JPH05175007A - Manufacture of semiconductor porcelain component - Google Patents
Manufacture of semiconductor porcelain componentInfo
- Publication number
- JPH05175007A JPH05175007A JP3338662A JP33866291A JPH05175007A JP H05175007 A JPH05175007 A JP H05175007A JP 3338662 A JP3338662 A JP 3338662A JP 33866291 A JP33866291 A JP 33866291A JP H05175007 A JPH05175007 A JP H05175007A
- Authority
- JP
- Japan
- Prior art keywords
- manufacturing
- slurry
- component
- semiconductor porcelain
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体磁器部品の製造方
法に係り、詳しくは、原料粉末から部品素体である焼結
体を得るまでの工程に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor porcelain component, and more particularly to a process for obtaining a sintered body which is a component body from a raw material powder.
【0002】[0002]
【従来の技術】半導体磁器部品、例えば、チタン酸バリ
ウム系の正特性サーミスタの製造に当たっては、原料粉
末を乾式成形したうえで焼成することによって部品素体
を形成することが多い。2. Description of the Related Art In the manufacture of semiconductor porcelain parts, for example, barium titanate-based positive temperature coefficient thermistors, a component element body is often formed by dry-forming raw material powder and then firing it.
【0003】すなわち、その一例を図2に示す工程図に
基づいて説明すると、まず、チタン酸バリウムを主成分
とする原料粉末に水を加え、かつ、これを硬質ボールと
ともに混合することによってスラリーを調整する。つぎ
に、フィルタプレスなどを使用してスラリーの脱水を行
って脱水ケーキとした後、この脱水ケーキの乾燥及び粗
砕を行ったうえで仮焼する。さらに、仮焼して得られた
粉末に水及びバインダを加えたうえ、これらを混合して
スラリーとする。こののち、スプレードライヤなどを用
いてスラリーの造粒を行う。そして、乾式プレスによっ
て造粒原料の成形を行って成形体を得た後、この成形体
の脱脂を行ったうえで本焼成する。That is, one example thereof will be described with reference to the process chart shown in FIG. 2. First, water is added to a raw material powder containing barium titanate as a main component, and this is mixed with hard balls to form a slurry. adjust. Next, the slurry is dehydrated using a filter press or the like to form a dehydrated cake, which is then dried and coarsely crushed and then calcined. Further, water and a binder are added to the powder obtained by calcination, and these are mixed to form a slurry. Then, the slurry is granulated using a spray dryer or the like. Then, after the granulation raw material is molded by a dry press to obtain a molded body, the molded body is degreased and then fired.
【0004】このようにして得られた焼結体が正特性サ
ーミスタの部品素体となるのであり、この焼結体、もし
くは、焼結体をスライスしたものに電極を付与すること
によって正特性サーミスタが完成することになる。The sintered body thus obtained serves as a component element body of the positive temperature coefficient thermistor, and the positive temperature coefficient thermistor can be obtained by applying electrodes to this sintered body or a sliced body of the sintered body. Will be completed.
【0005】[0005]
【発明が解決しようとする課題】ところで、上述した従
来の製造方法では原料を乾式で取り扱う工程が多く、不
純物が混入しやすい経路が多々ある。例えば、スプレー
ドライヤを用いる造粒工程では、このスプレードライヤ
に使用されたステンレス鋼と原料との直接的な接触があ
るため、この原料中にFe分子が混入することが起こ
る。そして、部品素体となる焼結体にFe分子等の不純
物が含まれていると、この部品素体における抵抗値等の
電気的特性が安定しなくなってしまう。By the way, in the above-mentioned conventional manufacturing method, there are many steps of handling the raw material in a dry process, and there are many routes in which impurities are easily mixed. For example, in a granulation process using a spray dryer, there is direct contact between the stainless steel used for this spray dryer and the raw material, so that Fe molecules are mixed in the raw material. If impurities such as Fe molecules are included in the sintered body that is the component body, the electrical characteristics such as the resistance value of the component body will not be stable.
【0006】また、従来の製造方法では、工程数が多い
ことから部品素体の完成までに6〜7日程度の日数を要
するのが普通であり、少量多品種製品の生産には対応し
難いという不都合もあった。Further, in the conventional manufacturing method, it is usual that about 6 to 7 days are required to complete the component body due to the large number of steps, and it is difficult to cope with the production of a small amount of a wide variety of products. There was also an inconvenience.
【0007】本発明は、かかる従来の不都合に鑑みて創
案されたものであって、原料を乾式で取り扱う工程をな
くして得られる部品素体における電気的特性の安定化を
図るとともに、工程数を大幅に削減して少量多品種生産
への対応の容易化を図ることができる半導体磁器部品の
製造方法を提供することを目的としている。The present invention was devised in view of such conventional inconveniences, and aims to stabilize the electrical characteristics of a component body obtained by eliminating the step of handling a raw material in a dry process and to reduce the number of steps. It is an object of the present invention to provide a method for manufacturing a semiconductor porcelain component, which can be greatly reduced to facilitate the production of a large number of products in small quantities.
【0008】[0008]
【課題を解決するための手段】本発明に係る半導体磁器
部品の製造方法は、このような目的を達成するために、
原料粉末に水と分散剤とを加えて混合してスラリーを調
整する工程と、このスラリーの加圧と脱水とを同時に行
って成形体を成形する工程と、成形体を乾燥させる工程
と、乾燥した成形体を焼成する工程とを含んでいる。In order to achieve such an object, the method of manufacturing a semiconductor ceramic component according to the present invention is
A step of adding water and a dispersant to the raw material powder and mixing them to prepare a slurry, a step of simultaneously performing pressurization and dehydration of this slurry to form a molded body, a step of drying the molded body, and a drying step. And a step of firing the formed body.
【0009】[0009]
【作用】この製造方法によれば、原料を乾式で取り扱う
工程がなくなるので不純物の混入経路が減ると同時に、
工程数が従来の半分程度にまで削減されることになる。According to this manufacturing method, the steps of handling the raw material in a dry manner are eliminated, so that the route of mixing impurities is reduced and at the same time,
The number of processes will be reduced to about half of the conventional one.
【0010】[0010]
【実施例】以下、本発明に係る半導体磁器部品の製造方
法の実施例を、その手順を示す図1の工程図に基づいて
説明する。なお、ここでは、半導体磁器部品が、チタン
酸バリウム系の正特性サーミスタであるものとしてい
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a semiconductor ceramic component according to the present invention will be described below with reference to the process chart of FIG. It is assumed here that the semiconductor ceramic component is a barium titanate-based positive temperature coefficient thermistor.
【0011】 まず、素材としてのBaCO3,Ti
O2,SrCO3,Y2O3,MnO,SiO2を用意し、
これらを調整したうえで混合することによって(Ba
0・895Sr0・1Y0・005)TiO3+0.001MnO+
0.02SiO2の組成式で表される原料粉末を得た
後、この原料粉末100部に対して水及び分散剤を16
部及び0.3部ずつの割合で加えたうえ、硬質ボールと
ともに24時間混合することにより、微粉砕されてなる
スラリーを得る。First, BaCO 3 and Ti as materials
Prepare O 2 , SrCO 3 , Y 2 O 3 , MnO and SiO 2 ,
By adjusting these and mixing them (Ba
0 ・ 895 Sr 0 .1 Y 0 .005) TiO 3 +0.001 MnO +
After obtaining the raw material powder represented by the composition formula of 0.02SiO 2 , 100 parts of this raw material powder was mixed with 16 parts of water and a dispersant.
Parts and 0.3 parts each and then mixed with hard balls for 24 hours to obtain a finely pulverized slurry.
【0012】 つぎに、得られたスラリーを所定の成
形型に入れたうえ、プレスを用いて加圧すると同時に脱
水することによって成形体の成形を行う。なお、この場
合、石膏型のような吸水性を有する成形型を用いて脱水
することも可能である。Next, the obtained slurry is put into a predetermined molding die, and a molded body is molded by applying pressure using a press and simultaneously dehydrating. In this case, it is also possible to perform dehydration using a water-absorbing mold such as a plaster mold.
【0013】 さらに、得られた成形体を乾燥機内に
載置したうえ、30〜100℃の温度下で12時間にわ
たって乾燥させる。Further, the obtained molded body is placed in a dryer and dried at a temperature of 30 to 100 ° C. for 12 hours.
【0014】 乾燥された成形体を焼成炉内に収容
し、1150℃の温度下で2時間にわたって仮焼した
後、冷却しないまま、1350℃の温度下で1時間にわ
たって本焼成する。その結果、部品素体としての焼結体
が得られる。The dried molded body is placed in a firing furnace, calcined at a temperature of 1150 ° C. for 2 hours, and then main-baked at a temperature of 1350 ° C. for 1 hour without cooling. As a result, a sintered body as a component body is obtained.
【0015】そして、本発明の発明者が、本発明製法及
び従来製法によって製造された焼結体、すなわち、直径
が16mmで厚みが2mmとされた円板状の焼結体を試
料として用意したうえ、試料それぞれの有する初期特性
を調査してみたところ、表1で示すような調査結果が得
られた。The inventor of the present invention prepared, as a sample, a sintered body produced by the production method of the present invention and a conventional production method, that is, a disc-shaped sintered body having a diameter of 16 mm and a thickness of 2 mm. When the initial characteristics of each sample were investigated, the results shown in Table 1 were obtained.
【0016】[0016]
【表1】 [Table 1]
【0017】すなわち、この表1によれば、本発明製法
によって得られた試料では、従来製法によって得られた
試料に比べ、不純物であるFe分子の混入量が1桁分以
上減少しており、試料相互間の抵抗値ばらつきが大幅に
少なくなっていることが分かる。また、本発明製法によ
る試料では耐電圧の向上がみられる一方、製造に要する
日数が3分の1にまで減少することが明らかとなってい
る。That is, according to Table 1, in the sample obtained by the method of the present invention, the mixed amount of Fe molecules as impurities is reduced by one digit or more as compared with the sample obtained by the conventional method. It can be seen that the variation in resistance between the samples is significantly reduced. Further, it has been clarified that the samples manufactured by the manufacturing method of the present invention have improved withstand voltage, while the number of days required for manufacturing is reduced to one third.
【0018】ところで、この調査に用いた従来製法によ
る試料は、図2に基づいて説明した従来例工程に従って
製造したものであり、具体的には以下の手順に従って製
造されたものである。By the way, the sample by the conventional manufacturing method used in this investigation was manufactured according to the conventional process described with reference to FIG. 2, and specifically, was manufactured according to the following procedure.
【0019】まず、本実施例におけると同一の原料粉末
100部に対して水を150部加えたうえ、硬質ボール
とともに混合することによってスラリーを得る。そし
て、このスラリーの脱水を行って脱水ケーキを得た後、
これを乾燥させて粗砕したうえ、1150℃の温度下で
2時間にわたって仮焼した。そして、仮焼して得られた
粉末100部に対して水及びバインダのそれぞれを15
0部及び3部ずつ加えたうえで混合してスラリーとした
後、このスラリーをスプレー乾燥によって造粒して得ら
れた造粒原料を1t/cm2の圧力下で乾式成形した。
さらに、この成形体に対して500℃の温度下で30分
にわたる脱脂を行った後、1350℃の温度下で本焼成
を行うことによって試料としての焼結体を得た。First, 150 parts of water is added to 100 parts of the same raw material powder as used in this embodiment, and then mixed with hard balls to obtain a slurry. Then, after dehydrating this slurry to obtain a dehydrated cake,
This was dried and crushed, and then calcined at a temperature of 1150 ° C. for 2 hours. Then, 15 parts of water and 15 parts of binder are added to 100 parts of the powder obtained by calcination.
After adding 0 part and 3 parts each and mixing to make a slurry, the slurry was granulated by spray drying to obtain a granulated raw material, which was dry-molded under a pressure of 1 t / cm 2 .
Further, this molded body was degreased at a temperature of 500 ° C. for 30 minutes and then subjected to main firing at a temperature of 1350 ° C. to obtain a sintered body as a sample.
【0020】[0020]
【発明の効果】以上説明したように、本発明に係る半導
体磁器部品の製造方法によれば、原料を乾式で取り扱う
工程がなくなるので、不純物の混入経路が減ることにな
り、部品素体となる焼結体に含まれる不純物が減少する
ことになる。その結果、部品素体における電気的特性の
安定化を図ることができるという効果が得られる。As described above, according to the method for manufacturing a semiconductor ceramic component of the present invention, since the step of handling the raw material in a dry process is eliminated, the route of mixing impurities is reduced and the component element body is obtained. Impurities contained in the sintered body are reduced. As a result, the effect that the electrical characteristics of the component body can be stabilized can be obtained.
【0021】また、工程数が従来例製法の半分程度にま
で減るので、製造に要する日数が大幅に削減されること
になり、少量多品種生産に対しても容易に対処しうるこ
とになる。Further, since the number of steps is reduced to about half that of the conventional manufacturing method, the number of days required for manufacturing is greatly reduced, and it is possible to easily deal with small-quantity multi-product production.
【図1】本発明の実施例に係る正特性サーミスタの製造
方法を示す工程図である。FIG. 1 is a process drawing showing a method of manufacturing a positive temperature coefficient thermistor according to an embodiment of the present invention.
【図2】従来例に係る正特性サーミスタの製造方法を示
す工程図である。FIG. 2 is a process chart showing a method of manufacturing a positive temperature coefficient thermistor according to a conventional example.
Claims (1)
てスラリーを調整する工程と、 このスラリーの加圧と脱水とを同時に行って成形体を成
形する工程と、 成形体を乾燥させる工程と、 乾燥した成形体を焼成する工程とを含むことを特徴とす
る半導体磁器部品の製造方法。1. A step of adding water and a dispersant to a raw material powder and mixing them to prepare a slurry, a step of simultaneously pressurizing and dehydrating this slurry to form a molded body, and drying the molded body. A method of manufacturing a semiconductor porcelain component, comprising the steps of: and a step of firing the dried molded body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3338662A JPH05175007A (en) | 1991-12-20 | 1991-12-20 | Manufacture of semiconductor porcelain component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3338662A JPH05175007A (en) | 1991-12-20 | 1991-12-20 | Manufacture of semiconductor porcelain component |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05175007A true JPH05175007A (en) | 1993-07-13 |
Family
ID=18320281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3338662A Pending JPH05175007A (en) | 1991-12-20 | 1991-12-20 | Manufacture of semiconductor porcelain component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05175007A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011506238A (en) * | 2007-12-05 | 2011-03-03 | エプコス アクチエンゲゼルシャフト | Raw material and method for preparing the raw material |
-
1991
- 1991-12-20 JP JP3338662A patent/JPH05175007A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011506238A (en) * | 2007-12-05 | 2011-03-03 | エプコス アクチエンゲゼルシャフト | Raw material and method for preparing the raw material |
US9034210B2 (en) | 2007-12-05 | 2015-05-19 | Epcos Ag | Feedstock and method for preparing the feedstock |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH082962A (en) | Sintering ceramics for highly stable thermistor and its preparation | |
CN106565234A (en) | Dielectric material with ultra-high dielectric constant and preparation method thereof | |
JPH05175007A (en) | Manufacture of semiconductor porcelain component | |
JPS61193419A (en) | Reduction/reoxidation type semiconductor capacitor ceramic composition | |
JPS606535B2 (en) | porcelain composition | |
JPH07114824A (en) | Dielectric ceramic composition | |
JP3023920B2 (en) | Manufacturing method of semiconductor porcelain | |
JPS5910004B2 (en) | Yudentaijikino Seizouhouhou | |
JPH0687364B2 (en) | High dielectric constant porcelain composition | |
JP3237502B2 (en) | Manufacturing method of grain boundary insulated semiconductor ceramic capacitor | |
JP2000003803A (en) | Positive temperature coefficient thermistor and production method thereof | |
JP2917335B2 (en) | Manufacturing method of ceramic electronic components | |
JPS6217368B2 (en) | ||
JPH02137283A (en) | Ceramic piezoelectric element and polarization processing method of piezoelectric ceramic | |
SU697467A1 (en) | Ceramic material | |
JPH03261002A (en) | Manufacture of ceramic material | |
JPS6328323B2 (en) | ||
JPH1070008A (en) | Manufacture of positive temperature coefficient thermistor | |
JPH1027701A (en) | Positive temperature coefficient thermistor | |
JPS584447B2 (en) | Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body | |
JPH09162010A (en) | Manufacture of positive temperature coefficient thyristor | |
JPS5935130B2 (en) | Method for manufacturing porcelain for dielectric resonator | |
JPH04286301A (en) | Manufacture of ntc thermistor | |
JP2000022235A (en) | Piezoelectric ceramic composition | |
JPS6283365A (en) | Dielectric ceramic composition |