JPS6364888B2 - - Google Patents
Info
- Publication number
- JPS6364888B2 JPS6364888B2 JP16914182A JP16914182A JPS6364888B2 JP S6364888 B2 JPS6364888 B2 JP S6364888B2 JP 16914182 A JP16914182 A JP 16914182A JP 16914182 A JP16914182 A JP 16914182A JP S6364888 B2 JPS6364888 B2 JP S6364888B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- breakdown voltage
- capacitance
- bdv
- semiconductor ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 17
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 11
- 239000003990 capacitor Substances 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 5
- 230000015556 catabolic process Effects 0.000 description 15
- 239000003985 ceramic capacitor Substances 0.000 description 9
- 238000010405 reoxidation reaction Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052573 porcelain Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 229910021523 barium zirconate Inorganic materials 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
- Insulating Bodies (AREA)
Description
本発明は還元再酸化型半導体磁器コンデンサ用
組成物に関する。
従来、還元再酸化型半導体磁器コンデンサは、
BaTiO3系磁器に希土類元素あるいはNbやTa等
を加え、酸化性あるいは中性若しくは還元性雰囲
気中で還元熱処理して半導体化し、これを再酸化
処理して半導体磁器表面を絶縁体化し、その表面
に銀電極を形成したものが実用に供されている。
しかしながら、この種のコンデンサは静電容量を
大きくすれば破壊電圧が小さくなると共に誘電体
損失が大きくなり、逆に破壊電圧を向上させると
静電容量が小さくなるという欠点があつた。この
欠点を改善することを目的として、特公昭56−
40965号公報にて、BaTiO3を基体とし、これに
Bi2O31〜4重量%、ZrO21.6〜5重量%、Mn0.01
〜0.10重量%添加して成り、かつZrO2の添加量
(y)とBi2O3の添加量(x)との間に、x−1
(重量%)≦y≦x+3(重量%)の関係があり、
Mnの添加量(z)とBi2O3の添加量(x)との
間に重量比でZ/X≦20%の関係があることを特
徴とする還元再酸化型半導体磁器組成物を使用す
ることが提案された。この組成物を用いた還元再
酸化型半導体磁器コンデンサは、小型大容量で誘
電体損失が小さく、破壊電圧が大きいなど優れた
特性を示すものの、破壊電圧のバラツキが大き
く、高周波(1MHz付近)での誘電体損失が大き
いことから、用途が限られるという問題があつ
た。
本発明は、このような問題に鑑みてなされたも
のであつて、破壊電圧が高くてバラツキも少な
く、また高周波での誘電体損失が少ない小型大容
量の還元再酸化型半導体磁器コンデンサを得るこ
とができる組成物を提供することを目的とするも
のである。
すなわち、本発明は、(Ba1-lYl)TinO3(但し、
l、mは各成分のモル分率で、0.002≦l≦
0.006、1.02≦m≦1.08)85〜95モル%と、(Ba1-o
Sro)ZrO3(但し、0.1≦n≦0.3)5〜15モル%を
基体とし、これにBi2O31〜4重量%、Mn0.03〜
0.1重量%含有させてなる還元再酸化型半導体磁
器コンデンサ用組成物、をその要旨とするもので
ある。
本発明において、組成範囲を前記の如く限定し
たのは次の理由による。
すなわち、Yのモル分率lが0.002未満では高
周波域での誘電体損失が増大し、0.006を超える
と破壊電圧のバラツキが大きくなり、同一ロツト
での最小破壊電圧(BDVnio)が低下するのでl
を0.002〜0.006の範囲とした。また、Tiのモル分
率(m)を1.03〜1.08としたのは、mがこの範囲
外では静電容量および/または破壊電圧が低下す
るからである。(Ba1-oSro)ZrO3におけるSrのモ
ル分率(n)を0.1〜0.3としたのは、nが0.1未満
ではBDVnioが充分に向上せず、0.3を超えると静
電容量が低下するからである。
また、Bi2O3の添加量を1〜4重量%としたの
は、Bi2O3が1重量%未満では磁器が還元されに
くく、再酸化温度で磁器全体が容易に再酸化され
るため静電容量が小さくなり、4重量%を超える
と、静電容量が小さくなるからである。さらに、
Mnの添加量を0.03〜0.1重量%としたのは、Mn
が0.03%未満では静電容量と絶縁抵抗が共に小さ
くなり、破壊電圧も小さくなり、0.1重量%を超
えると静電容量が小さくなるからである。
以下、本発明を実施例に従つて説明する。
実施例 1
BaCO3、Y2O3およびTiO2を原料とし、これら
を(Ba0.998Y0.002)Ti1.03O3の組成比になるよう
に秤量、混合する一方、BaCO3、SrCO3および
ZrO2を(Ba0.90Sr0.10)ZrO3の組成比になるよう
に秤量、混合し、両混合物をそれぞれ1150℃で仮
焼する。生成した(Ba0.998Y0.002)Ti1.03O3、
(Ba0.90Sr0.10)ZrO3、Bi2O3およびMnO2を第1
表に示す割合で混合し、バインダと共に粉砕して
整粒し、プレスにて1000Kg/cm2の加圧下、直径10
mm、厚さ0.5mmの円板に成形する。これを空気中
1320℃で焼成した後、水素15%、窒素85%の容量
比からなる還元性雰囲気中1200℃で2時間還元処
理して半導体化し、そのまま還元雰囲気で冷却す
る。次いで、空気中1050℃で30分間加熱して再酸
化処理し、このようにして得た半導体磁器素子の
両表面に銀ペーストを塗布後、乾燥させ、空気中
800℃で5分間焼付け処理して、内部が半導体で
表面に再酸化による絶縁層からなる還元再酸化型
半導体磁器からなるコンデンサを得た。
このようにして得た各還元再酸化型半導体磁器
コンデンサについて、静電容量、破壊電圧
(BDV)および1MHzでの誘電正接(tanδ)を測
定した。それらの結果を第1表に組成と共に示
す。なお、BDV()は試料数100個についての
破壊電圧の平均値で、BDV(nio)はそれらの中の
最低破壊電圧である。
実施例 2
実施例1と同様にして(Ba0.996Y0.04)Ti1.05
O3、(Ba0.80Sr0.20)ZrO3を生成させ、これらを
Bi2O3、およびMn(MnO2換算)と共に第2表に
示す割合で混合し、実施例1と同様にして還元再
酸化型半導体磁器コンデンサを得た。それらの静
電容量、破壊電圧、誘電正接を第2表に合わせて
示す。
比較例 1
BaCO3、TiO2を秤量、混合し、1150℃で2時
間仮焼してBaTiO3を作る一方、BaCO3、ZrO2を
秤量、混合し、1150℃で2時間仮焼してBaZrO3
を作り、BaTiO390モル%、BaZrO310モル%と
の混合物に、Bi2O33重量%、TiO210重量%、
Mn0.05重量%添加後、バインダ(ビニル樹脂)
3.5重量%を加えて整粒し、直径10mm、厚さ0.5mm
の円板に成形した。この円板を実施例1を同条件
下で焼成、還元および再酸化処理した後、銀ペー
ストを塗布し、800℃で焼付けて電極とし、還元
再酸化型半導体磁器
The present invention relates to a composition for a reduction and reoxidation type semiconductor ceramic capacitor. Conventionally, reduction and reoxidation type semiconductor ceramic capacitors are
Rare earth elements or Nb, Ta, etc. are added to BaTiO 3 -based porcelain, and it is made into a semiconductor through reduction heat treatment in an oxidizing, neutral, or reducing atmosphere, and then re-oxidized to make the surface of the semiconductor porcelain an insulator. One in which a silver electrode is formed is in practical use.
However, this type of capacitor has the disadvantage that increasing the capacitance reduces the breakdown voltage and increases dielectric loss, and conversely, increasing the breakdown voltage decreases the capacitance. In order to improve this drawback, the special public
In Publication No. 40965, BaTiO 3 is used as a substrate, and this
Bi 2 O 3 1-4% by weight, ZrO 2 1.6-5% by weight, Mn0.01
~0.10% by weight, and between the amount of ZrO 2 added (y) and the amount of Bi 2 O 3 added (x), x-1
There is a relationship of (weight%)≦y≦x+3 (weight%),
A reduced and reoxidized semiconductor ceramic composition is used, which is characterized in that there is a relationship of Z/X≦20% in terms of weight ratio between the amount of Mn added (z) and the amount of Bi 2 O 3 added (x). It was proposed to do so. Although reduction-reoxidation type semiconductor ceramic capacitors using this composition exhibit excellent characteristics such as small size, large capacity, low dielectric loss, and high breakdown voltage, they have large variations in breakdown voltage and are difficult to use at high frequencies (around 1MHz). Due to the large dielectric loss of the material, there was a problem that its applications were limited. The present invention has been made in view of these problems, and it is an object of the present invention to obtain a small, large-capacity reduction-reoxidation type semiconductor ceramic capacitor with high breakdown voltage, little variation, and low dielectric loss at high frequencies. The purpose of this invention is to provide a composition that allows for That is, the present invention provides (Ba 1-l Y l )Ti n O 3 (however,
l and m are the mole fractions of each component, 0.002≦l≦
0.006, 1.02≦m≦1.08) 85 to 95 mol%, and (Ba 1-o
Sr o ) ZrO 3 (however, 0.1≦n≦0.3) 5 to 15 mol% as a base, Bi 2 O 3 1 to 4% by weight, Mn 0.03 to
The gist thereof is a composition for a reduced and reoxidized semiconductor ceramic capacitor containing 0.1% by weight. In the present invention, the composition range is limited as described above for the following reason. In other words, if the mole fraction l of Y is less than 0.002, the dielectric loss in the high frequency range will increase, and if it exceeds 0.006, the variation in breakdown voltage will increase, and the minimum breakdown voltage (BDV nio ) in the same lot will decrease. l
was set in the range of 0.002 to 0.006. The mole fraction (m) of Ti is set to 1.03 to 1.08 because if m is outside this range, the capacitance and/or breakdown voltage will decrease. The mole fraction (n) of S r in (Ba 1-o Sr o )Z r O 3 was set to 0.1 to 0.3 because if n is less than 0.1, the BDV nio will not improve sufficiently, and if it exceeds 0.3, it will become static. This is because the capacitance decreases. Furthermore, the reason why the amount of Bi 2 O 3 added was set at 1 to 4% by weight is because if Bi 2 O 3 is less than 1% by weight, porcelain is difficult to be reduced, and the entire porcelain is easily reoxidized at the reoxidation temperature. This is because the capacitance becomes small, and if it exceeds 4% by weight, the capacitance becomes small. moreover,
The reason why the amount of Mn added was set to 0.03 to 0.1% by weight was because Mn
If it is less than 0.03% by weight, both the capacitance and insulation resistance will be small, and the breakdown voltage will also be small, and if it exceeds 0.1% by weight, the capacitance will be small. Hereinafter, the present invention will be explained according to examples. Example 1 BaCO 3 , Y 2 O 3 and TiO 2 were used as raw materials, and these were weighed and mixed to have a composition ratio of (Ba 0.998 Y 0.002 )Ti 1.03 O 3 , while BaCO 3 , SrCO 3 and
ZrO 2 is weighed and mixed to have a composition ratio of (Ba 0.90 Sr 0.10 )ZrO 3 , and both mixtures are calcined at 1150°C. The generated (Ba 0.998 Y 0.002 ) Ti 1.03 O 3 ,
(Ba 0.90 Sr 0.10 ) ZrO 3 , Bi 2 O 3 and MnO 2 as the first
Mix in the ratio shown in the table, crush with a binder, size the particles, use a press under pressure of 1000 kg/cm 2 , diameter 10
mm, and form into a disc with a thickness of 0.5 mm. this in the air
After firing at 1320°C, reduction treatment is performed at 1200°C for 2 hours in a reducing atmosphere consisting of 15% hydrogen and 85% nitrogen by volume to convert it into a semiconductor, and the product is cooled in the reducing atmosphere. Next, the semiconductor ceramic element thus obtained was heated for 30 minutes at 1050°C for reoxidation treatment, and silver paste was applied to both surfaces of the thus obtained semiconductor ceramic element, dried, and then heated in air for 30 minutes.
Baking treatment was performed at 800° C. for 5 minutes to obtain a capacitor made of reduced and reoxidized semiconductor porcelain with a semiconductor inside and an insulating layer formed by reoxidation on the surface. The capacitance, breakdown voltage (BDV), and dielectric loss tangent (tan δ) at 1 MHz were measured for each reduction and reoxidation type semiconductor ceramic capacitor thus obtained. The results are shown in Table 1 along with the composition. Note that BDV ( ) is the average value of breakdown voltage for 100 samples, and BDV ( nio ) is the lowest breakdown voltage among them. Example 2 Same as Example 1 (Ba 0.996 Y 0.04 ) Ti 1.05
O 3 , (Ba 0.80 Sr 0.20 ) ZrO 3 are generated, and these are
It was mixed with Bi 2 O 3 and Mn (in terms of MnO 2 ) in the proportions shown in Table 2 to obtain a reduced and reoxidized semiconductor ceramic capacitor in the same manner as in Example 1. Their capacitance, breakdown voltage, and dielectric loss tangent are also shown in Table 2. Comparative Example 1 BaCO 3 and TiO 2 were weighed and mixed and calcined at 1150°C for 2 hours to produce BaTiO 3. On the other hand, BaCO 3 and ZrO 2 were weighed and mixed and calcined at 1150°C for 2 hours to produce BaZrO. 3
Make a mixture of 90 mol% BaTiO3 , 10 mol% BaZrO3 , 3 % by weight Bi2O3 , 10% by weight TiO2 ,
Binder (vinyl resin) after adding 0.05% Mn by weight
Add 3.5% by weight and size the particles to a diameter of 10mm and a thickness of 0.5mm.
It was formed into a disc. This disk was fired, reduced and reoxidized under the same conditions as in Example 1, then coated with silver paste and baked at 800°C to form an electrode.
【表】【table】
【表】
コンデンサを得た。その静電容量は150nF/
cm2、BDV()は、1.1KV、BDV(nio)は
0.4KV、tanδ(1MHz)は18%であつた。
比較例 2
実施例1で用意した(Ba0.998Y0.002)Ti1.03
O390モル%と、比較例1で用意したBaZrO310モ
ル%との混合物に、Bi2O32重量%、Mn(MnO2換
算)0.05重量%を添加し、実施例1と同様にして
還元再酸化型半導体磁器コンデンサを得た。その
静電容量は170nF/cm2、BDV()は1.2KV、
BDV(min)は0.5KV、tanδ(1MHz)は12%であ
つた。
比較例 3
BaTi1.05O390モル%と、(Ba0.80Sr0.20)ZrO310
モル%の混合物に、Bi2O32重量%、Mn0.05重量
%を添加し、実施例1と同様にして還元再酸化型
半導体磁器コンデンサを得た。その静電容量は
150nF/cm2、BDV()は1.2KV、BDV(min)
は0.6KV、tanδ(1MHz)は19%であつた。
第1表および第2表の結果から明らかなよう
に、本発明に係る還元再酸化型半導体磁器組成物
からなるコンデンサは、比較例1の従来のものに
比べ、同じ程度の面積容量であつても、最小破壊
電圧が高くて破壊電圧のバラツキが少なく、高周
波での誘電正接も低く良好な特性を示す。なお、
比較例1〜3の結果から、Baの一部をYで置換
すると、誘電体損失が向上し、Baの一部をSrで
置換するとBDV(min)のみが弱干向上すること
がわかる。[Table] A capacitor was obtained. Its capacitance is 150nF/
cm2 , BDV(), 1.1KV, BDV( nio )
0.4KV, tan δ (1MHz) was 18%. Comparative Example 2 (Ba 0.998 Y 0.002 ) Ti 1.03 prepared in Example 1
To a mixture of 90 mol% O 3 and 10 mol% BaZrO 3 prepared in Comparative Example 1, 2% by weight Bi 2 O 3 and 0.05% by weight Mn (calculated as MnO 2 ) were added, and the mixture was prepared in the same manner as in Example 1. A reduced and reoxidized semiconductor ceramic capacitor was obtained. Its capacitance is 170nF/cm 2 , BDV() is 1.2KV,
BDV (min) was 0.5KV and tanδ (1MHz) was 12%. Comparative example 3 BaTi 1.05 O 3 90 mol% and (Ba 0.80 Sr 0.20 ) ZrO 3 10
2% by weight of Bi 2 O 3 and 0.05% by weight of Mn were added to the mol% mixture, and a reduced and reoxidized semiconductor ceramic capacitor was obtained in the same manner as in Example 1. Its capacitance is
150nF/ cm2 , BDV() is 1.2KV, BDV(min)
was 0.6KV, and tanδ (1MHz) was 19%. As is clear from the results in Tables 1 and 2, the capacitor made of the reduced and reoxidized semiconductor ceramic composition according to the present invention has the same areal capacitance as the conventional capacitor of Comparative Example 1. Also, the minimum breakdown voltage is high, there is little variation in breakdown voltage, and the dielectric loss tangent at high frequencies is low, showing good characteristics. In addition,
From the results of Comparative Examples 1 to 3, it can be seen that when a part of Ba is replaced with Y, the dielectric loss is improved, and when a part of Ba is replaced with Sr, only the BDV (min) is slightly improved.
Claims (1)
1.02≦m≦1.08)85〜95モル%と、(Ba1-oSro)
ZrO3(但し、0.1≦n≦0.3)5〜15モル%を基体
とし、これにBi2O31〜4重量%、Mn0.03〜0.1重
量%を添加してなる還元再酸化型半導体磁器コン
デンサ用組成物。1 (Ba 1-l Y l )Ti n O 3 (However, 0.002≦l≦0.006,
1.02≦m≦1.08) 85 to 95 mol% and (Ba 1-o Sr o )
Reduced and reoxidized semiconductor ceramic made by using 5 to 15 mol% of ZrO 3 (0.1≦n≦0.3) as a base and adding 1 to 4% by weight of Bi 2 O 3 and 0.03 to 0.1% by weight of Mn. Composition for capacitors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16914182A JPS5957414A (en) | 1982-09-27 | 1982-09-27 | Composition for reduced reoxidized semiconductor porcelain condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16914182A JPS5957414A (en) | 1982-09-27 | 1982-09-27 | Composition for reduced reoxidized semiconductor porcelain condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5957414A JPS5957414A (en) | 1984-04-03 |
JPS6364888B2 true JPS6364888B2 (en) | 1988-12-14 |
Family
ID=15881041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16914182A Granted JPS5957414A (en) | 1982-09-27 | 1982-09-27 | Composition for reduced reoxidized semiconductor porcelain condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5957414A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1291276A2 (en) | 2001-09-07 | 2003-03-12 | Honda Giken Kogyo Kabushiki Kaisha | Saddle-ride type vehicle steering damper apparatus |
-
1982
- 1982-09-27 JP JP16914182A patent/JPS5957414A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1291276A2 (en) | 2001-09-07 | 2003-03-12 | Honda Giken Kogyo Kabushiki Kaisha | Saddle-ride type vehicle steering damper apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS5957414A (en) | 1984-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0332164B2 (en) | ||
JP3325051B2 (en) | Dielectric porcelain composition | |
JPS6364888B2 (en) | ||
JPS6364889B2 (en) | ||
JPS6256361A (en) | Dielectric ceramic composition | |
JPS6133249B2 (en) | ||
JPS6043651B2 (en) | Composition for semiconductor ceramic capacitors | |
JP2505030B2 (en) | High-permittivity porcelain composition for temperature compensation and method for producing the same | |
JP3125481B2 (en) | Grain boundary insulating layer type semiconductor ceramic composition | |
JPH05345664A (en) | High dielectric ceramic composition | |
JP2734910B2 (en) | Method for producing semiconductor porcelain composition | |
JPH0316773B2 (en) | ||
JPH0521266A (en) | Method of manufacturing grain boundary insulated semiconductor porcelain matter | |
JPS61240622A (en) | Semiconductor ceramic composition and semiconductor ceramicsand capacitor using the same | |
JPH0734415B2 (en) | Grain boundary insulation type semiconductor porcelain composition | |
JPS6217368B2 (en) | ||
JPH03274606A (en) | Dielectric cramic composite | |
JPS6248368B2 (en) | ||
JPS622695B2 (en) | ||
JPS6223405B2 (en) | ||
JP2773479B2 (en) | Grain boundary insulated semiconductor porcelain material and method of manufacturing the same | |
JPS584448B2 (en) | Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body | |
JPH0478577B2 (en) | ||
JPS6044816B2 (en) | Composition for semiconductor ceramic capacitors | |
JPH0360787B2 (en) |