、得ら
れた焼結体に電極を形成した。尚、従来法の比較例とし
ては、(実施の形態3)と同様な方法で試料を作製し
た。
However, the firing atmosphere at this time is 10% hydrogen.
Shall be performed in the green gas of. In the subsequent sample preparation process, similarly to the above-mentioned (Embodiment 3), pulverization, granulation and molding were carried out, and main firing was carried out for 2 hours at the temperature shown in (Table 4), and electrodes were added to the obtained sintered body. Formed. As a comparative example of the conventional method, a sample was prepared by the same method as in (Embodiment 3).

【0029】ただし、仮焼時の焼成雰囲気を水素10%
のグリーンガス中で行った。次に、このように作製した
試料の各種電気特性を(実施の形態1)と同様な方法で
評価した。その結果を(表4)に示した。
However, the firing atmosphere during calcination is 10% hydrogen.
I went in the green gas. Next, various electrical characteristics of the sample thus manufactured were evaluated in the same manner as in the first embodiment. The results are shown in (Table 4).

【0030】(表4)より明らかなように、本発明の範
囲内である試料番号28〜30の正特性サーミスタは低
抵抗で耐電圧の高いものであるが、試料番号25〜27
および31,32の本発明の範囲外である正特性サーミ
スタにはその効果は認められない。
As is clear from (Table 4), the positive temperature coefficient thermistors of sample numbers 28 to 30 within the scope of the present invention have low resistance and high withstand voltage, but sample numbers 25 to 27.
The effect is not observed in the positive temperature coefficient thermistors, which are outside the scope of the present invention of Nos. 31 and 32.

【0031】(実施の形態5)まず、(Ba0.90Ca
0.10)TiO3+0.002Y23の組成となるように
BaCO3,CaCO3,TiO2,Y23をそれぞれ秤
量し、ボールミルにて湿式混合する。このときY23
料の粒子径を(表5)に示したものを用いる。
(Embodiment 5) First, (Ba 0.90 Ca)
BaCO 3 , CaCO 3 , TiO 2 , and Y 2 O 3 are weighed so as to have a composition of 0.10 ) TiO 3 + 0.002Y 2 O 3 and wet-mixed with a ball mill. At this time, the particle size of the Y 2 O 3 raw material shown in (Table 5) is used.

【0032】[0032]

【表5】 [Table 5]

【0033】次にこの混合物を乾燥した後、(表5)に
示した仮焼温度にて焼成する。ただし、仮焼雰囲気は試
料番号33〜37および39〜43については空気中
で、試料番号38および44については水素10%のグ
リーンガス中にて行うものとする。そしてこの仮焼粉に
主成分1モルに対してSiO2を0.02モルとMnO2
を0.0005モル添加混合する。このとき試料番号3
9〜44の試料についてはさらにTiO2を0.01モ
ル添加混合するものとする。さらにこの時に添加するS
iO2の粒子径を(表5)に示したものを用いる。その
後の試料作製工程については(実施の形態1)と同様な
条件にて粉砕、造粒、成形、焼成、電極付けを行う。こ
のように作製された試料の各種電気特性を測定し、その
抵抗温度特性より、(実施の形態1)と同様にR25
α,VBDを評価する。その評価結果を(表5)に示し
た。
Next, this mixture is dried and then calcined at the calcination temperature shown in (Table 5). However, the calcination atmosphere is performed in air for sample numbers 33 to 37 and 39 to 43, and in green gas containing 10% hydrogen for sample numbers 38 and 44. The calcined powder contained 0.02 mol of SiO 2 and MnO 2 with respect to 1 mol of the main component.
0.0005 mol is added and mixed. At this time, sample number 3
For samples 9 to 44, 0.01 mol of TiO 2 is further added and mixed. Further S added at this time
The particle size of iO 2 shown in (Table 5) is used. In the subsequent sample preparation process, pulverization, granulation, molding, firing, and electrode attachment are performed under the same conditions as in (Embodiment 1). Various electrical characteristics of the sample manufactured as described above were measured, and from the resistance temperature characteristics thereof, R 25 ,
Evaluate α, V BD . The evaluation results are shown in (Table 5).

【0034】(表5)より明らかなように、原料混合時
に添加する半導体化元素の粒子径が1.0μm以下であ
ると、低抵抗で、耐電圧の高い正特性サーミスタを得る
ことができる。さらに仮焼後混合時に添加するSiO2
の粒子径が3.0μm以下の原料を用いることにより、
低抵抗で、より耐電圧の向上した正特性サーミスタを得
ることができる。尚、本発明における半導体化元素量は
チタン酸バリウム又はその固溶体を生じさせる主成分1
モルに対して0.001〜0.004モル、SiO2
は0.01〜0.05モル、MnO2量は0.0001
〜0.0015モル、TiO2量は0.005〜0.0
3モルの範囲で添加するのが好ましい。なぜなら、これ
らの範囲外であると室温での抵抗値が大きく上昇した
り、抵抗温度係数が低くなり、耐電圧の向上が図られな
いためである。
As is clear from Table 5, if the particle size of the semiconducting element added when the raw materials are mixed is 1.0 μm or less, a positive temperature coefficient thermistor having low resistance and high withstand voltage can be obtained. Furthermore, SiO 2 added at the time of mixing after calcination
By using a raw material having a particle size of 3.0 μm or less,
It is possible to obtain a positive temperature coefficient thermistor having a low resistance and an improved withstand voltage. In addition, the amount of the semiconducting element in the present invention is the main component 1 which forms barium titanate or its solid solution.
0.001 to 0.004 mol, the SiO 2 amount is 0.01 to 0.05 mol, and the MnO 2 amount is 0.0001.
~ 0.0015 mol, TiO 2 amount is 0.005-0.0
It is preferably added in the range of 3 mol. This is because if the temperature is outside these ranges, the resistance value at room temperature greatly increases, or the temperature coefficient of resistance decreases, and the withstand voltage cannot be improved.

【0035】又、本発明においてチタン酸バリウムまた
はその固溶体を生じさせる原料としては、BaCO3
CaCO3,SrCO3等の炭酸塩やBaO,CaO,P
bO等の酸化物、あるいは、焼成により酸化物を生じる
硝酸塩、塩酸塩、水酸化物等が挙げられる。
In the present invention, as a raw material for producing barium titanate or a solid solution thereof, BaCO 3 ,
Carbonate such as CaCO 3 , SrCO 3 or BaO, CaO, P
Examples thereof include oxides such as bO, and nitrates, hydrochlorides, hydroxides and the like that produce oxides by firing.

【0036】一方、本焼成の温度は1300℃以上とな
っているが、好ましくは実施の形態で示したように13
00〜1350℃の範囲である。なぜならこの範囲以外
の温度であると抵抗値が逆に高くなってしまうためであ
る。
On the other hand, the temperature of the main calcination is 1300 ° C. or higher, preferably 13 as shown in the embodiment.
It is in the range of 00 to 1350 ° C. This is because, if the temperature is out of this range, the resistance value becomes high.

【0037】以上(実施の形態1)〜(実施の形態5)
に示したように、本発明の正特性サーミスタの製造方法
を用いることにより、比抵抗が5Ωcm以下で、耐電圧が
50V/mm以上の従来にない低抵抗で高耐電圧の正特性
サーミスタを得ることができる。
Above (first embodiment) to (fifth embodiment)
As described above, by using the method for manufacturing a positive temperature coefficient thermistor of the present invention, a positive temperature coefficient thermistor having a specific resistance of 5 Ωcm or less and a withstand voltage of 50 V / mm or more, which has a low resistance and a high withstand voltage, which has never been obtained, is obtained. be able to.

【0038】[0038]

【発明の効果】以上の説明より明らかなように、本発明
はチタン酸バリウム又はその固溶体を生じさせる原料
に、半導体化元素として希土類元素あるいはNb,B
i,Sbの酸化物の内少なくとも一種類を添加、混合し
た原料粉末を本焼成の温度以下である1200〜130
0℃の温度範囲にて空気中または還元中にて仮焼した組
成物にSi,Mn,Tiの各酸化物を添加、混合した
後、1300℃以上の温度にて本焼成し、さらに半導体
化元素の粒子径を1.0μm以下、SiO2の粒子径を
3.0μm以下の原料を用いて試料を作製することによ
り正特性サーミスタを構成するものである。その結果、
従来にない低抵抗で耐電圧の高い正特性サーミスタを得
ることができ、製品の小型化や高電力回路への応用が期
待できるための工業的価値は大きい。
As is apparent from the above description, the present invention uses a rare earth element or Nb, B as a semiconducting element as a raw material for producing barium titanate or its solid solution.
The raw material powder obtained by adding and mixing at least one of the oxides of i and Sb is 1200 to 130, which is at the temperature of the main firing or lower.
Oxides of Si, Mn, and Ti are added to and mixed with the composition that has been calcined in the air or in the temperature range of 0 ° C, and then main-calcined at a temperature of 1300 ° C or higher to further form a semiconductor. A positive temperature coefficient thermistor is constructed by preparing a sample using a raw material having an element particle size of 1.0 μm or less and SiO 2 particle size of 3.0 μm or less. as a result,
A positive temperature coefficient thermistor with unprecedented low resistance and high withstand voltage can be obtained, and it has great industrial value because it can be expected to be miniaturized and applied to high power circuits.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸バリウム又はその固溶体を生じ
させる原料に、半導体化元素として希土類元素あるいは
Nb,Sb,Biの酸化物の内少なくとも一種類を添
加、混合した原料粉末を1200〜1300℃の温度範
囲にて空気中で仮焼して仮焼粉を得、次にこの仮焼粉に
少なくともSiとMnの酸化物を添加、混合した後成形
して成形体を得、次いでこの成形体を1300℃以上で
焼成する正特性サーミスタの製造方法。
1. A raw material powder obtained by adding and mixing at least one of rare earth elements or oxides of Nb, Sb, Bi as a semiconducting element to a raw material for producing barium titanate or a solid solution thereof at 1200 to 1300 ° C. Calcination is performed in the temperature range in the air to obtain a calcined powder, then at least oxides of Si and Mn are added to and mixed with the calcined powder to obtain a compact, and then the compact is obtained. A method for manufacturing a positive temperature coefficient thermistor which is fired at 1300 ° C. or higher.
【請求項2】 仮焼粉にさらにTi酸化物を添加する請
求項1に記載の正特性サーミスタの製造方法。
2. The method for producing a positive temperature coefficient thermistor according to claim 1, wherein a Ti oxide is further added to the calcined powder.
【請求項3】 半導体化元素は、平均粒子径が1.0μ
m以下のものを用いる請求項1または2に記載の正特性
サーミスタの製造方法。
3. The semiconducting element has an average particle size of 1.0 μm.
The method for manufacturing a positive temperature coefficient thermistor according to claim 1, wherein a material having a thickness of m or less is used.
【請求項4】 Siの酸化物は平均粒子径が3.0μm
以下のものを用いる請求項1〜3のいずれか一つに記載
の正特性サーミスタの製造方法。
4. The Si oxide has an average particle diameter of 3.0 μm.
The method for manufacturing a positive temperature coefficient thermistor according to claim 1, wherein the following is used.
【請求項5】 チタン酸バリウム又はその固溶体を生じ
させる原料に、半導体化元素として希土類元素あるいは
Nb,Sb,Biの酸化物の内少なくとも一種類を添加
混合した原料粉末を1200〜1300℃の温度範囲に
て還元雰囲気中で仮焼して仮焼粉を得、次にこの仮焼粉
に少なくともSiとMnの酸化物を添加混合した後成形
して成形体を得、次いでこの成形体を1300℃以上で
焼成する正特性サーミスタの製造方法。
5. A raw material powder prepared by adding at least one of rare earth elements or oxides of Nb, Sb, Bi as a semiconducting element to a raw material for producing barium titanate or a solid solution thereof at a temperature of 1200 to 1300 ° C. Calcination is performed in a reducing atmosphere in a range to obtain a calcined powder, and then, at least oxides of Si and Mn are added and mixed with the calcined powder to be molded to obtain a molded body. A method for manufacturing a positive temperature coefficient thermistor which is fired at a temperature of ℃ or above.
【請求項6】 仮焼粉にさらにTi酸化物を添加する請
求項5に記載の正特性サーミスタの製造方法。
6. The method for manufacturing a positive temperature coefficient thermistor according to claim 5, wherein a Ti oxide is further added to the calcined powder.
【請求項7】 半導体化元素は、平均粒子径が1.0μ
m以下のものを用いる請求項5または6に記載の正特性
サーミスタの製造方法。
7. The semiconducting element has an average particle size of 1.0 μm.
The method for manufacturing a positive temperature coefficient thermistor according to claim 5, wherein a material having a thickness of m or less is used.
【請求項8】 Siの酸化物は平均粒子径が3.0μm
以下のものを用いる請求項5〜7のいずれか一つに記載
の正特性サーミスタの製造方法。
8. The Si oxide has an average particle diameter of 3.0 μm.
The method for manufacturing a positive temperature coefficient thermistor according to claim 5, wherein the following is used.
JP8146954A 1996-06-10 1996-06-10 Manufacture of positive characteristic thermistor Pending JPH09330804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8146954A JPH09330804A (en) 1996-06-10 1996-06-10 Manufacture of positive characteristic thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8146954A JPH09330804A (en) 1996-06-10 1996-06-10 Manufacture of positive characteristic thermistor

Publications (1)

Publication Number Publication Date
JPH09330804A true JPH09330804A (en) 1997-12-22

Family

ID=15419341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8146954A Pending JPH09330804A (en) 1996-06-10 1996-06-10 Manufacture of positive characteristic thermistor

Country Status (1)

Country Link
JP (1) JPH09330804A (en)

Similar Documents

Publication Publication Date Title
JPH1092605A (en) Manufacture of positive temperature thermistor
JPH09330804A (en) Manufacture of positive characteristic thermistor
JP4058140B2 (en) Barium titanate semiconductor porcelain
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
JP3039511B2 (en) Semiconductor ceramic and semiconductor ceramic element
JP4217337B2 (en) Manufacturing method of semiconductor porcelain
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof
JPS6243522B2 (en)
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JP4367803B2 (en) Semiconductor porcelain and thermistor using the same
JPH1092604A (en) Positive temperature coefficient thermistor and its manufacture
JPH10135006A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JP3111630B2 (en) Barium titanate-based semiconductor porcelain and method of manufacturing the same
JP3699195B2 (en) Positive characteristic semiconductor porcelain and manufacturing method thereof
JPH10289804A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH11116326A (en) Thermistor with positive characteristic and its production
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JPH10289805A (en) Production positive characteristic thermistor
JPH11214204A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH10294202A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH1197212A (en) Positive temperature coefficient thermistor and method for manufacturing it