JPH03177351A - Preparation of ceramic electronic part - Google Patents

Preparation of ceramic electronic part

Info

Publication number
JPH03177351A
JPH03177351A JP1316840A JP31684089A JPH03177351A JP H03177351 A JPH03177351 A JP H03177351A JP 1316840 A JP1316840 A JP 1316840A JP 31684089 A JP31684089 A JP 31684089A JP H03177351 A JPH03177351 A JP H03177351A
Authority
JP
Japan
Prior art keywords
mixing
molding
calcination
drying
impregnating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1316840A
Other languages
Japanese (ja)
Other versions
JP2917335B2 (en
Inventor
Akihito Konishi
彰仁 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1316840A priority Critical patent/JP2917335B2/en
Publication of JPH03177351A publication Critical patent/JPH03177351A/en
Application granted granted Critical
Publication of JP2917335B2 publication Critical patent/JP2917335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To prevent the rocking-out of granulated powder to improve the productivity of the subject part by disposing a novel secondary mixing process for impregnating and mixing a specific resistance-adjusting agent between a granulation process and a molding process. CONSTITUTION:The method for preparing the objective part comprises a mixing process for wet-mixing a main component with a primary additive, a dehydrating.drying process for dehydrating and drying the mixture, a calcination process for subjecting the dried product to the first calcination, a grinding process for grinding the calcination product, a granulation process for granulating the ground with a binder, the second mixing process for impregnating and mixing the ground product with a specific resistance-adjusting agent, a molding process for press-molding the second mixture in a desired shape and a sintering process for sintering the molded product.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気回路において自己発熱素子等の用途で使
われるチタン酸バリウム系PTCサーミスタ等のセラミ
ック電子部品の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing ceramic electronic components such as barium titanate PTC thermistors used as self-heating elements in electrical circuits.

従来の技術 従来より、チタン酸バリウム系PTCサーミスタは第2
図に示される製造方法により製造されていた。
Conventional technology Traditionally, barium titanate PTC thermistors are the second
It was manufactured by the manufacturing method shown in the figure.

即ち、混合工程lにより湿式混合された主成分及び添加
物を脱水・乾燥工程2により乾燥し、次にこれを仮焼工
程3により1次焼成した後、粉砕工程4により粉砕した
ものを造粒工程5により造粒し、これを成形工程6によ
り成形し、更に焼成工程7で焼結させることにより製造
されていた。
That is, the main components and additives wet-mixed in the mixing step 1 are dried in the dehydration/drying step 2, then first fired in the calcination step 3, and then pulverized in the pulverization step 4 and then granulated. It was manufactured by granulating in Step 5, molding in Step 6, and sintering in Step 7.

発明が解決しようとする課題 しかしながら、上述した従来の製造方法では、原材料の
ロフト間ばらつき等より生じる常温比抵抗値変動への対
策は、造粒工程以前までに実施されていた。このため、
量産時の造粒工程において、大型設備を用いて数百−の
造粒を行った場合には、その造粒粉体を成形・焼成して
得られた焼結体の常温比抵抗値に、大きく目的値との差
異があった場合に、この大量の造粒粉体がロットアウト
になってしまうものであった。
Problems to be Solved by the Invention However, in the conventional manufacturing method described above, countermeasures against room-temperature resistivity fluctuations caused by loft-to-loft variations in raw materials were taken before the granulation process. For this reason,
In the granulation process during mass production, when several hundred particles are granulated using large equipment, the room temperature resistivity value of the sintered body obtained by molding and firing the granulated powder is If there was a large difference from the target value, this large amount of granulated powder would be sold out.

そこで本発明はこのような問題点を解決するもので、−
度造粒された造粒粉体の生産性向上を目的とするもので
ある。
Therefore, the present invention solves these problems, and -
The purpose is to improve the productivity of highly granulated powder.

課題を解決するための手段 そして、この目的を達成するために本発明は、造粒工程
と、成形工程の間に新たに比抵抗調整剤を含浸させて混
合する2次混合工程を設けたことを特徴とするものであ
る。
Means for Solving the Problems And in order to achieve this objective, the present invention provides a secondary mixing process in which a resistivity adjuster is newly impregnated and mixed between the granulation process and the molding process. It is characterized by:

作用 以上の手段によれば、−度造粒された造粒粉体の一部を
、当初に成形・焼成して得られた焼結体の常温比抵抗値
が目的とする比抵抗値を満たしていない場合等には、造
粒粉体にMnやCu等を硝酸塩或いは硫酸塩等の溶酸状
態で含浸させて均一混合することにより、比抵抗値を調
整することができるものである。したがって、大量の造
粒粉体のロットアウトがなくなるものである。
According to the above-mentioned means, the normal temperature resistivity value of the sintered body obtained by initially molding and firing a part of the granulated powder that has been granulated at -degrees satisfies the target resistivity value. If not, the specific resistance value can be adjusted by impregnating the granulated powder with Mn, Cu, or the like in a molten acid state such as nitrate or sulfate and uniformly mixing. Therefore, lot-out of a large amount of granulated powder is eliminated.

実施例 以下、本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

第1図は本発明で行った工程のフローチャートを示す。FIG. 1 shows a flowchart of the steps performed in the present invention.

まず、混合工程8においては、あらかじめ主成分の(B
 ao7sP bo、=s) T i 03と、更に添
加物として、Nb2O5,S i O=、Mn (NO
3)=を各々0.001〜0.024モルの組成とした
ものを配合し、ボールミルで湿式混合を行った。次に脱
水・乾燥工程9で乾燥させた混合粉を仮焼工程10で1
000〜1100℃で仮焼し、その後、粉砕工程11に
より、ボールミルで粒子径が2.0μm以下になるまで
湿式粉砕した。そして、これを乾燥させたものに、造粒
工程12で5W【%のP、V、A(ポリビニルアルコー
ル)を原料に対してlQwt%添加して造粒した。
First, in the mixing step 8, the main component (B
ao7sP bo,=s) T i 03 and further as additives, Nb2O5, S i O=, Mn (NO
3) = in a composition of 0.001 to 0.024 mol each were blended and wet mixed in a ball mill. Next, the mixed powder dried in the dehydration/drying step 9 is subjected to a calcining step 10.
The mixture was calcined at a temperature of 000 to 1100°C, and then wet-pulverized in a pulverizing step 11 using a ball mill until the particle size became 2.0 μm or less. Then, in a granulation step 12, 1Qwt% of P, V, A (polyvinyl alcohol) was added to the dried product based on the raw material to granulate it.

そして、その一部をサンプリングし、直径17,5mm
、厚み4.0帥の円板状に1ton/cnfの圧力をか
けて成形し、1250℃〜1300℃空気中で1時間焼
成した。
Then, a part of it was sampled and the diameter was 17.5mm.
The material was molded into a disk shape with a thickness of 4.0 cm under a pressure of 1 ton/cnf, and fired in air at 1250° C. to 1300° C. for 1 hour.

一方、2次混合工程13として、造粒粉の一部をサンプ
リングし、処理した。この時、比抵抗調整剤としてM 
n (N O3) 2溶液を使用し、造粒粉重量を粉砕
粉重量に換算した値をベースにして、Mn(NO3)2
のwt%が1〜3%になるように純水希釈し、Mnのモ
ル数を多段階的に設定し添加し、2次混合を行った(下
記表1に示す)。
On the other hand, in the secondary mixing step 13, a part of the granulated powder was sampled and treated. At this time, M as a resistivity adjuster
Using Mn(NO3)2 solution, Mn(NO3)2 is calculated based on the value obtained by converting the weight of granulated powder to the weight of pulverized powder.
The mixture was diluted with pure water so that the wt% of Mn was 1 to 3%, and the number of moles of Mn was set and added in multiple stages, and secondary mixing was performed (as shown in Table 1 below).

添加方法としては、Mn(NO3)2溶液のモル数を体
積換算した量をホールピペットを用いて正確に計り取り
、これをサンプリングした造粒粉体のみに滴下或いは霧
状にして散布し、これをポリポット等に入れ乾式混合し
よく分散、含浸させた。
The method of addition is to accurately measure the volume equivalent of the number of moles of the Mn(NO3)2 solution using a whole pipette, drop it dropwise or spray it in the form of a mist only onto the sampled granulated powder. were placed in a polypot, etc., and mixed dry to ensure thorough dispersion and impregnation.

そして、このようにして2次混合された粉体を最初にサ
ンプリングしたものと同様にして成形工程14で成形し
、次に焼成工程15で焼成した後、各々にオーミック性
A1電極を付与した。
The thus-secondarily mixed powder was molded in a molding step 14 in the same manner as the first sampled powder, and then fired in a firing step 15, after which an ohmic A1 electrode was applied to each powder.

下記表2には、2次混合工程13より作製された試料の
常温比抵抗値及び昇電圧破壊試験結果を示す。
Table 2 below shows the room temperature resistivity values and voltage increase breakdown test results of the samples prepared in the secondary mixing step 13.

ここで、昇電圧破壊試験結果とは、試料電極面両端より
、電圧を100vから30秒間隔で20■ステツプで上
昇させて行った時に素子が破壊した電圧値を耐電圧値と
して示している。
Here, the increased voltage breakdown test result indicates the voltage value at which the element was destroyed when the voltage was increased from 100 V in 20 inch steps at 30 second intervals from both ends of the sample electrode surface as the withstand voltage value.

く表 2〉 上記表2より明らかなように、2次混合を行っていない
試料磁1に対して、試料に2,3.4は表1に示すMn
(No:+):の添加量に伴い段階的に常温比抵抗が高
くなっていることがわかる。また、このときの耐電圧値
より、素子の劣化等は起きていないことがわかる。
Table 2> As is clear from Table 2 above, in contrast to sample magnet 1 which was not subjected to secondary mixing, samples 2 and 3.4 contained Mn as shown in Table 1.
(No:+): It can be seen that the specific resistance at room temperature increases stepwise as the amount of addition increases. Further, from the withstand voltage value at this time, it can be seen that no deterioration of the element has occurred.

一方、これらの2次混合実施の適用範囲は、上記実施例
における組成以外のチタン酸バリウム系PTCサーミス
タ造粒粉に対しても同様に適用できることが実験により
確認された。
On the other hand, it has been confirmed through experiments that the scope of application of these secondary mixing implementations is similarly applicable to barium titanate-based PTC thermistor granulated powders having compositions other than those in the above examples.

発明の効果 以上のように、本発明は一度造粒された造粒粉体に対し
て、それを成形・焼成して得られた焼結体の常温比抵抗
値が目的とする比抵抗値に満たない場合等に対して、そ
の造粒粉体に比抵抗調整に寄与する元素を含んだ溶液を
含浸させる等して常温比抵抗値を調整することが可能と
なるものである。
Effects of the Invention As described above, the present invention improves the room temperature resistivity value of the sintered body obtained by molding and firing the granulated powder once it is granulated, to the target resistivity value. In cases where the specific resistance value is not satisfied, the room temperature specific resistance value can be adjusted by impregnating the granulated powder with a solution containing an element that contributes to specific resistance adjustment.

したがって、−度造粒された造粒粉体をロットアウトに
することがなくなり、生産性を向上させることのできる
ものとなった。
Therefore, the granulated powder that has been granulated twice is not sold out, and productivity can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のフローチャート、第2図は
従来例のフローチャートである。 13・・・・・・2次混合工程。
FIG. 1 is a flowchart of an embodiment of the present invention, and FIG. 2 is a flowchart of a conventional example. 13...Second mixing step.

Claims (1)

【特許請求の範囲】[Claims] 主成分と1次添加物を湿式混合する混合工程と、次に前
記湿式混合されたものを脱水・乾燥する脱水・乾燥工程
と、次に前記脱水・乾燥されたものを1次焼成する仮焼
工程と、次に前記仮焼されたものを粉砕する粉砕工程と
、次に前記粉砕されたものにバインダを加え造粒する造
粒工程と、次に前記造粒されたものに比抵抗調整剤を含
浸させて混合を行う2次混合工程と、次に前記2次混合
されたものを必要な形状にプレスする成形工程と、次に
前記成形されたものを焼結させる焼成工程とから成るセ
ラミック電子部品の製造方法。
A mixing step of wet-mixing the main component and the primary additive, then a dehydration/drying step of dehydrating and drying the wet-mixed material, and then a calcination step of primary firing of the dehydrated and dried material. a pulverizing step of pulverizing the calcined material, a granulation step of adding a binder to the pulverized material and granulating it, and then adding a resistivity adjuster to the granulated material. A ceramic comprising a secondary mixing step of impregnating and mixing, a molding step of pressing the secondary mixture into a required shape, and a firing step of sintering the molded product. Method of manufacturing electronic components.
JP1316840A 1989-12-06 1989-12-06 Manufacturing method of ceramic electronic components Expired - Fee Related JP2917335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1316840A JP2917335B2 (en) 1989-12-06 1989-12-06 Manufacturing method of ceramic electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1316840A JP2917335B2 (en) 1989-12-06 1989-12-06 Manufacturing method of ceramic electronic components

Publications (2)

Publication Number Publication Date
JPH03177351A true JPH03177351A (en) 1991-08-01
JP2917335B2 JP2917335B2 (en) 1999-07-12

Family

ID=18081502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1316840A Expired - Fee Related JP2917335B2 (en) 1989-12-06 1989-12-06 Manufacturing method of ceramic electronic components

Country Status (1)

Country Link
JP (1) JP2917335B2 (en)

Also Published As

Publication number Publication date
JP2917335B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
CN113470912A (en) Ferrite sintered magnet and rotating electrical machine
JPH03177351A (en) Preparation of ceramic electronic part
KR980009198A (en) Dielectric ceramic composition
JP2004182532A (en) Piezoelectric ceramic composition
JP2612247B2 (en) Manufacturing method of NTC thermistor
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH1092605A (en) Manufacture of positive temperature thermistor
JPH05175007A (en) Manufacture of semiconductor porcelain component
JP3008566B2 (en) Manufacturing method of oxide magnetic material
JPS6055963B2 (en) Manufacturing method of positive temperature coefficient thermistor
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor
JPH0369175A (en) Piezoelectric ceramic composition
JPH06325620A (en) Dielectric ceramic composition
JPH04154661A (en) Semiconductor porcelain and its production
JP4383951B2 (en) High frequency dielectric ceramic composition and method for producing the same
JPS62237706A (en) Manufacture of voltage nonlinear resistance element
JPS6121966A (en) Low temperature sintering method for dielectric ceramic composition
JPS62237707A (en) Manufacture of voltage nonlinear resistance element
JPS622682B2 (en)
JPH04300235A (en) Production of ceramic body
JP2007299940A (en) Positive thermistor and its manufacturing method
JPH04280861A (en) Composition for barium titanate-based semiconductor porcelain and barium titanate-based semiconductor porcelain using the same composition
JPH04196591A (en) Manufacture of barium titanate semiconductor porcelain
JPH063683B2 (en) Dielectric porcelain composition
JPH088105A (en) Ferrite resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees