JPS584448B2 - Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body - Google Patents

Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body

Info

Publication number
JPS584448B2
JPS584448B2 JP49060027A JP6002774A JPS584448B2 JP S584448 B2 JPS584448 B2 JP S584448B2 JP 49060027 A JP49060027 A JP 49060027A JP 6002774 A JP6002774 A JP 6002774A JP S584448 B2 JPS584448 B2 JP S584448B2
Authority
JP
Japan
Prior art keywords
temperature
semiconductor ceramic
capacitance
ceramic capacitor
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49060027A
Other languages
Japanese (ja)
Other versions
JPS50151399A (en
Inventor
山下和義
柴山尚之
杉江茂
藤川永生
本田幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP49060027A priority Critical patent/JPS584448B2/en
Publication of JPS50151399A publication Critical patent/JPS50151399A/ja
Publication of JPS584448B2 publication Critical patent/JPS584448B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】 この発明は各特性の釣合いがとれたコンデンサを提供で
きる還元再酸化型導体磁器コンデンサ素体の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a reduction and reoxidation type conductive ceramic capacitor body that can provide a capacitor with well-balanced characteristics.

従来よりBaTi03系半導体組成物を焼結して半導体
化させ、表面に銀ペイントを塗布、熱処理することによ
って半導体磁器表面こ誘導体層を設けた半導体磁器コン
デンサはすでに知られている。
Semiconductor ceramic capacitors are already known in which a BaTi03-based semiconductor composition is sintered to become a semiconductor, the surface is coated with silver paint, and a dielectric layer is provided on the semiconductor ceramic surface by heat treatment.

しかしこの種のものは静電容量を大きくすれば、絶縁抵
抗もしくは破壊電圧が小さくなり、また逆に絶縁抵抗や
破壊電圧を向上させようとすれば、静電容量が小さくな
ったり、あるいは静電容量と破壊電圧をあわせて大きく
しようとすれば、温度による容量の変化率が大きくなる
欠点があった。
However, in this type of device, if you increase the capacitance, the insulation resistance or breakdown voltage will decrease, and conversely, if you try to improve the insulation resistance or breakdown voltage, the capacitance will decrease or the electrostatic If an attempt was made to increase both the capacitance and breakdown voltage, there was a drawback that the rate of change in capacitance due to temperature would increase.

またこの種のものは一般に電極の選択が難かしく、電極
の種類や設けられた状態こよってコンデンサの特性が左
右されたり、電極の上から半田付けなどを行なうと誘電
体層や堰層が破壊され、コンデンサとして用を果たさな
くなるなどの欠点をも有していた。
In addition, it is generally difficult to select the electrodes for this type of device, and the characteristics of the capacitor are affected by the type and condition of the electrodes, and the dielectric layer and weir layer may be destroyed if soldering is performed over the electrodes. However, it also had drawbacks such as being useless as a capacitor.

さらこ電極の選択を自由こ行なえるものとして、BaT
i03系半導体磁器の境界層こCu,Bi,Mnなどを
拡散させた境界層型半導体磁器コンデンサが知られてい
るが、温度や印加電圧こよって絶縁抵抗が大きく変化し
たり、温度こよる容量変化率が大きいという問題があっ
た。
BaT allows for free selection of flat electrodes.
Boundary layer type semiconductor ceramic capacitors in which Cu, Bi, Mn, etc. are diffused are known, but the insulation resistance changes greatly depending on temperature and applied voltage, and the capacitance changes due to temperature. The problem was that the ratio was high.

この発明は上述したような欠点を解消したもので、高誘
電率で誘電体損失が小さく、また絶縁抵抗、破壊電圧が
大きく、さらこ温度こよる容量変化率、温度および印加
電圧こよる絶縁抵抗の変化が小さく、しかも電極の上か
ら半田付けなどを行なっても特性が変化せず、耐湿性に
もすぐれた安定な半導体磁器コンデンサが得られる還元
再酸化型半導体磁器コンデンサ素体の製造方法を提供す
るものである。
This invention eliminates the above-mentioned drawbacks, and has a high dielectric constant, low dielectric loss, high insulation resistance, high breakdown voltage, and low capacitance change rate depending on temperature, and low insulation resistance due to temperature and applied voltage. A method for producing a reduction and reoxidation type semiconductor ceramic capacitor body that has a small change in temperature, does not change its characteristics even when soldering is performed on the electrodes, and provides a stable semiconductor ceramic capacitor with excellent moisture resistance. This is what we provide.

この発明方法を実施するには、まずBaCO3,SrC
O3,TiO2を混合して1000〜1200Cの温度
にて約2時間酸化性雰囲気で仮焼して(Ba,Sr)T
iOA−作り、これこ添加物であるBi203,Zr0
2を添加して混合し、次いで酸化性雰囲気で1300〜
1400℃の温度にて焼成し、引き続いて水素または一
酸化炭素などを含む還元性雰囲気で約1100℃の温度
こて加熱処理する。
To carry out the method of this invention, first, BaCO3, SrC
O3 and TiO2 are mixed and calcined in an oxidizing atmosphere at a temperature of 1000 to 1200C for about 2 hours to form (Ba, Sr)T.
iOA-made with additives Bi203, Zr0
2 and mix, then 1300~ in an oxidizing atmosphere.
It is fired at a temperature of 1400° C., and then heated with a trowel at a temperature of about 1100° C. in a reducing atmosphere containing hydrogen or carbon monoxide.

さらこ酸化性雰囲気で900〜1050Cの温度にて加
熱し、次いで電極を設けることにより半導体磁器コンデ
ンサを得るのである。
A semiconductor ceramic capacitor is obtained by heating at a temperature of 900 to 1050 C in an oxidizing atmosphere and then providing electrodes.

以下ここの発明を実施例こ従って詳述することこする。Hereinafter, the present invention will be described in detail with reference to examples.

BaCO3sSrCO3,Tt02を配合、混合し、9
50〜1200℃の温度範囲で2時間仮焼して(Ba,
Sr)Tie3を作り、これこ添加物であるB1203
*ZrO2を第1表こ示す割合いで加え、さらにバイン
ダーとして約3.5重量楚のビニル樹脂を加えて整粒し
た。
Blend and mix BaCO3sSrCO3, Tt02, 9
Calcined for 2 hours at a temperature range of 50 to 1200℃ (Ba,
Sr) Make Tie3 and add B1203, which is an additive.
*ZrO2 was added in the proportions shown in Table 1, and approximately 3.5 weight cents of vinyl resin was added as a binder for sizing.

次いでこれを油圧プレスにより直径12mm,肉厚0.
6mmの円板に成型してアルミナ質の匣の上こ並べ、空
気中で約1350Cの温度にて2時間焼成した。
Next, this was made into a diameter of 12 mm and a wall thickness of 0.0 mm using a hydraulic press.
It was molded into a 6 mm disk, placed on top of alumina boxes, and fired in air at a temperature of about 1350C for 2 hours.

引き続いて水素15カ、窒素85%の容量比からなる還
元性雰囲気で900〜1250℃の温度にて2時間熱処
理し、さらこ850〜1100℃,30分間空気中で熱
処理して冷却し、黒味カへった色調の半導体磁器素体を
得た。
Subsequently, heat treatment was performed at a temperature of 900 to 1250°C for 2 hours in a reducing atmosphere consisting of 15% hydrogen and 85% nitrogen by volume, followed by heat treatment in air for 30 minutes at 850°C to 1100°C, followed by cooling. A semiconductor porcelain body with a dull color tone was obtained.

得られた半導体磁器素体に銀ペイントを塗布して乾燥し
、空気中で約800℃,5分間で銀電極を焼付けて半導
体磁器コンデンサの各試料を得た。
Silver paint was applied to the obtained semiconductor ceramic body, dried, and a silver electrode was baked in the air at about 800° C. for 5 minutes to obtain each sample of a semiconductor ceramic capacitor.

第1図はこの発明方法によって得た半導体磁器コンデン
サを示し、1は半導体磁器、2は誘電体層、3,4は銀
電極である。
FIG. 1 shows a semiconductor porcelain capacitor obtained by the method of the present invention, in which 1 is a semiconductor porcelain, 2 is a dielectric layer, and 3 and 4 are silver electrodes.

次に各試料について、静電容量、誘電体損失、絶縁抵抗
、破壊電圧、C.R積および容量温度変化率について測
定したところ、第2表こ示すような測定結果が得られた
Next, for each sample, capacitance, dielectric loss, insulation resistance, breakdown voltage, C. When the R product and the rate of change in capacity with temperature were measured, the measurement results shown in Table 2 were obtained.

静電容量:試料の両面に設けた電極面積を1cm2とし
、温度25℃、周波数IKHz, 電圧0.3Vr.m.sで測定したときの面積当たりの
容量値である。
Capacitance: The electrode area provided on both sides of the sample was 1 cm2, the temperature was 25°C, the frequency was IKHz, and the voltage was 0.3Vr. m. It is the capacitance value per area when measured in s.

誘電体損失:静電容量の測定条件に対応して測定したと
きの値である。
Dielectric loss: This is a value measured in accordance with the capacitance measurement conditions.

絶縁抵抗:温度25℃6こおいて、試料に直流電圧25
Vを印加した25秒後こおけ る値である。
Insulation resistance: At a temperature of 25°C, a DC voltage of 25°C is applied to the sample.
This is the value obtained 25 seconds after V was applied.

破壊電圧:温度25℃において、試料に印加した直流電
圧を昇圧させたとき電流が 急増する電圧の下限値を示している。
Breakdown voltage: indicates the lower limit of the voltage at which the current increases rapidly when the DC voltage applied to the sample is increased at a temperature of 25°C.

C.R積:静電容量と絶縁抵抗の積を示したものである
C. R product: indicates the product of capacitance and insulation resistance.

容量温度:温度25℃における容量を基準とし変化率
で、−30C〜+85℃間の容量温度特性を測定し、
容量変化率の上限 と下限を示したものである。
Capacity temperature: Rate of change based on capacity at 25℃
Measured the capacitance temperature characteristics between -30C and +85C,
This shows the upper and lower limits of the rate of change in capacity.

第1表、第2表の各試料番号は一致し、表中の※印はこ
の発明の範囲外であり、それ以外は範囲内のものである
The sample numbers in Tables 1 and 2 match, and the * marks in the table are outside the scope of this invention, and the others are within the scope.

第2表から明らかなように、この発明の範囲内のものは
各特性においてすぐれており、しかも互いこ釣合いのと
れた特性のものが得られている。
As is clear from Table 2, the products within the scope of the present invention are excellent in each property, and moreover, the properties are well balanced with each other.

第2図は試料番号1,I1こついて容量温度特性を測定
したもので、試料番号11(発明範囲内のもの)は試料
番号1(発明範囲外のもの)jくらべ平坦な容量温度特
性を有しており、広い温度・範囲で使用できることがわ
かる。
Figure 2 shows the capacitance-temperature characteristics measured for sample No. 1 and I1. Sample No. 11 (within the scope of the invention) has a flatter capacitance-temperature characteristic compared to sample No. 1 (outside the scope of the invention). It can be seen that it can be used in a wide temperature range.

次こ耐湿性を調べるために、試料を2時間煮沸したのち
十分こ乾燥して絶縁抵抗を測定した。
Next, in order to examine the moisture resistance, the sample was boiled for 2 hours, thoroughly dried, and the insulation resistance was measured.

第3表はその測定結果を示したものであり、試料番各試
料について絶縁抵抗のみを測定したのは、絶縁抵抗の変
化がそのほかの特性こ直接影響し、種々の特性変化を調
べる目安となるからであり、この発明によるものは耐湿
性のすぐれたものが得られることは明白である。
Table 3 shows the measurement results, and the reason why only the insulation resistance was measured for each sample is because changes in insulation resistance directly affect other characteristics, and it can be used as a guide for investigating various changes in characteristics. Therefore, it is clear that the material according to the present invention has excellent moisture resistance.

この発明において組成範囲を限定したのは次の理由こよ
る。
The reason why the composition range is limited in this invention is as follows.

すなわち、BaT+03のBaをSrで置換したのは、
基体組成物がBaT103のみでは誘電体損失が大きく
なるためであり、置換量を5〜35原子楚としたのは、
5原子受未満では誘電体損失が大きくなり、35原子受
をこえると表面に異常粒子が析出し、かつ静電容量が小
さくなるからである。
That is, replacing Ba in BaT+03 with Sr is
This is because the dielectric loss increases if the base composition is only BaT103, and the reason why the substitution amount is set to 5 to 35 atoms is as follows.
This is because when the number of atoms is less than 5, the dielectric loss increases, and when it exceeds 35, abnormal particles are deposited on the surface and the capacitance becomes small.

また(Ba,Sr)Ti03にBi203のみを添加し
た場合は、Bi203が蒸発するためか焼結が困難であ
り、またZrO2のみを添加した場合は還元しにく5な
るため、Bi203およびZrO2を共存させ、互いに
相関関係を持たせたのである。
Furthermore, when only Bi203 is added to (Ba,Sr)Ti03, sintering is difficult, probably because Bi203 evaporates, and when only ZrO2 is added, it becomes difficult to reduce5, so Bi203 and ZrO2 coexist. They were made to have a correlation with each other.

さらにBi203を(Ba,Sr)Ti03の1〜4重
量楚としたのは、1重量楚未満では還元されにくく、再
酸化温度で磁器全体が容易6こ再酸化されるため静電容
量が小さくなり、4重量ラをこえると、静電容量が小さ
く誘電体損失が大きくなるからである。
Furthermore, the reason why Bi203 is 1 to 4% by weight of (Ba,Sr)Ti03 is that less than 1% by weight is difficult to reduce, and the entire porcelain is easily reoxidized at the reoxidation temperature, which reduces the capacitance. , 4 weight la, the capacitance becomes small and the dielectric loss becomes large.

さらこまたZr02を(Ba,Sr)Tie3の1.6
〜5.0重量予て、かつ(X−1)〜(X+3)重量楚
としたのは,1.6重量濠および(x−i)重量楚未満
こなると、焼結しにく\なり、かつ静電容量が小さくな
るためである。
Sarakomata Zr02 (Ba, Sr) Tie3 1.6
~5.0 weight in advance and (X-1) ~ (X+3) weight was set as 1.6 weight and (x-i) less than 1.6 weight and (x-i) weight, it would be difficult to sinter, This is also because the capacitance becomes smaller.

また5.0重量%および(X+3)重量楚をこえると、
表面と異常粒子が析出し、破壊電圧、静電容量が小さく
なるからである。
Also, if it exceeds 5.0% by weight and (X+3) weight,
This is because abnormal particles are deposited on the surface and the breakdown voltage and capacitance are reduced.

次ここの発明において原料を配合、混合して磁器化する
過程で、まず仮焼して(Ba,Sr)Ti03を作るこ
は、仮焼淵度は1000〜1200℃の温度範囲こある
ことが好ましい。
Next, in the process of compounding and mixing raw materials to make porcelain in this invention, first calcination is performed to make (Ba, Sr)Ti03, and the calcination temperature ranges from 1000 to 1200°C. preferable.

これは1000℃未満で仮焼して得られた(Ba,Sr
)Tie3を使用した場合、(Ba,Sr)Tio3こ
Bi203,TrO2が固溶するためか容量温度特性こ
大きなピークが現われ、温度こよる容量変化率は大きく
なる。
This was obtained by calcining at less than 1000°C (Ba, Sr
) When Tie3 is used, a large peak appears in the capacitance-temperature characteristic, probably because (Ba, Sr)Tio3, Bi203, and TrO2 form a solid solution, and the rate of change in capacitance due to temperature becomes large.

また1200℃をこえて仮焼した(Ba,Sr)Tie
3を使用すると、一部焼結しているため粉砕、混合,し
こまゝ、添加物を均−こ混合できないためである。
Also, (Ba, Sr) Tie calcined at over 1200℃
This is because if No. 3 is used, it is partially sintered, so it is impossible to crush, mix, finely grind, or evenly mix the additives.

混合した粉末を焼成するこは1300〜1400Cの温
度で処理すればよい。
The mixed powder may be fired at a temperature of 1300 to 1400C.

これは1300℃未満では焼成が困難になり、また14
00℃をこえるさ焼成された磁器同志が接合し、工業的
生産が不可能こなるからである。
This is because firing becomes difficult at temperatures below 1300°C, and
This is because porcelain fired at temperatures exceeding 00°C bond together, making industrial production impossible.

また焼成したのち還元する工程では950〜1200℃
の温度範囲で処理すればよい。
In addition, in the reduction process after firing, the temperature is 950 to 1200℃.
It is sufficient to process within the temperature range.

950℃未満では静電容量が小さくなり、誘電体損失も
、大きくなる。
When the temperature is lower than 950° C., the capacitance becomes small and the dielectric loss becomes large.

また1200℃をこえると破壊電圧は小さくなる。Moreover, when the temperature exceeds 1200° C., the breakdown voltage decreases.

さらこ再酸化の工程こおいては900〜1050℃で処
理することが好ましい。
In the step of re-oxidizing the raw material, it is preferable to perform the treatment at 900 to 1050°C.

900℃未満では破壊電圧は小さくなり、耐湿性も悪く
なる。
If the temperature is lower than 900°C, the breakdown voltage will be low and the moisture resistance will be poor.

また1000℃をこえると磁器全体が再酸化され、高誘
電率の半導体磁器コンデンサは得られなくなる。
Furthermore, if the temperature exceeds 1000°C, the entire ceramic will be reoxidized, making it impossible to obtain a semiconductor ceramic capacitor with a high dielectric constant.

一般に還元再酸化型の半導体磁器コンデンサは還元処理
を終えると、ふたたび酸化性雰囲気で加熱して電極の付
与、および磁器の再酸化こより誘電体層を形成すること
が行なわれている。
In general, after reduction and reoxidation type semiconductor ceramic capacitors have been subjected to reduction treatment, they are heated again in an oxidizing atmosphere to provide electrodes and to form a dielectric layer by reoxidizing the ceramic.

ところがこの発明方法によれば、電極を付与する前こす
でこ安定した誘電体層が半導体磁器こ形成されているた
め、電極の付与こよって特性が左右されない特徴を有し
ており、通常の半導体磁器コンデンサと同様こ銀の焼付
けができるほか、蒸着そのほか任意の方法によって電極
を形成することができる。
However, according to the method of this invention, since a very stable dielectric layer is formed on the semiconductor porcelain before applying the electrodes, the characteristics are not influenced by the application of the electrodes, and are different from those of ordinary semiconductors. In addition to baking silver in the same way as porcelain capacitors, electrodes can be formed by vapor deposition or any other method.

したがって電極の上から半田付けをするなどの処理をし
ても、特性が劣化するおそれがないなど実用上大きな利
点を備えている。
Therefore, it has a great practical advantage in that there is no risk of deterioration of the characteristics even if processes such as soldering are performed on the electrodes.

またこの発明方法により得られた半導体磁器コンデンサ
は耐湿性こすぐれている。
Furthermore, the semiconductor ceramic capacitor obtained by the method of this invention has excellent moisture resistance.

これは磁器の粒径が約1μ程度と非常こ緻密なため、電
極の下こ均一な誘電体層が間隙のないようこ形成され、
また電極の種類を広範囲こ選べることこよって耐蝕性の
ある電極を付与できることこよるものと考えられる。
This is because the grain size of porcelain is very dense, about 1μ, so a uniform dielectric layer is formed under the electrode without any gaps.
It is also believed that the ability to choose from a wide range of electrode types makes it possible to provide corrosion-resistant electrodes.

さらここれは表面の誘電体層が電極部分にほゞまらず磁
器のほゞ全表面に形成されているため、磁器表面での放
電が発生しこまゝなっており、これが耐湿性こ寄与して
いるものと考えられる。
Furthermore, this is because the surface dielectric layer is formed not only on the electrodes but on almost the entire surface of the porcelain, which prevents discharge from occurring on the porcelain surface, which contributes to its moisture resistance. It is thought that this is the case.

以上のようにこの発明こよれば、各特性の釣合いがとれ
た半導体磁器コンデンサ、すなわち高誘電率で誘電体損
失が小さく、また絶縁抵抗、破壊電圧が大きく、さらこ
温度による容量変化率、温度および引加電圧こよる絶縁
抵抗の変化が小さく、しかも電極の上から半田付けなど
を行なっても特性が変化せず、耐湿性のすぐれた安定な
半導体磁器コンデンサが得られるのである。
As described above, the present invention provides a semiconductor ceramic capacitor with well-balanced characteristics, that is, a high dielectric constant, low dielectric loss, high insulation resistance, high breakdown voltage, and high capacitance change rate due to temperature change. In addition, changes in insulation resistance due to applied voltage are small, and even if soldering is performed on the electrodes, the characteristics do not change, making it possible to obtain a stable semiconductor ceramic capacitor with excellent moisture resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によって得られた半導体磁器コンデン
サの断面図、第2図は半導体磁器コンデンサの容量温度
特性図である。 1・・・・・・半導体磁器、2・・・・・・誘電体層、
3,4・・・・・・銀電極。
FIG. 1 is a sectional view of a semiconductor ceramic capacitor obtained according to the present invention, and FIG. 2 is a capacitance-temperature characteristic diagram of the semiconductor ceramic capacitor. 1... Semiconductor ceramic, 2... Dielectric layer,
3, 4... Silver electrode.

Claims (1)

【特許請求の範囲】 1 次の諸工程からなる還元再酸化型半導体磁器コンデ
ンサ素体の製造方法。 (1)BaTi03のBaを5−35原子勃のSrで置
換している仮焼された(Ba,Sr)Ti03を基体と
して、これこ添加物であるBi203,Zr02をそれ
ぞれx,y重量楚で表わしたきき、次に示される組成範
囲で添加し混合する工程。 x(=Bt203)−1〜4重量楚 y(=ZrO2)−1.6〜5重量楚で、かつ(x−1
)〜(x+3) 重量楚 (2)混合物を酸化性雰囲気で焼成する工程。 (3)還元性雰囲気で加熱処理する工程。 (4)酸化性雰囲気で加熱処理する工程。
[Scope of Claims] 1. A method for manufacturing a reduction and reoxidation type semiconductor ceramic capacitor body comprising the following steps. (1) Using calcined (Ba,Sr)Ti03 as a base material in which Ba in BaTi03 is replaced with 5-35 atoms of Sr, additives Bi203 and Zr02 are added at x and y weights, respectively. The process of adding and mixing the composition range shown below. x(=Bt203)-1 to 4 weight, y(=ZrO2)-1.6 to 5 weight, and (x-1
) to (x+3) (2) Calcining the mixture in an oxidizing atmosphere. (3) A step of heat treatment in a reducing atmosphere. (4) A step of heat treatment in an oxidizing atmosphere.
JP49060027A 1974-05-27 1974-05-27 Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body Expired JPS584448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49060027A JPS584448B2 (en) 1974-05-27 1974-05-27 Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49060027A JPS584448B2 (en) 1974-05-27 1974-05-27 Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body

Publications (2)

Publication Number Publication Date
JPS50151399A JPS50151399A (en) 1975-12-05
JPS584448B2 true JPS584448B2 (en) 1983-01-26

Family

ID=13130163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49060027A Expired JPS584448B2 (en) 1974-05-27 1974-05-27 Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body

Country Status (1)

Country Link
JP (1) JPS584448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10584069B2 (en) 2017-03-01 2020-03-10 Mitsubishi Materials Corporation cBN sintered material and cutting tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176374B (en) * 2011-03-10 2013-05-08 江苏大学 High voltage ceramic capacitor dielectric sintered at low temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10584069B2 (en) 2017-03-01 2020-03-10 Mitsubishi Materials Corporation cBN sintered material and cutting tool

Also Published As

Publication number Publication date
JPS50151399A (en) 1975-12-05

Similar Documents

Publication Publication Date Title
US3704266A (en) Barium titanozirconate semiconducting ceramic compositions
JPS584448B2 (en) Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body
TW426864B (en) Dielectric ceramic composition
JPS606535B2 (en) porcelain composition
JPS584447B2 (en) Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body
JP2505030B2 (en) High-permittivity porcelain composition for temperature compensation and method for producing the same
JPS6043651B2 (en) Composition for semiconductor ceramic capacitors
JPS584449B2 (en) Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JPS6217368B2 (en)
JPS6128209B2 (en)
JPH04264307A (en) Dielectric ceramic composition
JPS6128208B2 (en)
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JPH06102573B2 (en) Composition for reduction / reoxidation type semiconductor ceramic capacitor
JP2936876B2 (en) Semiconductor porcelain composition and method for producing the same
KR960001657B1 (en) Preparation for strontium titanates of grain boundary layer
JPS6053451B2 (en) Manufacturing method of dielectric porcelain
JPS6364888B2 (en)
JPS6130410B2 (en)
JPS6230482B2 (en)
JPS6126207B2 (en)
JPS6364889B2 (en)
JPH03203118A (en) Dielectric ceramic composition