JPS6128208B2 - - Google Patents
Info
- Publication number
- JPS6128208B2 JPS6128208B2 JP50086904A JP8690475A JPS6128208B2 JP S6128208 B2 JPS6128208 B2 JP S6128208B2 JP 50086904 A JP50086904 A JP 50086904A JP 8690475 A JP8690475 A JP 8690475A JP S6128208 B2 JPS6128208 B2 JP S6128208B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- added
- srtio
- zro
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003990 capacitor Substances 0.000 claims description 32
- 229910002367 SrTiO Inorganic materials 0.000 claims description 24
- 239000004065 semiconductor Substances 0.000 claims description 22
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 14
- 239000003989 dielectric material Substances 0.000 claims description 13
- 229910052573 porcelain Inorganic materials 0.000 claims description 7
- 239000012212 insulator Substances 0.000 claims description 2
- 238000009413 insulation Methods 0.000 description 19
- 239000000919 ceramic Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 10
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000007952 growth promoter Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- 239000005041 Mylar™ Substances 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Description
本発明は、チタン酸ストロンチウムを主成分と
する焼結体を誘電体とする半導体磁器粒界絶縁型
コンデンサに関するものであり、詳細には、この
コンデンサの温度特性は、tanδ及び絶縁抵抗の
改善に関するものである。
一般に、コンデンサ等の誘電体材料としては、
入手の容易なマイラーフイルム等プラスチツクフ
イルムが使用されているが、耐熱性に劣り燃焼す
るので、電力が大きくなつてきたことに伴う発熱
量の増加等により、使用範囲が限定されるという
問題がある。
そこで、近年、耐熱性に優れ、誘電率の非常に
大きな誘電体として、磁器半導体の粒界を選択的
に絶縁処理した多結晶性磁器半導体粒界絶縁型誘
電体が開発されており、この種の誘電体を使用し
た半導体磁器粒界絶縁型コンデンサ(BLコンデ
ンサ)が提供されている。
この種の誘電体材料としては、例えばチタン酸
バリウム(BaTiO3)系のものが知られており、こ
れを使用したBLコンデンサでは、50000〜70000
程度の誘電率が達成されている。しかし、この
BLコンデンサでは、温度変化−30℃〜+85℃の
範囲において、20℃における値に対して約±40%
程度の静電容量変化があり、またtanδも約5〜
10%と比較的大きい等の欠点があつてコンデンサ
としての有用性が制限されていた。すなわち、こ
の静電容量の温度変化は、例えばチユーナ等に用
いた場合に、周波数特性が温度によつて変化する
という要因になる。
一方、上記誘電体材料として、チタン酸ストロ
ンチウム(SrTiO3)系を主成分としたものも知ら
れており、これを使用したBLコンデンサも提案
されている。
この種のものは、前記温度変化における静電容
量変化が約±15%程度と低く、かつtanδも2〜
5%と低いので、BaTiO3系BLコンデンサよりも
優れたものと言える。
しかしながら、このSrTiO3系BLコンデンサ
は、実用面で競合すると思われるマイラーフイル
ムコンデンサと比べると、絶縁抵抗とtanδの点
で大幅に劣つている。
そこで本発明は、かかる実情に鑑みて提案され
たものであつて、静電容量の温度変化が少なく、
かつ絶縁抵抗やtanδに優れるとともに、誘電率
の高い半導体磁器粒界絶縁型コンデンサを提供す
ることを目的とする。
本発明者等は、上述の目的を達成せんものと鋭
意研究の結果、SrTiO3に所定量のZrO2を加える
ことにより絶縁抵抗やtanδ、温度特性を改善す
ることができ、さらに半導体化促進剤として
Nb2O5あるいはTa2Oが、また結晶成長促進剤と
してSiO2が好適であつて、これらを焼結して得
られる多結晶性磁器半導体粒界絶縁型誘電体を誘
電体とするコンデンサが優れた特性を示すことを
見出し本発明を完成するに至つたものであつて、
SrTiO3を主成分としNb2O5,Ta2O5のうち少なく
とも一種を0.05〜5重量%含有するとともにSiO2
を0.02〜1重量%とZrO2を0.05〜5重量%含有し
てなり粒界層が絶縁体化された半導体磁器を誘電
体とすることを特徴とするものである。
SrTiO3を主成分とする多結晶性磁器半導体粒
界絶縁型誘電体を得るには、先ず、このSrTiO3
の半導体化を促進し、磁器半導体粒子を成長させ
る必要があるが、本発明者等がSrTiO3に種々の
不純物を添加しH2を含む還元性雰囲気中で焼成
したところ、Nb2O5やTa2O5等の金属酸化物が特
に顕著に半導体化を促進することがわかつた。
例えば、SrTiO3にNb2O5を添加し、H2を1%
含むN2ガス雰囲気中で1400℃、2時間焼成を行
つたところ、抵抗値は添加量に応じて第1図に示
すように変化した。すなわち、Nb2O5をSrTiO3
に対して0.05重量%添加した付近から抵抗値が急
激に下がり、SrTiO3の半導体化が著しくなり、
特に上記Nb2O5の添加量が1重量%を越えると半
導体化の効果が飽和し、ほとんど等しい抵抗値と
なる。この傾向は、Nb2O5の代わりにTa2O5を添
加した場合にも同様であつた。ただし、Nb2O5や
Ta2O5の添加量が5重量%を越えると焼結性が極
端に悪くなつてコンデンサに用いるには不適当で
ある。
したがつて、上記Nb2O5やTa2O5の添加量とし
ては、SrTiO3に対して0.05〜5重量%の範囲内
であることが好ましい。上記添加量が0.05重量%
未満では、SrTiO3の半導体化が充分に達成され
ない。また、逆に上記添加量が5重量%を越える
と、焼結性が極端に悪くなり、誘電体を作製する
ことが難しくなる。
このように半導体化した粒子の結晶粒界のみを
絶縁化させるためには、結晶粒子は大きくてそろ
つていることが必要である。結晶粒子があまり小
さいと、絶縁化する際に結晶内部まで絶縁化さ
れ、誘電率が低下する。
そこで、SrTiO3には、さらに結晶成長促進剤
を加える必要があるが、この結晶成長促進剤とし
ては、SiO2が特に顕著に結晶成長を促進させる
ことがわかつた。第2図に1400℃,2時間還元性
雰囲気中で焼成したときのSiO2量と結晶粒径の
関係を示す。この第2図より、SiO2量を0.02重量
%とした付近から粒径が10μm以上となり、BL
コンデンサに使用するのに充分な大きさとなる。
しかし、1重量%を越すと、粒径が大きくなりす
ぎ、通常のコンデンサの厚み(0.4mm程度)を越
す粒子も出てくる可能性があり好ましくない。
以上のようにSrTiO3に所定量のNb2O5あるい
はTa2O5とSiO2を添加し、H2を含む還元性雰囲気
中で1次焼成し、B2O3―Bi2O3系またはPbO―
B2O3―Bi2O系ガラスを塗布し、空気中で2次焼
成することによつて誘電率の高いBLコンデンサ
が得られる。
しかしながら、これだけでは静電容量の温度特
性やtanδの小さい、かつ絶縁抵抗の大きいコン
デンサを得ることは難しい。
そこで、本発明においては、さらにZrO2を添
加する。このZrO2の添加が、上記温度特性やtan
δ、絶縁抵抗の改善に効果がある。
本発明者等が、SrTiO3に対してNb2O5を1重
量%、SiO2を0.5重量%添加し、さらにZrO2を添
加してBLコンデンサを作製し、このZrO2の添加
量を変えて諸特性の変化を調べたところ、第3図
に示すような結果が得られた。
先ず、第3図aは、ZrO2の添加量とtanδの関
係を示すものである。
この第3図aからわかるように、ZrO2を添加
していない状態では、tanδの値が1.4程度である
のに対し、ZrO2を0.1重量%程度加えると0.5程度
と最も小さくなる。そして、これを越えると、
ZrO2の添加量の増加とともにtanδの値が徐々に
高くなつている。なお、tanδは測定周波数
1kHz,測定電圧1Vの条件でブリツジ法により測
定した。
また、第3図cは、ZrO2の添加量と絶縁抵抗
の関係を示すものである。なお、この絶縁抵抗
は、DC100Vを1分間加えた後に測定した。
この第3図cからは、絶縁抵抗はZrO2の添加
量の増加とともに急激に高くなり、1重量%以上
では絶縁抵抗が5×1010Ω・cm以上にもなること
がわかる。
さらに、第3図dは、ZrO2の添加量と静電容
量の温度変化率を示すものである。ここで、上記
温度変化率は、20℃での容量値を基準として20℃
〜80℃の範囲で測定した。
この第3図dから、ZrO2の添加とともに温度
変化率は小さくなつていき、約5重量%で温度変
化率が−2%程度と極めて小さなものとなつてい
ることがわかる。
上述のように、上記ZrO2の添加は、SrTiO3を
主成分とする誘電体の絶縁抵抗やtanδ、静電容
量の温度変化の改善に極めて有効であることが判
明したが、過剰に添加すると、tanδが却つて増
加し、さらに第3図bに示すように、誘電率が低
下することもわかつた。
したがつて、上記ZrO2の添加量は、SrTiO3に
対して0.05〜5重量%の範囲内とすることが好ま
しい。このような範囲に設定することにより、絶
縁抵抗やtanδ、静電容量の温度特性が改善さ
れ、誘電率も確保される。
ところで、上述の誘電体を作成する場合に、原
料の純度性質にも注意を払う必要がある。一般
に、SrTiO3を作るためには、TiO2とSrCO3を用
いるが、ここでTiO2にはアナタス型とルチル型
があり、焼結性はアナタス型が優れるが、誘電率
はルチル型が優れる。また、どちらも不純物とし
てFe2O3を含むが、このFe2O3は、半導体化の妨
げとなつたり、絶縁特性を劣化させる要因となる
ので、注意を要する。SrCO3は主としてBaCO3や
CaCO3を不純物として含み、誘電率の温度特性
にバラツキを生じさせる原因になる。また、
TiCO3も製法によつてはNa成分を含み、焼結性
や絶縁特性に重大な影響を与える。しかしなが
ら、原料の純度を極端に良くすることは、焼結性
の点で好ましいものではない。なぜなら、焼結に
とつて微量の不純物は重要な働きをするからであ
る。
本発明を実施するにあたつては、このようなこ
とを念頭に置きながら原料を調製すべきである。
次に本発明の具体的な実施例について説明す
る。
実施例 1
SrTiO3に対してTa2O50.8重量%、SiO20.4重量
%およびZrO21.0重量%からなる組成を通常のセ
ラミツク製造手段にて混合乾燥した粉末にPVA
(ポリビニルアルコール)の如きバインダーを加
え顆粒成形し、これ、N2ガス中にH2を1%含む
雰囲気中で1450℃、2時間焼成した。
これにBi2O350重量%、B2O310重量%、PbO40
重量%からなるガラス粉末を筆にて塗布し、空気
中で1180℃、2時間焼成し、銀電極を焼付けて
BLコンデンサを作成した。このコンデンサの特
性は、ε=28,500、tanδ=0.55%、絶縁抵抗=
2×1010Ω・cm、静電容量の温度係数は20℃〜80
℃で−7.0%であつた。なお、tanδ及び静電容量
は、オートマチツクキヤパシタンス ブリツジ
(Automatic Capacitance Bridge)(商品名YHP
4270A)を用い、測定周波数1kHz、測定電圧1V
の条件で測定した。(以下同じ。)
実施例 2
SrTiO3に対してTa2O50.1重量%、SiO20.4重量
%およびZrO22.0重量%からなる組成と通常のセ
ラミツク製造手段にて混合乾燥した粉末にPVA
(ポリビニルアルコール)の如きバインダーを加
え顆粒成形し、これを、N2ガス中にH2を1%含
む雰囲気中で1450℃、2時間焼成した。
以下、先の実施例1と同様の方法によりBLコ
ンデンサを作成し、このコンデンサの特性は、ε
=12,000、tanδ=0.8%、絶縁抵抗=6×1010
Ω.cm、温度係数は20℃〜80℃で−3.0%であつ
た。
実施例 3
SrTiO3に対してTaO51.0重量%、SiO20.6重量
%およびZrO23.0重量%からなる組成を通常のセ
ラミツク製造手段にて混合乾燥した粉末にPVA
(ポリビニルアルコール)の如きバインダーを加
え顆粒成形し、これを、N2ガス中にH2を1%含
む雰囲気中で1450℃、2時間焼成した。
以下、先の実施例1と同様の方法によりBLコ
ンデンサを作成した。このコンデンサの特性は、
ε=25,000、tanδ=0.8%、絶縁抵抗=3×1010
Ω・cm、温度係数は20℃〜80℃で−4.0%であつ
た。
実施例 4
SrTiO3に対してNb2O5,SiO2およびZrO2を第
1表に示すような割合で添加し、先の実施例1と
同様の方法によりBLコンデンサを作成した。各
コンデンサの特性は、第2表に示すようなもので
あつた。
The present invention relates to a semiconductor porcelain grain boundary insulated capacitor whose dielectric is a sintered body mainly composed of strontium titanate. Specifically, the temperature characteristics of this capacitor are related to improvements in tan δ and insulation resistance. It is something. In general, dielectric materials for capacitors etc.
Plastic films such as Mylar film are used, which are easily available, but they have poor heat resistance and burn, so there is a problem that the range of use is limited due to the increase in heat generation due to the increase in electric power. . Therefore, in recent years, a polycrystalline ceramic semiconductor grain boundary insulated dielectric material has been developed as a dielectric material with excellent heat resistance and a very large permittivity, in which the grain boundaries of a ceramic semiconductor are selectively insulated. Semiconductor porcelain grain boundary insulated capacitors (BL capacitors) using dielectric materials are available. As this type of dielectric material, for example, barium titanate (BaTiO 3 ) type is known, and a BL capacitor using this has a
A dielectric constant of about 100% has been achieved. However, this
For BL capacitors, the temperature change is approximately ±40% of the value at 20°C in the range of -30°C to +85°C.
There is a slight change in capacitance, and the tan δ is about 5~
Its usefulness as a capacitor was limited due to its relatively large size of 10%. That is, this temperature change in capacitance causes frequency characteristics to change depending on the temperature when used in a tuner or the like, for example. On the other hand, as the above-mentioned dielectric material, a material mainly composed of strontium titanate (SrTiO 3 ) is also known, and a BL capacitor using this material has also been proposed. This kind of capacitance change due to temperature change is as low as about ±15%, and tan δ is also 2 to 2.
Since it is as low as 5%, it can be said to be superior to BaTiO 3 series BL capacitors. However, this SrTiO 3 -based BL capacitor is significantly inferior in terms of insulation resistance and tanδ compared to mylar film capacitors, which are thought to compete in practical terms. Therefore, the present invention was proposed in view of the above circumstances, and has a small temperature change in capacitance.
Another object of the present invention is to provide a semiconductor porcelain grain boundary insulated capacitor that has excellent insulation resistance and tan δ and has a high dielectric constant. As a result of intensive research to achieve the above-mentioned objectives, the present inventors were able to improve the insulation resistance, tan δ, and temperature characteristics by adding a predetermined amount of ZrO 2 to SrTiO 3 , and also added a semiconductor accelerator. as
Nb 2 O 5 or Ta 2 O is suitable, and SiO 2 is suitable as a crystal growth promoter, and a capacitor whose dielectric material is a polycrystalline porcelain semiconductor grain-boundary insulated dielectric material obtained by sintering these is suitable. It was discovered that it exhibits excellent characteristics, and led to the completion of the present invention,
The main component is SrTiO 3 and contains 0.05 to 5% by weight of at least one of Nb 2 O 5 and Ta 2 O 5 , and SiO 2
The dielectric material is a semiconductor ceramic containing 0.02 to 1% by weight of ZrO 2 and 0.05 to 5% by weight of ZrO 2 and whose grain boundary layer is made into an insulator. In order to obtain a polycrystalline ceramic semiconductor grain boundary insulated dielectric material mainly composed of SrTiO 3 , this SrTiO 3
It is necessary to promote the conversion of SrTiO 3 into a semiconductor and grow ceramic semiconductor particles, but when the present inventors added various impurities to SrTiO 3 and fired it in a reducing atmosphere containing H 2 , Nb 2 O 5 and It was found that metal oxides such as Ta 2 O 5 particularly promote semiconductor formation. For example, add Nb 2 O 5 to SrTiO 3 and add 1% H 2
When firing was performed at 1400° C. for 2 hours in an atmosphere containing N 2 gas, the resistance value changed as shown in FIG. 1 depending on the amount added. That is, Nb 2 O 5 is replaced by SrTiO 3
When 0.05% by weight of SrTiO 3 was added, the resistance value suddenly decreased, and SrTiO 3 became significantly semiconducting.
In particular, when the amount of Nb 2 O 5 added exceeds 1% by weight, the effect of semiconductor formation is saturated and the resistance values are almost the same. This tendency was the same when Ta 2 O 5 was added instead of Nb 2 O 5 . However, Nb 2 O 5 and
If the amount of Ta 2 O 5 added exceeds 5% by weight, the sinterability becomes extremely poor, making it unsuitable for use in capacitors. Therefore, the amount of Nb 2 O 5 and Ta 2 O 5 added is preferably within the range of 0.05 to 5% by weight based on SrTiO 3 . The amount added above is 0.05% by weight
If it is less than that, SrTiO 3 cannot be sufficiently converted into a semiconductor. On the other hand, if the amount added exceeds 5% by weight, the sinterability will be extremely poor and it will be difficult to produce a dielectric. In order to insulate only the crystal grain boundaries of the semiconductor-converted particles in this manner, the crystal particles need to be large and uniform. If the crystal grains are too small, the inside of the crystal will be insulated during insulation, resulting in a decrease in dielectric constant. Therefore, it is necessary to further add a crystal growth promoter to SrTiO 3 , and it has been found that among these crystal growth promoters, SiO 2 particularly significantly promotes crystal growth. Figure 2 shows the relationship between the amount of SiO 2 and the crystal grain size when fired at 1400°C for 2 hours in a reducing atmosphere. From this figure 2, the particle size increases to 10 μm or more from the vicinity where the amount of SiO 2 is 0.02% by weight, and the BL
It is large enough to be used as a capacitor.
However, if it exceeds 1% by weight, the particle size becomes too large and there is a possibility that particles exceeding the thickness of a normal capacitor (approximately 0.4 mm) will appear, which is not preferable. As described above, a predetermined amount of Nb 2 O 5 or Ta 2 O 5 and SiO 2 are added to SrTiO 3 and primary firing is performed in a reducing atmosphere containing H 2 to form a B 2 O 3 -Bi 2 O 3 system. or PbO—
A BL capacitor with a high dielectric constant can be obtained by applying B 2 O 3 -Bi 2 O glass and performing secondary firing in air. However, with this alone, it is difficult to obtain a capacitor with a small capacitance temperature characteristic, a small tan δ, and a large insulation resistance. Therefore, in the present invention, ZrO 2 is further added. The addition of ZrO 2 improves the temperature characteristics and tan
δ, is effective in improving insulation resistance. The present inventors added 1% by weight of Nb 2 O 5 and 0.5% by weight of SiO 2 to SrTiO 3 and further added ZrO 2 to produce a BL capacitor, and then changed the amount of ZrO 2 added. When the changes in various properties were investigated, the results shown in Figure 3 were obtained. First, FIG. 3a shows the relationship between the amount of ZrO 2 added and tan δ. As can be seen from FIG. 3a, the value of tan δ is about 1.4 without ZrO 2 added, but when ZrO 2 is added at about 0.1% by weight, it becomes the smallest value of about 0.5. And beyond this,
The value of tanδ gradually increases as the amount of ZrO 2 added increases. Note that tanδ is the measurement frequency
Measurements were made using the bridge method under the conditions of 1kHz and measurement voltage of 1V. Further, FIG. 3c shows the relationship between the amount of ZrO 2 added and the insulation resistance. Note that this insulation resistance was measured after applying DC 100V for 1 minute. From FIG. 3c, it can be seen that the insulation resistance increases rapidly as the amount of ZrO 2 added increases, and at 1% by weight or more, the insulation resistance reaches 5×10 10 Ω·cm or more. Furthermore, FIG. 3d shows the amount of ZrO 2 added and the rate of change in capacitance with temperature. Here, the above temperature change rate is 20℃ based on the capacitance value at 20℃.
Measured in the range of ~80°C. From FIG. 3d, it can be seen that the rate of temperature change decreases as ZrO 2 is added, and at about 5% by weight, the rate of temperature change becomes extremely small, about -2%. As mentioned above, the addition of ZrO 2 was found to be extremely effective in improving the insulation resistance, tan δ, and capacitance of dielectrics containing SrTiO 3 as the main component, but if added in excess, , tan δ increased on the contrary, and as shown in FIG. 3b, it was also found that the dielectric constant decreased. Therefore, the amount of ZrO 2 added is preferably within the range of 0.05 to 5% by weight based on SrTiO 3 . By setting it within such a range, the temperature characteristics of insulation resistance, tan δ, and capacitance are improved, and the dielectric constant is also ensured. By the way, when producing the above-mentioned dielectric, it is necessary to pay attention to the purity properties of the raw materials. Generally, TiO 2 and SrCO 3 are used to make SrTiO 3 , but here there are two types of TiO 2 : anatase type and rutile type. The anatas type has better sinterability, but the rutile type has better dielectric constant. . In addition, both contain Fe 2 O 3 as an impurity, but care must be taken because this Fe 2 O 3 interferes with semiconductor formation and causes deterioration of insulation properties. SrCO 3 is mainly BaCO 3 and
Contains CaCO 3 as an impurity, which causes variations in the temperature characteristics of the dielectric constant. Also,
Depending on the manufacturing method, TiCO 3 also contains Na components, which has a significant effect on sinterability and insulation properties. However, extremely high purity of raw materials is not preferable in terms of sinterability. This is because trace amounts of impurities play an important role in sintering. When carrying out the present invention, raw materials should be prepared keeping this in mind. Next, specific examples of the present invention will be described. Example 1 A composition consisting of 0.8% by weight of Ta 2 O 5 , 0.4% by weight of SiO 2 and 1.0% by weight of ZrO 2 based on SrTiO 3 was mixed and dried using a normal ceramic manufacturing method, and PVA was added to the powder.
A binder such as (polyvinyl alcohol) was added thereto to form granules, which were then fired at 1450° C. for 2 hours in an atmosphere containing 1% H 2 in N 2 gas. Add to this 50% by weight of Bi 2 O 3 , 10% by weight of B 2 O 3 , and PbO40.
% by weight of glass powder was applied with a brush and baked in air at 1180℃ for 2 hours to bake the silver electrode.
I created a BL capacitor. The characteristics of this capacitor are: ε=28,500, tanδ=0.55%, insulation resistance=
2×10 10 Ω・cm, temperature coefficient of capacitance is 20℃~80
It was -7.0% at °C. Note that tanδ and capacitance are based on Automatic Capacitance Bridge (product name: YHP).
4270A), measurement frequency 1kHz, measurement voltage 1V
Measured under the following conditions. (The same applies hereinafter.) Example 2 PVA was added to a powder that was mixed and dried using ordinary ceramic manufacturing means with a composition consisting of 0.1% by weight of Ta 2 O 5 , 0.4% by weight of SiO 2 and 2.0% by weight of ZrO 2 based on SrTiO 3 .
A binder such as (polyvinyl alcohol) was added to form granules, which were then calcined at 1450° C. for 2 hours in an atmosphere containing 1% H 2 in N 2 gas. Hereinafter, a BL capacitor was created in the same manner as in Example 1, and the characteristics of this capacitor were ε
= 12,000, tanδ = 0.8%, insulation resistance = 6 × 10 10
Ω. cm, and the temperature coefficient was -3.0% from 20°C to 80°C. Example 3 A composition consisting of 1.0% by weight of TaO 5 , 0.6% by weight of SiO 2 and 3.0% by weight of ZrO 2 based on SrTiO 3 was mixed and dried using a normal ceramic manufacturing method, and PVA was added to the powder.
A binder such as (polyvinyl alcohol) was added to form granules, which were then calcined at 1450° C. for 2 hours in an atmosphere containing 1% H 2 in N 2 gas. Hereinafter, a BL capacitor was produced in the same manner as in Example 1 above. The characteristics of this capacitor are
ε=25,000, tanδ=0.8%, insulation resistance=3×10 10
The temperature coefficient was -4.0% from 20°C to 80°C. Example 4 A BL capacitor was prepared in the same manner as in Example 1 by adding Nb 2 O 5 , SiO 2 and ZrO 2 to SrTiO 3 in the proportions shown in Table 1. The characteristics of each capacitor were as shown in Table 2.
【表】【table】
【表】
上述の説明からも明らかなように、本発明を適
用することにより従来のBLコンデンサとは比較
にならないほど優れた特性のコンデンサを得るこ
とができる。
すなわち、ZrO2を添加することにより、得ら
れる多結晶性磁器半導体粒界絶縁型誘電体の絶縁
抵抗が大幅に向上し、静電容量の温度変化率も極
めて小さなものとなるとともに、tanδも低下す
る。さらに、Nb2O5やTa2O5を添加しSiO2を添加
することにより、半導体化や結晶成長が促進さ
れ、誘電率が大きなものとなる。
したがつて、この多結晶性磁器半導体粒界絶縁
型誘電体を誘電体として使用することによつて、
耐熱性に優れ、例えばチユーナに使用した際にフ
イルタの周波数特性が温度の変化によつて変動す
ることのないような半導体磁器粒界絶縁型コンデ
ンサを得ることができる。[Table] As is clear from the above description, by applying the present invention, it is possible to obtain a capacitor with characteristics far superior to that of conventional BL capacitors. In other words, by adding ZrO 2 , the insulation resistance of the resulting polycrystalline ceramic semiconductor grain-boundary insulated dielectric material is greatly improved, the temperature change rate of capacitance becomes extremely small, and tanδ is also reduced. do. Further, by adding Nb 2 O 5 or Ta 2 O 5 and adding SiO 2 , semiconductor formation and crystal growth are promoted, and the dielectric constant becomes large. Therefore, by using this polycrystalline ceramic semiconductor grain boundary insulated dielectric as a dielectric,
It is possible to obtain a semiconductor porcelain grain boundary insulated capacitor which has excellent heat resistance and whose filter frequency characteristics do not change due to changes in temperature when used in a tuner, for example.
第1図はNb2O5添加量と半導体化の関係を示す
グラフ、第2図はSiO2添加量と平均結晶粒径の
関係を示すグラフ、第3図はZrO2添加量と諸特
性の関係を示すグラフである。
Figure 1 is a graph showing the relationship between the amount of Nb 2 O 5 added and semiconductor formation, Figure 2 is a graph showing the relationship between the amount of SiO 2 added and average grain size, and Figure 3 is a graph showing the relationship between the amount of ZrO 2 added and various properties. It is a graph showing a relationship.
Claims (1)
なくとも一種を0.05〜5重量%含有するとともに
SiO2を0.02〜1重量%とZrO2を0.05〜5重量%含
有してなり粒界層が絶縁体化された半導体磁器を
誘電体とする半導体磁器粒界絶縁型コンデンサ。1 Mainly composed of SrTiO 3 and containing 0.05 to 5% by weight of at least one of Nb 2 O 5 and Ta 2 O 5
A semiconductor porcelain grain boundary insulated capacitor whose dielectric material is semiconductor porcelain containing 0.02 to 1% by weight of SiO 2 and 0.05 to 5% by weight of ZrO 2 and whose grain boundary layer is made into an insulator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50086904A JPS5210596A (en) | 1975-07-16 | 1975-07-16 | Insulated grain boundary type piezo-electric substance of polycrystall ine ceramic semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50086904A JPS5210596A (en) | 1975-07-16 | 1975-07-16 | Insulated grain boundary type piezo-electric substance of polycrystall ine ceramic semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5210596A JPS5210596A (en) | 1977-01-26 |
JPS6128208B2 true JPS6128208B2 (en) | 1986-06-28 |
Family
ID=13899813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50086904A Granted JPS5210596A (en) | 1975-07-16 | 1975-07-16 | Insulated grain boundary type piezo-electric substance of polycrystall ine ceramic semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5210596A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7802690A (en) * | 1978-03-13 | 1979-09-17 | Philips Nv | SINTER BODY OF SEMICONDUCTIVE CERAMIC MATERIAL BASED ON NIOOB OR TANTAL DOTATED STRONTIUM TITANATE, WITH ELECTRIC INSULATING LAYERS ON THE GRANULAR BORDERS. |
WO1984003171A1 (en) * | 1983-02-10 | 1984-08-16 | Matsushita Electric Ind Co Ltd | Composition of porcelain for voltage-dependent, non-linear resistor |
KR102183423B1 (en) * | 2014-12-08 | 2020-11-26 | 삼성전기주식회사 | Dielectric ceramic composition and multilayer ceramic capacitor comprising the same |
-
1975
- 1975-07-16 JP JP50086904A patent/JPS5210596A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5210596A (en) | 1977-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SE432097B (en) | SINTERED BODY OF SEMI-CONDUCTIVE CERAMIC MATERIAL, PROCEDURE FOR MANUFACTURING THE BODY AND ANY USE OF THE BODY | |
JP2004238251A (en) | Dielectric ceramic composition and ceramic electronic component | |
JP2978580B2 (en) | High dielectric constant dielectric porcelain composition | |
JPS6128209B2 (en) | ||
JPH0414442B2 (en) | ||
JPS6128208B2 (en) | ||
JPS6249977B2 (en) | ||
JPS5820133B2 (en) | Porcelain for semiconductor porcelain capacitors and manufacturing method thereof | |
JPS623569B2 (en) | ||
JPS6032344B2 (en) | Grain boundary insulated semiconductor porcelain capacitor material | |
JPH03109256A (en) | Dielectric porcelain composition | |
JPS6053408B2 (en) | Reduced semiconductor ceramic composition | |
JPS6249976B2 (en) | ||
JPS6249975B2 (en) | ||
JPH03285870A (en) | Grain boundary insulation type semiconductor porcelain composition and production thereof | |
JPH08319157A (en) | Barium titanate ceramic and its production | |
JPS6258128B2 (en) | ||
JP2900687B2 (en) | Semiconductor porcelain composition and method for producing the same | |
JP2734888B2 (en) | Method for producing semiconductor porcelain composition | |
JPS584448B2 (en) | Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body | |
JPS6129531B2 (en) | ||
JPH0815005B2 (en) | Dielectric porcelain composition | |
JPS6029211B2 (en) | Manufacturing method of semiconductor ceramic capacitor | |
JPH05345663A (en) | Semiconductor ceramic and its production | |
JPS633442B2 (en) |