JPS6032344B2 - Grain boundary insulated semiconductor porcelain capacitor material - Google Patents

Grain boundary insulated semiconductor porcelain capacitor material

Info

Publication number
JPS6032344B2
JPS6032344B2 JP52081165A JP8116577A JPS6032344B2 JP S6032344 B2 JPS6032344 B2 JP S6032344B2 JP 52081165 A JP52081165 A JP 52081165A JP 8116577 A JP8116577 A JP 8116577A JP S6032344 B2 JPS6032344 B2 JP S6032344B2
Authority
JP
Japan
Prior art keywords
grain boundary
insulated semiconductor
capacitor
capacitor material
boundary insulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52081165A
Other languages
Japanese (ja)
Other versions
JPS5415198A (en
Inventor
宣雄 横江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP52081165A priority Critical patent/JPS6032344B2/en
Publication of JPS5415198A publication Critical patent/JPS5415198A/en
Publication of JPS6032344B2 publication Critical patent/JPS6032344B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は粒界絶縁型半導体磁器コンデンサ材料に関し、
特にそのtan6、絶縁抵抗、温度特性、DCバイアス
電圧特性が改善されたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a grain boundary insulated semiconductor ceramic capacitor material,
In particular, its tan6, insulation resistance, temperature characteristics, and DC bias voltage characteristics are improved.

近年、多結晶焼結体において、半導性をもたせた結晶の
粒界を選択的に絶縁化し半導性結晶の表面に得た護電層
による容量素子が製造されるようになり、従来の磁器コ
ンデンサに比較して非常に大きな比護電率のコンデンサ
が得られることが一般に知られている。これは境界層コ
ンデンサといわれ、主成分としてチタン酸バリウムとチ
タン酸ストロンチウムによるものがある。チタン酸バリ
ウムおよびチタン酸ストロンチウムやスズ酸バリウムな
どを固落したチタン酸バリウム固熔体を主成分とするも
のをチタン酸バリウム系境界層コンデンサと称し、この
種のものでは比誘電率が50000〜80000と非常
に大きなものが得られ、小型の容量素子を提供している
。しかし、この種のチタン酸バリウム系境界層コンデン
サは扮n6が3〜5%と大きく、容量温度特性も−25
〜十85o0の温度範囲において、20℃における容量
を基準として±30%程度の変化を示し、またバイアス
電圧依存性はDCバイアス電圧25Vのとき、バイアス
電圧が零の場合の容量に対し、約25%低下するなどの
欠点があり、コンデンサとして実用上の有用性が制限さ
れていた。
In recent years, in polycrystalline sintered bodies, capacitive elements have been manufactured using protective layers formed on the surface of semiconducting crystals by selectively insulating the grain boundaries of semiconducting crystals. It is generally known that capacitors can be obtained with significantly higher dielectric constants than ceramic capacitors. This is called a boundary layer capacitor, and its main components are barium titanate and strontium titanate. Barium titanate-based boundary layer capacitors are those whose main components are barium titanate and barium titanate solid fused solids obtained by solidifying strontium titanate, barium stannate, etc., and this type of capacitor has a dielectric constant of 50,000 to 50,000. A very large capacitor of 80,000 was obtained, providing a small capacitive element. However, this type of barium titanate-based boundary layer capacitor has a large n6 of 3 to 5% and a capacitance temperature characteristic of -25%.
In the temperature range of ~185°C, the capacitance at 20°C shows a change of about ±30%, and the bias voltage dependence is that when the DC bias voltage is 25V, the capacitance when the bias voltage is 0 is about 25%. % decrease, which limited its practical usefulness as a capacitor.

またチタン酸ストロンチウム境界層コンデンサは、ta
n6が1〜3%で、温度範囲一25〜十8500におけ
る容量変化率は土15%程度であり、またDCバイアス
電圧による変化率は25Vで−8%程度となり、前記チ
タン酸バリウム系境界層コンデンサあるいは一般の磁器
コンデンサに比べて優れているが、比誘電率が約300
00で容量素子の4・型化には充分でなく、またフィル
ムコンデンサと比較してねn6および絶縁性の点で劣っ
ている。また最近SrTi03にNb05、Ta2Q、
W03、Y2Q、Dy203などの半導体化促進剤およ
びZn0を添加して還元性雰囲気で暁結し、Bi203
またはBi203、Pb○およびB203の混合物を拡
散せしめて得たチタン酸ストロンチウム境界層コンデン
サが発明されているが、この種のコンデンサは比誘電率
が35000〜50000と大きく、またねn6は1%
以下、絶縁抵抗も2×1びoQ−伽以上で、かつ温度特
性も−25〜十85℃の温度範囲において約±15%と
極めて優れている。しかし、この種のコンデンサは焼成
温度が1400〜1500こ0と非常に高く、かつ焼成
温度による特性の変化が大きく、製造上の鏡結の制御が
困難である。本発明は〔(1‐x)Sの十x/2Bi2
03十Ti02〕(ただし、xはSr0に対するBi2
03のモル分率)で表される組成物にZn○を添加して
なる組成物を暁結し、しかる後強制還元して得た半導体
磁器の結晶粒界にBi203を拡散せしめて結晶粒界を
絶縁化することを特徴とするチタン酸ストロンチウム粒
界絶縁型半導体磁器コンデンサであって、前記従釆の境
界層コンデンサの欠点を除き、比誘電率が大きく、ta
n6が小さく、絶縁抵抗が大きく、かつ温度特性および
DCバイアス電圧特性の優れたコンデンサを困難な温度
管理を必要とせず、1250〜135000で容易に蛾
結して得られる粒界絶縁型半導体磁器コンデンサ材料を
提供するものである。
Also, strontium titanate boundary layer capacitors are ta
When n6 is 1 to 3%, the capacitance change rate in the temperature range -25 to 18,500 °C is about 15%, and the change rate due to DC bias voltage is about -8% at 25V, and the barium titanate-based boundary layer It is superior to capacitors or general porcelain capacitors, but its dielectric constant is approximately 300.
00 is not sufficient for making a 4-type capacitor, and is inferior in terms of capacitance and insulation compared to a film capacitor. Also recently, SrTi03 has Nb05, Ta2Q,
Semiconductorization accelerators such as W03, Y2Q, Dy203 and Zn0 are added and sintered in a reducing atmosphere to form Bi203.
Alternatively, a strontium titanate boundary layer capacitor obtained by diffusing a mixture of Bi203, Pb○ and B203 has been invented, but this type of capacitor has a large dielectric constant of 35,000 to 50,000, and the n6 is 1%.
Below, the insulation resistance is 2×1 and more than 0Q−, and the temperature characteristics are also extremely excellent at about ±15% in the temperature range of −25 to 185° C. However, this type of capacitor has a very high firing temperature of 1,400 to 1,500 degrees centigrade, and its characteristics vary greatly depending on the firing temperature, making it difficult to control mirror formation during manufacturing. The present invention is based on [(1-x) S of 1x/2Bi2
030 Ti02] (where x is Bi2 for Sr0
A composition obtained by adding Zn○ to a composition represented by a molar fraction of 0.03 molar fraction) was sintered, and then Bi203 was diffused into the grain boundaries of the semiconductor porcelain obtained by forced reduction. A strontium titanate grain boundary insulated semiconductor ceramic capacitor characterized by insulating a strontium titanate grain boundary layer capacitor, which has a large dielectric constant and a ta
A grain boundary insulated semiconductor ceramic capacitor that can be obtained by easily bonding a capacitor with small n6, high insulation resistance, and excellent temperature characteristics and DC bias voltage characteristics at a temperature of 1250 to 135000 without requiring difficult temperature control. It provides materials.

以下、本発明を実施例に基づき詳細に説明する。Hereinafter, the present invention will be explained in detail based on examples.

本発明は〔(1−x)Sの十x/犯i203十Ti02
〕(ただし、xはSr0に対するBi203のモル分率
)で表わされる組成物にZn○をyモル%添加する場合
において、xおよびyが第1表に示した割合になるよう
にSrC03、Ti02、Bi203、Zn○を正確な
割合で秤量した後湿式混合を行ない、次いで空気中11
4000で2時間予備焼成して原料粉末の分解および固
相反応を起さしめ、得られた反応生成物粉末をボールミ
ルで粉砕し、調整原料粉末を得た。
The present invention is [(1-x) S no 10
] (where x is the molar fraction of Bi203 relative to Sr0) When y mol% of Zn○ is added to the composition, SrC03, Ti02, After weighing Bi203 and Zn○ in accurate proportions, wet mixing is performed, and then 11
4000 for 2 hours to cause decomposition and solid phase reaction of the raw material powder, and the resulting reaction product powder was pulverized in a ball mill to obtain an adjusted raw material powder.

この調整原料粉末にポリピニールアルコールを3.の重
量%添加して額粒状に造粒し、1200k9/地の圧力
で円板状に加圧成形し、空気中1250〜1350oo
で4時間焼成した。さらに競結した磁器を水素中130
ぴ○で2時間還元して直径約14肋?、厚さ0.6肌の
円板状半導体磁器を得た。次いで磁器表面にBi203
粉末を5〜20の9塗布し、空気中1300℃で2時間
熱処理して、Bi203を結晶粒界に拡散せしめて結晶
粒界を絶縁化し、得られた円板型誘電体磁器に通常の方
法で銀ペーストを塗布、乾燥し、800q○で3び分間
焼成し銀電極を形成した。このようにして作成したコソ
デンサ各試料につき、電気特性を測定した結果を第1表
に示す。なお、試料の測定に際し、容量およびtan6
はキャパシタンスブリッジを用いて周波数lkHz、入
力信号電圧IVnnsで測定し、絶縁抵抗は絶縁抵抗計
によってDC50Vを1分間印加した後の値を測定し、
温度特性は2000を基準に各温度の容量変化率を示し
た。また比譲電率(ごr)は14.4×容量(pF)x
厚み(弧)の計算式により求め直径x直径(弧)た。
3. Add polypinyl alcohol to this adjusted raw material powder. % by weight was added to form granules, and the mixture was pressure-molded into a disk shape at a pressure of 1200 k9/ground, and the mixture was heated to 1250 to 1350 oo in air.
It was baked for 4 hours. Furthermore, the porcelain was placed in hydrogen at 130 ml.
Approximately 14 ribs in diameter after 2 hours of reduction with Pi○? A disk-shaped semiconductor porcelain having a thickness of 0.6 mm was obtained. Next, Bi203 was applied to the porcelain surface.
The powder was applied 5 to 20 times 9 times and heat treated in air at 1300°C for 2 hours to diffuse Bi203 into the grain boundaries and insulate the grain boundaries. A silver paste was applied thereto, dried, and fired at 800q○ for 3 minutes to form a silver electrode. Table 1 shows the results of measuring the electrical characteristics of each sample of the cosodensor thus prepared. In addition, when measuring the sample, the capacity and tan6
is measured using a capacitance bridge at a frequency of 1kHz and an input signal voltage of IVnns, and the insulation resistance is measured using an insulation resistance meter after applying 50V DC for 1 minute.
The temperature characteristics showed the rate of change in capacity at each temperature based on 2000. Also, the specific power transfer rate (r) is 14.4 x capacity (pF) x
The thickness (arc) was calculated using the formula: diameter x diameter (arc).

第 1 表 なお、第1表において試料番号1、7、8および15は
本発明の範囲外のものである。
Table 1 Note that in Table 1, sample numbers 1, 7, 8, and 15 are outside the scope of the present invention.

試料番号9は3と同一試料である。試料番号2、3、4
、5、6、9、10、12、13および14の特性をみ
れば、比誘電率が35000〜62200と大きく、t
an8は1.0%以下で、絶縁抵抗は50×1ぴQ−肌
以上と大きく、温度特性は土16%以内で極めて優れた
特性をもっている。
Sample number 9 is the same sample as 3. Sample number 2, 3, 4
, 5, 6, 9, 10, 12, 13, and 14, the relative dielectric constant is as large as 35,000 to 62,200, and t
An8 is 1.0% or less, insulation resistance is as large as 50×1 piQ-skin or more, and temperature characteristics are extremely excellent, with the soil being within 16%.

なお、DCバイアス電圧特性においても、25Vで−8
%以内、50Vで−20%以内と良好な値が得られた。
また各試料番号の特性をそれぞれ比較すると、絶縁抵抗
が高く、かつ比誘電率およびtan6が嘘結温度によっ
てほとんど影響を受けておらず、製造上極めて好ましい
ことである。本発明の磁器誘電体組成物は結晶粒が70
〜100仏のの範囲にあり、粒子径が揃った粒界の鮮明
な多結晶体であった。
Also, in terms of DC bias voltage characteristics, -8 at 25V
Good values were obtained, such as within % and within -20% at 50V.
Further, when comparing the characteristics of each sample number, it is found that the insulation resistance is high, and the dielectric constant and tan6 are hardly affected by the freezing temperature, which is extremely favorable in terms of manufacturing. The porcelain dielectric composition of the present invention has crystal grains of 70
It was a polycrystalline body with clear grain boundaries and uniform particle diameters.

これはBi203の添加が結晶粒の成長および粒界の形
成に大きく寄与し、Zn○の添加が結晶粒の均一化と焼
成温度の低下に寄与したものと考えられる。ちなみに仏
203、Dy203、Y203、Nb24、Ta205
等を添加し、同時にZn0を添加した磁器組成物におい
ては、結晶粒子径が不揃いで100仏のぐらいの巨大結
晶と数仏m〜loAm程度の小結晶が混在しており、焼
成条件によつて結晶粒を均一化することは困難であった
。なお、本発明の粒界絶縁型半導体磁器コンデンサ材料
を上記結果からx、yによる組成範囲において0.00
7Sxミ0.011および2.27≦ySII.35と
限定した理由について説明すると、xが0.007より
小さい範囲および0.011より大きい範囲ならびにy
が2.27より小さい範囲では第1表の試料番号8、1
5おおよび1のごとく比誘電率が小さく本発明の目的を
満足しない。またyが11.35より大きい範囲では試
料番号7で示したごとく比護電率は大きく、tan6は
小さいが、絶縁抵抗が小さいため境界層コンデンサとし
て不適である。なお、実施例において、拡散物質として
B;203を用いたがCリPb、Biの混合物を用いて
も同様の特性が得られる。
This is considered to be because the addition of Bi203 greatly contributed to the growth of crystal grains and the formation of grain boundaries, and the addition of Zn○ contributed to making the crystal grains uniform and lowering the firing temperature. By the way, Buddha 203, Dy203, Y203, Nb24, Ta205
In a ceramic composition in which Zn0 was added at the same time as Zn0, the crystal grain size was irregular, with a coexistence of giant crystals of about 100 Buddhas and small crystals of several Buddhas m to loAm, and depending on the firing conditions. It was difficult to make the crystal grains uniform. In addition, from the above results, the grain boundary insulated semiconductor ceramic capacitor material of the present invention has a composition range of 0.00 in the x, y composition range.
7Sxmi0.011 and 2.27≦ySII. To explain the reason why it is limited to 35, the range where x is smaller than 0.007, the range where x is larger than 0.011, and y
is smaller than 2.27, sample numbers 8 and 1 in Table 1
Samples 5, 1, and 1 have a small dielectric constant and do not satisfy the object of the present invention. Further, in a range where y is greater than 11.35, as shown in sample number 7, the specific electrical constant is large and tan6 is small, but the insulation resistance is small, making it unsuitable as a boundary layer capacitor. In the examples, B;203 was used as the diffusion material, but similar characteristics can be obtained by using a mixture of C, Pb, and Bi.

以上説明したように、本発明による粒界絶縁型半導体磁
器コンデンサ材料は従来の磁器コンデンサはもちろんの
こと、境界層コンデンサのtan6、絶縁抵抗、温度特
性、バイアス電圧特性を大幅に改善し、コンデンサとし
ての諸特性に優れているとともに焼結条件の管理が容易
であり、極めて新規で有用な電子部品を提供することが
できるものである。
As explained above, the grain-boundary insulated semiconductor ceramic capacitor material according to the present invention can be used not only for conventional ceramic capacitors, but also for boundary layer capacitors by significantly improving tan6, insulation resistance, temperature characteristics, and bias voltage characteristics. In addition to having excellent properties, the sintering conditions can be easily controlled, and extremely new and useful electronic components can be provided.

Claims (1)

【特許請求の範囲】 1 xが0.7〜1.1モル%の範囲(ただし、xはS
rOに対するBi_2O_3のモル分率)にある〔(1
−x)SrO+x/2Bi_2O_3+TiO_2〕で
表される組成物にZnOを2.27〜11.35モル%
添加してなる粒界絶縁型半導体磁器コンデンサ材料。
[Claims] 1 x is in the range of 0.7 to 1.1 mol% (however, x is S
molar fraction of Bi_2O_3 with respect to rO) [(1
-x) SrO+x/2Bi_2O_3+TiO_2] with 2.27 to 11.35 mol% of ZnO
Grain boundary insulated semiconductor ceramic capacitor material made by adding additives.
JP52081165A 1977-07-07 1977-07-07 Grain boundary insulated semiconductor porcelain capacitor material Expired JPS6032344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52081165A JPS6032344B2 (en) 1977-07-07 1977-07-07 Grain boundary insulated semiconductor porcelain capacitor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52081165A JPS6032344B2 (en) 1977-07-07 1977-07-07 Grain boundary insulated semiconductor porcelain capacitor material

Publications (2)

Publication Number Publication Date
JPS5415198A JPS5415198A (en) 1979-02-03
JPS6032344B2 true JPS6032344B2 (en) 1985-07-27

Family

ID=13738838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52081165A Expired JPS6032344B2 (en) 1977-07-07 1977-07-07 Grain boundary insulated semiconductor porcelain capacitor material

Country Status (1)

Country Link
JP (1) JPS6032344B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032837B2 (en) * 1985-07-17 1991-01-17 Taki Chemical
JPH0353272B2 (en) * 1985-07-17 1991-08-14 Taki Chemical

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737815A (en) * 1980-08-18 1982-03-02 Nichicon Capacitor Ltd Dielectric porcelain composition
CN109382088B (en) * 2018-11-15 2021-10-15 广西大学 SnO2/α~Bi2O3/β~Bi2O3Composite material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032837B2 (en) * 1985-07-17 1991-01-17 Taki Chemical
JPH0353272B2 (en) * 1985-07-17 1991-08-14 Taki Chemical

Also Published As

Publication number Publication date
JPS5415198A (en) 1979-02-03

Similar Documents

Publication Publication Date Title
JPS597665B2 (en) High dielectric constant porcelain composition
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JPS623569B2 (en)
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JP2614228B2 (en) Ceramic forming composition, semiconductor porcelain base and dielectric porcelain base using the same, and capacitor
JPS6128209B2 (en)
JP2505030B2 (en) High-permittivity porcelain composition for temperature compensation and method for producing the same
JPS606535B2 (en) porcelain composition
JPS6032343B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JPS6128208B2 (en)
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JP2936876B2 (en) Semiconductor porcelain composition and method for producing the same
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JP2862654B2 (en) Dielectric ceramic composition for temperature compensation
JPS6230482B2 (en)
JPH03285870A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPS5936365B2 (en) semiconductor porcelain materials
JPS6230483B2 (en)
JPS584448B2 (en) Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body
JPS6250968B2 (en)
JPS63301410A (en) Insulated grain boundary type semiconductor ceramic composition
JPS6129531B2 (en)
JPH01291413A (en) Grain boundary insulation type semiconductor porcelain composition