JPH08319157A - Barium titanate ceramic and its production - Google Patents

Barium titanate ceramic and its production

Info

Publication number
JPH08319157A
JPH08319157A JP7149600A JP14960095A JPH08319157A JP H08319157 A JPH08319157 A JP H08319157A JP 7149600 A JP7149600 A JP 7149600A JP 14960095 A JP14960095 A JP 14960095A JP H08319157 A JPH08319157 A JP H08319157A
Authority
JP
Japan
Prior art keywords
barium titanate
mol
firing
resistivity
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7149600A
Other languages
Japanese (ja)
Inventor
Makoto Kuwabara
誠 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP7149600A priority Critical patent/JPH08319157A/en
Publication of JPH08319157A publication Critical patent/JPH08319157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE: To obtain a barium titanate ceramic which is suitable for a high- function varistor, high-capacity condenser or the like. CONSTITUTION: This barium titanate ceramic has an atomic ratio (x) of >=0.5, a basic composition of (Ba1-x Srx )TiO3 , in addition, contains 0.1-0.3 mole %, based on Ba, of at least one selected from La, Sb and Y and 0.025-0.1 mole % of Mn, shows a resistivity of >=10<9> Ωcm and a current-voltage non-linear coefficient α(=dlnI/dlnV) of >=7. The ceramic is fired in an air atmosphere or an oxidative atmosphere at 1350-1500 deg.C in one stage. On the firing, 0.2-2.0 mole % of TiO2 or SiO2 may be added as a sintering aid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、相対誘電率及び電流電
圧非直線指数が高いバリスタ,高容量コンデンサ等とし
て好適なチタン酸系セラミックス及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanate-based ceramics suitable for a varistor having a high relative dielectric constant and a high current-voltage non-linearity index, a high-capacity capacitor and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】ドナーを添加したチタン酸バリウムは、
キューリ点以上の温度で異常な正の抵抗温度係数(PT
CR特性)を示す。Heywangは、J.Am.Ce
ram.Soc.,47,484−490(1964)
で、アクセプター準位の存在によって二重ショットキー
障壁層が粒界に形成され、そのポテンシャル障壁の高さ
がキューリ点以上で誘電率の現象に伴って急上昇すると
粒界障壁層モデルでPTCR特性を説明している。チタ
ン酸バリウムは、高誘電率又はバリスタ特性を活用し、
粒界障壁型コンデンサ材料,バリスタ材料等として使用
されている。従来の製法では、二段階の焼成プロセスに
よってチタン酸バリウムを製造している。すなわち、チ
タン酸バリウムの結晶粒内の抵抗率を十分に下げるため
先ず還元雰囲気で焼成し、次いで材料の表面にPb,B
i等の低融点酸化物を塗布した後、加熱する。加熱によ
り低融点酸化物が材料表面に拡散し、粒界のみが選択的
に絶縁体化される。
2. Description of the Related Art Barium titanate to which a donor is added is
Abnormal positive temperature coefficient of resistance (PT
(CR characteristic) is shown. Heywang, J. Am. Ce
ram. Soc. , 47, 484-490 (1964)
Therefore, if a double Schottky barrier layer is formed at the grain boundary due to the presence of the acceptor level, and the potential barrier height rises sharply above the Curie point due to the phenomenon of the dielectric constant, the PTCR characteristics can be obtained by the grain boundary barrier layer model. Explaining. Barium titanate utilizes high dielectric constant or varistor characteristics,
It is used as a material for grain boundary barrier capacitors and varistor materials. In the conventional manufacturing method, barium titanate is manufactured by a two-step firing process. That is, in order to sufficiently lower the resistivity in the crystal grains of barium titanate, first firing in a reducing atmosphere and then Pb, B on the surface of the material.
After the low melting point oxide such as i is applied, it is heated. By heating, the low melting point oxide diffuses to the surface of the material, and only the grain boundaries are selectively made into an insulator.

【0003】[0003]

【発明が解決しようとする課題】二段階焼成による製造
法では、製造プロセスが煩雑になり、得られたチタン酸
バリウムの製造コストを上昇させる。しかも、一段目の
還元焼成時、セラミックス粒子が異常に局部的に成長す
ることがある。異常な粒成長は、後続する絶縁化焼成工
程で粒界部の均一な再絶縁化を困難にする。その結果、
不均一な組織に起因して特性が劣化し、歩留りが低下す
る。また、還元焼成は、大気から遮断された還元雰囲気
を使用するため、複雑な操作及び設備を必要とする。因
みに、同様なPTCR特性を呈するチタン酸ストロンチ
ウム材料では、チタン酸バリウム系材料よりも更に強力
な還元雰囲気で焼成する必要がある。このような条件下
の還元焼成では、還元ガスの使用に伴った危険性及びコ
スト高等の欠点がより顕著になる。本発明は、このよう
な問題を解消すべく案出されたものであり、チタン酸バ
リウムの成分設計を改良することにより、大気雰囲気中
における一回の焼成でチタン酸バリウム系バリスタを製
造することを可能とし、室温での抵抗率が109 Ωcm
以上で、104 以上の高い相対誘電率及び7以上の電流
電圧非直線指数を呈し、高容量コンデンサ特性及びバリ
スタ特性を併せ持つチタン酸バリウム系セラミックスを
得ることを目的とする。
In the production method by two-step firing, the production process becomes complicated and the production cost of the obtained barium titanate increases. Moreover, during the first-stage reduction firing, ceramic particles may grow abnormally locally. The abnormal grain growth makes it difficult to uniformly re-insulate the grain boundary portion in the subsequent insulation firing process. as a result,
The characteristics deteriorate due to the non-uniform structure, and the yield decreases. Further, the reduction firing uses a reducing atmosphere shielded from the atmosphere, and thus requires complicated operations and equipment. Incidentally, a strontium titanate material exhibiting similar PTCR characteristics needs to be fired in a reducing atmosphere which is stronger than the barium titanate-based material. In the reduction firing under such conditions, the drawbacks such as the danger and the high cost associated with the use of the reducing gas become more remarkable. The present invention has been devised to solve such a problem, and to improve the component design of barium titanate to produce a barium titanate-based varistor by a single firing in an air atmosphere. And the resistivity at room temperature is 10 9 Ωcm
Thus, it is an object of the present invention to obtain a barium titanate-based ceramic exhibiting a high relative dielectric constant of 10 4 or more and a current-voltage nonlinear index of 7 or more, and having both high capacity capacitor characteristics and varistor characteristics.

【0004】[0004]

【課題を解決するための手段】本発明のチタン酸バリウ
ム系セラミックスは、その目的を達成するため、原子比
xが0.5〜0.8で(Ba1-x Srx )TiO3 の基
本組成を持ち、更にBaに対する比率で0.1〜0.3
モル%のLa,Sb及びYから選ばれた1種又は2種以
上と0.025〜0.1モル%のMnを含み、大気雰囲
気又は酸化性雰囲気中で焼成されていることを特徴とす
る。このチタン酸バリウム系セラミックスは、室温での
抵抗率が109 Ωcm以上,相対誘電率が104 以上及
び電流電圧非直線指数α(=d ln I/d ln V)が7
以上である。本発明のチタン酸バリウム系セラミックス
は、原子比xが0.5〜0.8で(Ba1-x Srx )T
iO3 の基本組成となるようにBaTiO3 粉体及びS
rTiO3 粉体を混合し、Baに対する比率で0.1〜
0.3モル%のLa,Sb及びYから選ばれた1種又は
2種以上及び0.025〜0.1モル%のMnを添加し
た混合粉末を十分混合した後、製品形状に成形し、大気
雰囲気中1350〜1500℃の温度で1〜7時間焼成
することにより製造される。混合粉末には、更に0.2
〜2.0モル%のTiO2 又はSiO2 を焼結助剤とし
て添加することが好ましい。
In order to achieve the object, the barium titanate-based ceramics of the present invention has an atomic ratio x of 0.5 to 0.8 and is a basic material of (Ba 1-x Sr x ) TiO 3 . It has a composition, and the ratio to Ba is 0.1 to 0.3.
One or more selected from La, Sb and Y of mol% and 0.025 to 0.1 mol% of Mn are contained, and the composition is baked in an air atmosphere or an oxidizing atmosphere. . The barium titanate-based ceramics has a resistivity at room temperature of 10 9 Ωcm or more, a relative dielectric constant of 10 4 or more, and a current-voltage nonlinear index α (= d ln I / d ln V) of 7
That is all. The barium titanate-based ceramics of the present invention have an atomic ratio x of 0.5 to 0.8 and have a composition of (Ba 1-x Sr x ) T.
BaTiO 3 powder and S so that the basic composition of io 3
The rTiO 3 powder is mixed, and the ratio to Ba is 0.1 to 0.1.
After thoroughly mixing one or more selected from 0.3 mol% of La, Sb and Y and 0.025 to 0.1 mol% of Mn, the mixed powder is molded into a product shape, It is manufactured by firing at a temperature of 1350 to 1500 ° C. for 1 to 7 hours in the air atmosphere. Add 0.2 to the mixed powder.
It is preferable to add ˜2.0 mol% of TiO 2 or SiO 2 as a sintering aid.

【0005】[0005]

【作用】本発明のチタン酸バリウム系セラミックスで
は、Srの添加によってキューリ点を−80℃以下に下
げ、更に適当量のLa及びMnを添加することによって
室温での抵抗率及びPTCR特性を改善している。Mn
添加による抵抗率の上昇は粒界抵抗率の上昇によるもの
であり、Mnが粒界での界面準位の形成に直接関与して
いるものと推察される。具体的には、Mn無添加から
0.075モル%とMn含有量が増加するに従って、粒
内抵抗が0.3Ωcmから6Ωcmへと変化し、粒界抵
抗成分を試料厚さで除した粒界抵抗率が約20Ωcmか
ら1680Ωcmへと変化する。同様に、Mn含有量が
0.075モル%以上のセラミックスでは、1010Ωc
m以上の室温抵抗率及び約8桁のPTCR特性を呈し
た。Mn添加によるこのような作用は、本発明者による
研究の結果、Baに対する比率で0.025〜0.1モ
ル%のMnを添加したとき顕著になることが判った。
In the barium titanate-based ceramics of the present invention, the Curie point is lowered to −80 ° C. or lower by adding Sr, and the appropriate amounts of La and Mn are added to improve the resistivity and PTCR characteristics at room temperature. ing. Mn
The increase in resistivity due to the addition is due to the increase in grain boundary resistivity, and it is speculated that Mn is directly involved in the formation of the interface state at the grain boundary. Specifically, the intragranular resistance changed from 0.3 Ωcm to 6 Ωcm as the Mn content increased to 0.075 mol% from the addition of no Mn, and the grain boundary resistance component was divided by the sample thickness. The resistivity changes from about 20 Ωcm to 1680 Ωcm. Similarly, for ceramics with a Mn content of 0.075 mol% or more, 10 10 Ωc
It exhibited a room temperature resistivity of m or more and a PTCR characteristic of about 8 digits. As a result of research conducted by the present inventors, it has been found that such an action due to the addition of Mn becomes remarkable when Mn is added in an amount of 0.025 to 0.1 mol% with respect to Ba.

【0006】(Ba1-x Srx )TiO3 においてx<
0.5又はx>0.8の組成では、キューリ点が十分に
低温領域まで低下しないため、PTCR特性における抵
抗率の最大温度が室温以上の温度になり、室温において
十分に高い抵抗率をもつ材料の製造が困難である。高い
相対誘電率及び良好なバリスタ特性を得るためには、セ
ラミックスの粒界に十分発達した障壁層の形成が不可欠
であるが、室温で十分に高い抵抗率(具体的には109
Ωcm以上)をもつ材料を得ることは、この場合必要十
分条件である。半導体化元素として使用するLa,Sb
及びYについては、0.1〜0.3モル%の濃度範囲が
最適である。この濃度範囲未満では、十分に低い粒内抵
抗率をもつセラミックス材料が得られない。逆にこの濃
度範囲を超える高濃度では、これら元素の添加により粒
成長が著しく抑えられ、良好な半導性をもつ材料の製造
が困難である。ただし、Mnとの併用添加から半導体化
元素の一部の効果が減殺されるため、或いはまた焼結助
剤の添加量を増量した場合、焼成過程で形成される液相
に半導体化元素やMnが溶解するため、半導体化元素及
びMnの許容される添加量を最大1.5倍程度まで高濃
度領域側に広げることも可能である。
In (Ba 1-x Sr x ) TiO 3 , x <
With a composition of 0.5 or x> 0.8, the Curie point does not sufficiently lower to the low temperature region, and therefore the maximum temperature of the resistivity in the PTCR characteristic becomes a temperature of room temperature or higher, and the resistivity is sufficiently high at room temperature. The material is difficult to manufacture. In order to obtain a high relative dielectric constant and good varistor characteristics, it is essential to form a well-developed barrier layer at the grain boundaries of ceramics, but a sufficiently high resistivity (specifically 10 9
It is necessary and sufficient condition in this case to obtain a material having Ωcm or more). La and Sb used as semiconductor elements
For Y and Y, the concentration range of 0.1 to 0.3 mol% is optimum. Below this concentration range, a ceramic material having a sufficiently low intragranular resistivity cannot be obtained. On the contrary, at a high concentration exceeding this concentration range, grain growth is remarkably suppressed by the addition of these elements, and it is difficult to manufacture a material having good semiconductivity. However, because some effects of the semiconducting element are diminished by the combined addition with Mn, or when the addition amount of the sintering aid is increased, the semiconducting element or Mn is added to the liquid phase formed in the firing process. Since it dissolves, it is possible to extend the allowable addition amount of the semiconducting element and Mn to the high concentration region side up to about 1.5 times at maximum.

【0007】各成分を配合した混合粉末は、湿式ボール
ミル等の混練機で十分に混合した後、目標形状に成形又
は圧粉成形される。得られた粉末成形体は、1350〜
1500℃の温度で1〜7時間焼成される。このとき、
大気雰囲気又は酸化性雰囲気を使用できるため、製造工
程が非常に簡略化される。また、大気雰囲気又は酸化性
雰囲気中での焼成によってMnが優先的に酸化され、常
温抵抗率,相対誘電率及び電流電圧非直線指数の改善に
有効なMn系酸化物が表層部の結晶粒界に形成される。
焼成条件は、PTCR特性を改善する上から、焼成温度
1350〜1500℃及び焼成時間1〜7時間が好まし
い。焼成温度が1350℃に達しないと焼結が不十分に
なり、材料に要求される93%以上の焼結密度をもつ材
料を得ることが困難になる。逆に1500℃を超える焼
成温度では、消費エネルギーが増大し製造コストの面か
ら好ましくないばかりか、粒子が成長しすぎて良好な特
性をもつ材料を得ることが困難になる。また、1時間に
満たない焼成時間では、焼成反応が十分に進行せず、焼
成反応が十分に進行せず、緻密で良好な半導性を示す材
料を得ることが困難になる。逆に7時間を超える長時間
焼成では、過度の粒成長や成分の蒸発等により、多相の
生成反応を引き起こすことから好ましくない。また、焼
成時の昇温速度及び降温速度は、バインダの脱脂及び焼
結後の粒界の選択的酸化のため、10℃/分以下とする
ことが好ましい。
The mixed powder containing the respective components is thoroughly mixed by a kneading machine such as a wet ball mill and then molded or compacted into a target shape. The obtained powder compact is 1350
It is fired at a temperature of 1500 ° C. for 1 to 7 hours. At this time,
Since an air atmosphere or an oxidizing atmosphere can be used, the manufacturing process is greatly simplified. In addition, Mn is preferentially oxidized by firing in an air atmosphere or an oxidizing atmosphere, and Mn-based oxide effective for improving room temperature resistivity, relative dielectric constant and current-voltage nonlinear index is a grain boundary of the surface layer portion. Is formed.
The firing conditions are preferably a firing temperature of 1350 to 1500 ° C. and a firing time of 1 to 7 hours from the viewpoint of improving the PTCR characteristics. If the firing temperature does not reach 1350 ° C., the sintering becomes insufficient, and it becomes difficult to obtain a material having a required sintering density of 93% or more. On the other hand, if the firing temperature is higher than 1500 ° C., the energy consumption increases, which is not preferable from the viewpoint of manufacturing cost, and the particles grow too much to make it difficult to obtain a material having good characteristics. Further, if the firing time is less than 1 hour, the firing reaction does not proceed sufficiently, the firing reaction does not proceed sufficiently, and it becomes difficult to obtain a material that is dense and exhibits good semiconductivity. On the contrary, long-time firing for more than 7 hours is not preferable because it causes a multi-phase formation reaction due to excessive grain growth and component evaporation. Further, the rate of temperature increase and the rate of temperature decrease during firing are preferably 10 ° C./min or less in order to deoxidize the binder and selectively oxidize the grain boundaries after sintering.

【0008】[0008]

【実施例】純度99.98%のBaTiO3 粉体及びS
rTiO3 粉体を主原料とし、半導体化元素として0.
30モル%のLa,アクセプター元素として0〜0.0
75モル%のMn及び焼結助剤として0.5モル%のT
iO2 を用い、キューリ点が−65℃でBa0.5 Sr
0.5 TiO3 の基本組成をもつ混合粉体を得た。この混
合粉体を、湿式ボールミルによりエタノール中でZrO
2 を用いて24時間混練・擂潰した。乾燥後、44μm
以下に整粒した粉体を60MPaの軸圧力でペレット状
に成形し、大気中1450℃,5時間,昇温速度5℃/
分,降温速度5℃/分の条件で焼結した。得られた焼結
体から試験片を切り出し、抵抗率及び見掛け誘電率を調
査した。抵抗率は、デジタルエレクトロメータ(TR8
652)を用いた直流2端子法で測定した。電流−電圧
特性は、プログラマブルpAメータ(HP−4140
B)を用いて室温で測定した。見掛け誘電率は、インピ
ーダンスアナライザ(YHP−4192A)により周波
数を変えて測定した。
Example: BaTiO 3 powder having a purity of 99.98% and S
Using rTiO 3 powder as the main raw material and a semiconducting element of 0.
30 mol% of La, 0 to 0.0 as an acceptor element
75 mol% Mn and 0.5 mol% T as a sintering aid
Ba 0.5 Sr at a Curie point of -65 ° C using iO 2.
A mixed powder having a basic composition of 0.5 TiO 3 was obtained. This mixed powder was subjected to ZrO 2 in ethanol by a wet ball mill.
2 was used for kneading and crushing for 24 hours. 44 μm after drying
The powder sized below was molded into pellets at an axial pressure of 60 MPa and heated in the atmosphere at 1450 ° C. for 5 hours at a heating rate of 5 ° C. /
Sintering was performed for 5 minutes at a temperature decrease rate of 5 ° C / minute. A test piece was cut out from the obtained sintered body, and the resistivity and the apparent dielectric constant were investigated. The resistivity is measured by a digital electrometer (TR8
It was measured by a direct current two-terminal method using 652). The current-voltage characteristic is a programmable pA meter (HP-4140).
It was measured at room temperature using B). The apparent dielectric constant was measured by changing the frequency with an impedance analyzer (YHP-4192A).

【0009】測定結果を温度との関係で整理したとこ
ろ、図1に示すように、−100℃付近の温度では全て
半導体特性を呈し、室温にかけて106 〜107 倍のP
TCR効果を呈した。また、Mnを含む試験片は、何れ
も室温で109 Ωcm以上の抵抗率をもっており、20
000以上の大きな誘電率を示す材料であることが判っ
た。また、0.025モル%のMnを添加したチタン酸
バリウム焼結体Ba0.4 Sr0.6 TiO3 について、室
温での電流−電圧特性を調査したところ、図2に示す関
係が得られた。この電流電圧特性において、α=δ(ln
I) /δ(ln V) で表される非直線指数αは9.5であ
った。Mn含有量が異なる他の試験片でも、7以上の高
い電流電圧非直線性指数αを呈した。このことから、本
発明に従ったチタン酸バリウム焼結体は、高電圧領域で
顕著なバリスタ特性を呈する材料であることが確認され
る。
When the measurement results are arranged in relation to the temperature, as shown in FIG. 1, all the semiconductor characteristics are exhibited at a temperature near -100 ° C., and P is 10 6 to 10 7 times as high as room temperature.
It exhibited a TCR effect. Further, all the test pieces containing Mn have a resistivity of 10 9 Ωcm or more at room temperature,
It was found that the material has a large dielectric constant of 000 or more. Further, the barium titanate sintered body Ba 0.4 Sr 0.6 TiO 3 containing 0.025 mol% of Mn was examined for current-voltage characteristics at room temperature, and the relationship shown in FIG. 2 was obtained. In this current-voltage characteristic, α = δ (ln
The non-linear index α represented by I) / δ (ln V) was 9.5. Other test pieces having different Mn contents also exhibited a high current-voltage nonlinearity index α of 7 or more. From this, it is confirmed that the barium titanate sintered body according to the present invention is a material exhibiting remarkable varistor characteristics in a high voltage region.

【0010】更に、0.075モル%のMnを添加した
チタン酸バリウム焼結体(Ba0.5Sr0.5 )TiO3
について、大電流パルス発生装置によりサージ吸収特性
を調査した。サージ吸収特性は、印加された電圧の低下
の度合いとその形状を示し、過電流保護素子として用い
られるパワーレベル及び機能特性の応答速度等の特性評
価に使用される。調査結果の印加電圧波形を図3(a)
に、バリスタ通過後の電圧は径を図3(b)に示す。図
3から、本発明に従った高容量型バリスタでは、電圧印
加時でのサージが十分に吸収されており、バリスタ材料
として理想的な機能を備えていることが判る。これに対
し、通常のZnO径バリスタでは、図3(b)に示すよ
うに電圧印加時に大きな電圧ピーク(オーバーシュー
ト)が現れ、電子機器を破壊する原因となっている。
Further, a barium titanate sintered body (Ba 0.5 Sr 0.5 ) TiO 3 containing 0.075 mol% of Mn is added.
The surge absorption characteristics were investigated using a high-current pulse generator. The surge absorption characteristic indicates the degree of decrease in applied voltage and its shape, and is used for characteristic evaluation such as power level used as an overcurrent protection element and response speed of functional characteristics. The applied voltage waveform of the investigation result is shown in Fig. 3 (a).
The diameter of the voltage after passing the varistor is shown in FIG. From FIG. 3, it can be seen that the high-capacity varistor according to the present invention sufficiently absorbs the surge when a voltage is applied and has an ideal function as a varistor material. On the other hand, in a normal ZnO diameter varistor, a large voltage peak (overshoot) appears when a voltage is applied, as shown in FIG.

【0011】[0011]

【発明の効果】以上に説明したように、本発明のチタン
酸バリウム系セラミックスは、Sr添加によるキューリ
点を十分に下げた (Ba1-x Srx)TiO3 系において
La,Sb,Y等の半導体化元素と共にMnを添加する
ことにより、室温での抵抗率を109 Ωcm以上に、相
対誘電率を104 以上に、電流電圧非直線指数αを7以
上に改善している。また、大気雰囲気或いは酸化性雰囲
気中での1回の焼成によって製造されるため、還元焼成
を伴う従来の二段階焼成法に比較して、製造コストも節
減される。このようにして、本発明によるとき、高容量
コンデンサ特性及びバリスタ特性を併せ持つ高機能セラ
ミックス材料が安価に得られる。
As described above, the barium titanate-based ceramics of the present invention have a sufficiently reduced Curie point due to the addition of Sr (Ba 1-x Sr x ) TiO 3 -based La, Sb, Y, etc. By adding Mn together with the semiconducting element, the resistivity at room temperature is improved to 10 9 Ωcm or more, the relative permittivity to 10 4 or more, and the current-voltage nonlinear index α to 7 or more. In addition, since it is manufactured by one-time firing in an air atmosphere or an oxidizing atmosphere, the manufacturing cost is reduced as compared with the conventional two-step firing method involving reduction firing. In this way, according to the present invention, a high-performance ceramic material having both high capacity capacitor characteristics and varistor characteristics can be obtained at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 誘電率及び抵抗率の温度依存性に及ぼすMn
含有量の影響
FIG. 1 Mn affecting temperature dependence of permittivity and resistivity
Effect of content

【図2】 0.025モル%のMnを添加したBa0.4
Sr0.6 TiO3 セラミックスの室温電流電圧特性
FIG. 2 Ba 0.4 with 0.025 mol% Mn added
Room temperature current-voltage characteristics of Sr 0.6 TiO 3 ceramics

【図3】 本発明に従って得られたチタン酸バリウムセ
ラミックスのサージ吸収特性を示す印加電圧波形(a)
及びバリスタ通過後の電圧波形(b)
FIG. 3 is an applied voltage waveform (a) showing surge absorption characteristics of barium titanate ceramics obtained according to the present invention.
And voltage waveform after passing the varistor (b)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原子比xが0.5〜0.8で(Ba1-x
Srx )TiO3 の基本組成を持ち、更にBaに対する
比率で0.1〜0.3モル%のLa,Sb及びYから選
ばれた1種又は2種以上と0.025〜0.1モル%の
Mnを含み、大気雰囲気又は酸化性雰囲気中で焼成され
たチタン酸バリウム系セラミックス。
1. An atomic ratio x of 0.5 to 0.8 (Ba 1-x
Sr x ) TiO 3 having a basic composition, and one or more selected from La, Sb and Y in a proportion of 0.1 to 0.3 mol% relative to Ba and 0.025 to 0.1 mol. % Mn, and sintered in an air atmosphere or an oxidizing atmosphere.
【請求項2】 室温での抵抗率が109 Ωcm以上,相
対誘電率が104 以上及び電流電圧非直線指数α[=δ
(ln I) /δ(ln V)]が7以上である請求項1記載の
チタン酸バリウム系セラミックス。
2. The resistivity at room temperature is 10 9 Ωcm or more, the relative permittivity is 10 4 or more, and the current-voltage nonlinear index α [= δ.
The barium titanate-based ceramics according to claim 1, wherein (ln I) / δ (ln V)] is 7 or more.
【請求項3】 原子比xが0.5〜0.8で(Ba1-x
Srx )TiO3 の基本組成となるようにBaTiO3
粉体及びSrTiO3 粉体を混合し、Baに対する比率
で0.1〜0.3モル%のLa,Sb及びYから選ばれ
た1種又は2種以上及び0.025〜0.1モル%のM
nを添加した混合粉末を十分混合した後、製品形状に成
形し、大気雰囲気中又は酸化性雰囲気中で1350〜1
500℃の温度で1〜7時間焼成することを特徴とする
チタン酸バリウム系セラミックスの製造方法。
3. An atomic ratio x of 0.5 to 0.8 (Ba 1-x
Sr x ) TiO 3 so that the basic composition of BaTiO 3
The powder and the SrTiO 3 powder are mixed, and one or more kinds selected from La, Sb, and Y in a proportion of 0.1 to 0.3 mol% with respect to Ba and 0.025 to 0.1 mol%. M
After thoroughly mixing the mixed powder with n added, it is molded into a product shape, and 1350 to 1 in an air atmosphere or an oxidizing atmosphere.
A method for producing barium titanate-based ceramics, which comprises firing at a temperature of 500 ° C. for 1 to 7 hours.
【請求項4】 請求項3記載の混合粉末に更に0.2〜
2.0モル%のTiO2 又はSiO2 を焼結助剤として
添加するチタン酸バリウム系セラミックスの製造方法。
4. The mixed powder according to claim 3, further comprising 0.2 to
A method for producing barium titanate-based ceramics, wherein 2.0 mol% of TiO 2 or SiO 2 is added as a sintering aid.
JP7149600A 1995-05-24 1995-05-24 Barium titanate ceramic and its production Pending JPH08319157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7149600A JPH08319157A (en) 1995-05-24 1995-05-24 Barium titanate ceramic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7149600A JPH08319157A (en) 1995-05-24 1995-05-24 Barium titanate ceramic and its production

Publications (1)

Publication Number Publication Date
JPH08319157A true JPH08319157A (en) 1996-12-03

Family

ID=15478755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7149600A Pending JPH08319157A (en) 1995-05-24 1995-05-24 Barium titanate ceramic and its production

Country Status (1)

Country Link
JP (1) JPH08319157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191371A (en) * 1998-12-25 2000-07-11 Murata Mfg Co Ltd Nonlinear dielectric porcelain, capacitor for pulse generation, high pressure vapor discharge lamp circuit and high pressure vapor discharge lamp
WO2013039045A1 (en) * 2011-09-12 2013-03-21 株式会社村田製作所 Laminated ceramic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191371A (en) * 1998-12-25 2000-07-11 Murata Mfg Co Ltd Nonlinear dielectric porcelain, capacitor for pulse generation, high pressure vapor discharge lamp circuit and high pressure vapor discharge lamp
WO2013039045A1 (en) * 2011-09-12 2013-03-21 株式会社村田製作所 Laminated ceramic capacitor
US9691549B2 (en) 2011-09-12 2017-06-27 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor having rare-earth element in crystal grains of dielectric ceramic layers

Similar Documents

Publication Publication Date Title
JPH0524646B2 (en)
SE432097B (en) SINTERED BODY OF SEMI-CONDUCTIVE CERAMIC MATERIAL, PROCEDURE FOR MANUFACTURING THE BODY AND ANY USE OF THE BODY
JPH08319157A (en) Barium titanate ceramic and its production
JPH0236041B2 (en)
JPS6257241B2 (en)
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JPS606535B2 (en) porcelain composition
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JP3178083B2 (en) Barium titanate-based ceramic semiconductor and method for producing the same
JPS6128209B2 (en)
JPS5948521B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JP2540048B2 (en) Voltage nonlinear resistor porcelain composition
JP2638599B2 (en) Voltage non-linear resistor ceramic composition
JPS6128208B2 (en)
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
KR910006015B1 (en) Semiconductive sintered materials of batio3 and the making process
JP2679065B2 (en) Semiconductor porcelain material
JPH02106903A (en) High-temperature ptc thermistor and manufacture thereof
JP2576605B2 (en) Method for producing porcelain composition
JP2984115B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain capacitor
JP2573466B2 (en) Voltage non-linear resistor ceramic composition
JP2934388B2 (en) Manufacturing method of semiconductor porcelain
JPS63301410A (en) Insulated grain boundary type semiconductor ceramic composition
JPS61271802A (en) Voltage non-linear resistor ceramic composition
JPH03285870A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104