JP2773479B2 - Grain boundary insulated semiconductor porcelain material and method of manufacturing the same - Google Patents

Grain boundary insulated semiconductor porcelain material and method of manufacturing the same

Info

Publication number
JP2773479B2
JP2773479B2 JP21514691A JP21514691A JP2773479B2 JP 2773479 B2 JP2773479 B2 JP 2773479B2 JP 21514691 A JP21514691 A JP 21514691A JP 21514691 A JP21514691 A JP 21514691A JP 2773479 B2 JP2773479 B2 JP 2773479B2
Authority
JP
Japan
Prior art keywords
grain boundary
semiconductor porcelain
manufacturing
insulated semiconductor
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21514691A
Other languages
Japanese (ja)
Other versions
JPH0555073A (en
Inventor
修 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21514691A priority Critical patent/JP2773479B2/en
Publication of JPH0555073A publication Critical patent/JPH0555073A/en
Application granted granted Critical
Publication of JP2773479B2 publication Critical patent/JP2773479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体磁器の粒界に絶縁
層が形成されている粒界絶縁型半導体磁器物質とその製
造方法に関し、より詳しくは通信機器や音響機器に搭載
される電子回路等においてコンデンサとして利用される
粒界絶縁型半導体磁器物質及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain boundary insulated semiconductor porcelain material having an insulating layer formed at a grain boundary of a semiconductor porcelain and a method of manufacturing the same, and more particularly, to an electronic circuit mounted on communication equipment and audio equipment. And a method for manufacturing the same.

【0002】[0002]

【従来の技術】粒界絶縁型半導体磁器コンデンサは、セ
ラミックの半導体結晶粒界に金属酸化物などを熱拡散さ
せて絶縁層を形成し半導体磁器物質の両面に電極をつけ
たものである。一般に、数nmの薄い粒界(絶縁層)の
厚みを利用するため、小型で大きな静電容量が得られ
る。
2. Description of the Related Art A grain boundary insulated semiconductor porcelain capacitor is obtained by thermally diffusing a metal oxide or the like into a ceramic semiconductor crystal grain boundary to form an insulating layer and attaching electrodes to both surfaces of a semiconductor porcelain material. In general, since a thin grain boundary (insulating layer) of several nm is used, a small and large capacitance can be obtained.

【0003】現在、使用されている半導体磁器物質の主
原料としては、チタン酸バリウム系とチタン酸ストロン
チウム系の2種類の材料系がある。チタン酸バリウム系
は、チタン酸バリウム自身の特性に起因して、静電容量
が大きいがその値は温度や周波数によって影響されやす
いという問題点がある。一方、チタン酸ストロンチウム
系は、静電容量がチタン酸バリウム系より小さいがその
値は温度や周波数による影響を受けにくく、さらに誘電
損失が小さく、半導体化が比較的容易で粒界の設計が行
ない易いという利点がある。
At present, there are two main types of semiconductor porcelain materials used: barium titanate and strontium titanate. Barium titanate has a large capacitance due to the characteristics of barium titanate itself, but has a problem that its value is easily affected by temperature and frequency. On the other hand, strontium titanate has a smaller capacitance than barium titanate, but its value is hardly affected by temperature and frequency, furthermore, its dielectric loss is small, it is relatively easy to make a semiconductor, and the grain boundary is designed. There is an advantage that it is easy.

【0004】近年、特に電子機器や電子回路等は高い周
波数領域で用いられていることが多く、また自動車用部
品として等厳しい環境下で用いられることも多く、高周
波特性及び温度特性等に優れた信頼性の高いコンデンサ
が要求され、チタン酸ストロンチウム系が注目されてい
る。
In recent years, especially electronic devices and electronic circuits are often used in a high frequency range, and are often used in harsh environments such as automobile parts, and have excellent high frequency characteristics and temperature characteristics. Highly reliable capacitors are required, and strontium titanate-based capacitors have been attracting attention.

【0005】しかしながらチタン酸ストロンチウム系の
問題点として破壊電圧が他品種コンデンサに比べると低
い点があげられ、現状では素体1mmあたりに換算して1
000V/mm程度であり、このため定格電圧は200W
V前後に抑えられている。破壊電圧を上げるためには結
晶粒の直列方向における数を増やすことにより1粒界あ
たりの負荷を減らすことが有効であるが、この方法では
素体の厚みが増えることになり、小型化に反するのみな
らず材料費が高くなるといった問題があった。そこでチ
タン酸ストロンチウム系粒界絶縁型半導体磁器コンデン
サの高直流耐圧化も検討され、例えば、特開平1-63204
号公報では、チタン酸ストロンチウム系半導体磁器物質
原料に様々な助剤を微量添加することにより結晶粒径
を小さくし、結晶粒の直列数を増して、破壊電圧を向上
させている。
However, a problem of the strontium titanate is that the breakdown voltage is lower than that of other types of capacitors.
000 V / mm, so the rated voltage is 200 W
It is suppressed around V. In order to increase the breakdown voltage, it is effective to reduce the load per grain boundary by increasing the number of crystal grains in the series direction. However, in this method, the thickness of the element increases, which is contrary to miniaturization. In addition, there was a problem that the material cost was high. In view of this, high dc breakdown voltage of a strontium titanate-based grain boundary insulating semiconductor ceramic capacitor has been studied.
In the publication, strontium titanate-based semiconductor porcelain
By adding a small amount of various auxiliaries to the raw material, the crystal grain size is reduced, the number of crystal grains in series is increased, and the breakdown voltage is improved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開平
1-63204 号公報に示されたチタン酸ストロンチウム系高
直流耐圧用粒界絶縁型半導体磁器コンデンサは、破壊電
圧値が向上している反面、静電容量が小さいという問題
点があった。
SUMMARY OF THE INVENTION
The strontium titanate-based grain boundary insulating semiconductor ceramic capacitor for high DC withstand voltage disclosed in Japanese Patent Application Laid-Open No. 1-63204 has a problem that the capacitance is small while the breakdown voltage value is improved.

【0007】本発明は上記した課題に鑑み発明されたも
のであって破壊電圧値および静電容量がともに大きい粒
界絶縁型半導体磁器物質及びその製造方法を提供するこ
とを目的としている。
The present invention has been made in view of the above problems, and has as its object to provide a grain boundary insulated semiconductor ceramic material having a large breakdown voltage and a large capacitance, and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る高直流耐圧用粒界絶縁型半導体磁器物質
は、結晶粒の主成分が(Sr1-x-yCaXMgy)Ti1-zAzO3(式
中、AはNbあるいはYのうちの1種または2種の元素を
示しており、X、YおよびZはそれぞれ、0.10≦X
≦0.30、0.05≦Y≦0.15、0.002≦Z
≦0.008の範囲の値にある)で示される組成を有す
る原料混合物の焼結体であって、該焼結体の結晶粒界に
CoあるいはCsのうち1種以上及び Bi 元素を含み、結晶
粒の平均粒径が10μm以上から15μm未満までの範
囲内であることを特徴としている。
In order to achieve the above-mentioned object, a high DC withstand voltage grain boundary insulating semiconductor porcelain according to the present invention is characterized in that the main component of the crystal grains is (Sr 1-xy Ca X Mg y ) Ti 1-z A z O 3 (where A represents one or two elements of Nb or Y, and X, Y and Z each represent 0.10 ≦ X
≦ 0.30, 0.05 ≦ Y ≦ 0.15, 0.002 ≦ Z
≦ 0.008) in a raw material mixture having a composition represented by the following formula:
It contains one or more of Co and Cs and a Bi element, and is characterized in that the average grain size of the crystal grains is in a range from 10 μm or more to less than 15 μm.

【0009】 また、本発明に係る上記の粒界絶縁型
導体磁器物質の製造方法は、SrCO3 、CaCO3 、MgOおよ
び TiO2 の主原料に Nb2O5あるいは Y2O3のうち1種ま
たは2種を添加し、仮焼合成した後に解砕し、次に Al2
O3、SiO2あるいは H3BO3のうちの少なくとも1種以上を
含む焼結用助剤を添加して、1400℃から1450℃未満まで
の温度範囲で半導体化焼成工程を施し、半導体化焼成さ
れた焼結体に CoOあるいは Cs2CO3 のうちの1種以上及
び Bi2O3の化合物を含む拡散剤を塗布し、この後粒界絶
縁化焼成を行なうことを特徴としている。
Further, the above-mentioned grain boundary insulating half according to the present invention.
The method of manufacturing a conductive porcelain material is to add one or two of Nb 2 O 5 or Y 2 O 3 to the main raw materials of SrCO 3 , CaCO 3 , MgO and TiO 2 , calcine and then crush them. Then Al 2
A sintering aid containing at least one of O 3 , SiO 2 and H 3 BO 3 is added, and a semiconducting firing step is performed in a temperature range from 1400 ° C. to less than 1450 ° C. The obtained sintered body is coated with a diffusing agent containing at least one of CoO or Cs 2 CO 3 and a compound of Bi 2 O 3 , and thereafter is fired at grain boundary insulation.

【0010】[0010]

【作用】SrCO3CaCO 3 MgOおよび Ti02 からなる主原
料に Nb205あるいは Y203 のうち1種または2種を添加
し、仮焼合成した後に解砕し、次に Al203、 Si02あるい
は H3B03のうちの少なくとも1種以上を含む焼結用助剤
を添加して、1400℃から1450℃未満までの温度範囲で半
導体化焼成工程を施し、半導体化焼成された焼結体に C
oOあるいは Cs2CO3 のうちの1種以上及び Bi2O3の化合
物を含む拡散剤を塗布し、この後粒界絶縁化焼成を行な
うことにより、平均粒径及び粒径の標準偏差を所望の値
に調整することが可能となり、半導体磁器物質の内部は
より小さく均一な粒径を有した結晶粒で直列回路的に形
成されることとなる。その結果、破壊電圧値および静電
容量が大きい粒界絶縁型半導体磁器物質が得られる。
[Action] SrCO 3, CaCO 3, MgO, and Ti0 1 of the main raw material consisting of 2 Nb 2 0 5 or Y 2 0 3, two or added, and pulverized after calcination synthesis, then Al 2 0 3, Si0 2 or with the addition of H 3 B0 aid for sintering comprising at least one or more of the 3, subjected to a semiconductive firing step at a temperature ranging from 1400 ° C. to less than 1450 ° C., semiconductive C on the sintered body
Applying a diffusing agent containing at least one of oO or Cs 2 CO 3 and a compound of Bi 2 O 3 , and then performing grain boundary insulating firing to obtain the average particle size and standard deviation of the particle size , And the inside of the semiconductor ceramic material is formed in a series circuit with crystal grains having smaller and uniform grain sizes. As a result, a grain boundary insulating semiconductor ceramic material having a large breakdown voltage value and a large capacitance can be obtained.

【0011】 以下、本発明に係る粒界絶縁型半導体磁
器物質及びその製造方法の実施例を説明する。SrCO3、Ca
CO3 、MgOおよび TiO2 の原料に Nb2O5あるいは Y2O3
から選んだ1種または2種を添加し、所望の組成比にな
るように調合する。調合は各原料を正確に秤量し、適量
の玉石、分散剤、純水とともにポットミル内で24時間
混合することにより行なう。混合されたスラリー状の原
料を脱水乾燥させ、解砕する。解砕した解砕粉を例えば
ジルコニア製の焼成ルツボ内に移し、1150℃で仮焼合成
し、セラミックにする。所望の固溶体セラミックが合成
されていることをX線回析、組成分析等で確認する。確
認後、仮焼合成したセラミック解砕し、1.0 μm 前後
の均一粉にふるいを用いて整粒した後、少なくとも Al2
O3、SiO2あるいはH3BO3から選んだ1種以上を含む焼結
用助剤を添加し、混合する。これに有機バインダとして
ポリビニールアルコール等を添加して、直径10mm、 厚
み800μmになるように円板状に金型を用いて成型す
る。成形体を1000℃で2時間保温し、有機バインダ
を取り除く。次に成形体を例えばアルミナ製の焼成ルツ
ボに充填して還元雰囲気焼成を行い、セラミックの焼結
と同時に半導体化を行なう。このとき、成形体とアルミ
ナとが反応しやすいため、ジルコニア製の薄い板を成形
体の下側に敷いておくのが良い。還元雰囲気焼成は、水
素濃度が1〜15%かつ窒素濃度が85〜99%の混合
ガス雰囲気中で1400℃から1450℃未満までの温度範囲内
で4.0時間焼成することにより行なう。得られた焼結
体を有機溶剤(例えばアセトン)、熱水中で十分洗浄し
た後、 CoOあるいは Cs2CO3 及び Bi 2O3を含む拡散剤を
混練ペースト状にして焼結体表面に塗布する。
Hereinafter, embodiments of a grain boundary insulating semiconductor ceramic material and a method of manufacturing the same according to the present invention will be described. SrCO 3 , Ca
Nb 2 O 5 or Y 2 O 3 as raw material for CO 3 , MgO and TiO 2
One or two kinds selected from the above are added and blended to obtain a desired composition ratio. Formulation is the raw materials were weighed accurately, a proper amount of boulders, dispersing agent, together with the pure water in a pot mill carried out by mixing 24 hours. The mixed slurry-like raw material is dehydrated and dried, and is crushed. The crushed crushed powder is transferred into a baked crucible made of, for example, zirconia, and calcined at 1150 ° C. to form a ceramic. It is confirmed by X-ray diffraction, composition analysis and the like that the desired solid solution ceramic has been synthesized. After confirmation, after beating ceramic calcined synthesized and sieved using a sieve uniform powder 1.0 [mu] m before and after at least Al 2
A sintering aid containing at least one selected from O 3 , SiO 2 and H 3 BO 3 is added and mixed. Polyvinyl alcohol or the like is added as an organic binder to this, and it is molded in a disk shape using a metal mold so as to have a diameter of 10 mm and a thickness of 800 μm. The molded body is kept at 1000 ° C. for 2 hours to remove the organic binder. Next, the compact is filled in a firing crucible made of, for example, alumina and fired in a reducing atmosphere, and a ceramic is formed simultaneously with sintering of the ceramic. At this time, a thin plate made of zirconia is preferably laid on the lower side of the compact because the compact easily reacts with alumina. The firing in a reducing atmosphere is performed by firing in a mixed gas atmosphere having a hydrogen concentration of 1 to 15% and a nitrogen concentration of 85 to 99% within a temperature range of 1400 ° C. to less than 1450 ° C. for 4.0 hours. After sufficiently washing the obtained sintered body in an organic solvent (for example, acetone) and hot water, a diffusing agent containing CoO or Cs 2 CO 3 and Bi 2 O 3 is formed into a kneaded paste and applied to the surface of the sintered body. I do.

【0012】塗布量は、焼結体1g当たり10〜20m
g程度で良い。これを大気中で1150〜1250℃の
温度範囲内で1.0〜2.0時間粒界絶縁化焼成を行
い、高直流耐圧用粒界絶縁型半導体磁器物質を完成す
る。
The coating amount is 10 to 20 m per 1 g of the sintered body.
g is sufficient. This is fired in the air at a temperature in the range of 1150 to 1250 ° C. for 1.0 to 2.0 hours to obtain a grain boundary insulating semiconductor ceramic material for high DC withstand voltage.

【0013】その半導体磁器物質の両面に市販の銀ベー
ストを印刷し、800℃で電極を焼き付けて評価用試料
とした。
A commercially available silver base was printed on both sides of the semiconductor ceramic material, and electrodes were baked at 800 ° C. to obtain evaluation samples.

【0014】[0014]

【試料評価方法】完成した高直流耐圧用粒界絶縁型半導
体磁器物質の評価は、次のように実施した。
[Sample Evaluation Method] The completed grain boundary insulating semiconductor ceramic material for high DC withstand voltage was evaluated as follows.

【0015】 セラミック結晶粒径の測定は、SEM観
察により行った。下記の表1中の平均粒径と粒径の標準
偏差(σn-1 )はそれぞれの組成のロット内30個につ
いてSEM観察により算出した値である。
The measurement of the ceramic crystal grain size was performed by SEM observation. The average particle diameter and the standard deviation of the particle diameter (σ n-1 ) in Table 1 below are values calculated by SEM observation for 30 pieces in each lot of each composition.

【0016】電気的特性は、見かけの比誘電率εapp
誘電損失DF(%)をインピーダンスアナライザで、破
壊電圧BDV(V/mm)を直流可変電圧電源を用いて評
価した。見かけの比誘電率εapp 、誘電損失DFは、A
C1KHz、印加電圧1Vで測定した値である。破壊電
圧BDVは、電極間に印加する直流電圧値を徐々に大き
くしていき、絶縁破壊が起こった電圧を素体の厚みで割
って、1mmあたりに換算した値である。試料数は、それ
ぞれの組成について30個形成し、電気的特性の数値
は、それらの平均値とした。
The electrical characteristics are apparent relative permittivity ε app ,
The dielectric loss DF (%) was evaluated using an impedance analyzer, and the breakdown voltage BDV (V / mm) was evaluated using a DC variable voltage power supply. Apparent dielectric constant ε app and dielectric loss DF are A
It is a value measured at C1 KHz and an applied voltage of 1 V. The breakdown voltage BDV is a value obtained by gradually increasing the DC voltage value applied between the electrodes, dividing the voltage at which the dielectric breakdown has occurred by the thickness of the element body, and converting the voltage per mm. The number of samples was 30 for each composition, and the numerical values of the electrical characteristics were their average values.

【0017】破壊電圧BDV(V/mm)が3000V/
mm以上と高いにもかかわらず、見かけの比誘電率εapp
が損なわれず、10000以上の値を示している。
The breakdown voltage BDV (V / mm) is 3000 V /
mm, the apparent relative permittivity ε app
Does not deteriorate and shows a value of 10,000 or more.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表1−2】 [Table 1-2]

【0020】[0020]

【表1−3】 [Table 1-3]

【0021】[0021]

【表1−4】 [Table 1-4]

【0022】[0022]

【発明の効果】本発明に係る高直流耐圧用粒界絶縁型半
導体磁器物質にあっては、破壊電圧値及び静電容量がと
もに大きいので、信頼性の高いコンデンサを提供するこ
とができる。また、本発明に係る粒界絶縁型半導体磁器
物質の製造方法にあっては、従来のプロセスと略同様の
プロセスにより高直流耐圧用として優れた粒界絶縁型半
導体磁器物質を提供することができる。
According to the high DC breakdown voltage grain boundary insulated semiconductor porcelain material of the present invention, since the breakdown voltage value and the capacitance are both large, a highly reliable capacitor can be provided. Further, in the method for manufacturing a grain boundary insulated semiconductor porcelain according to the present invention, it is possible to provide a grain boundary insulated semiconductor porcelain excellent for high DC withstand voltage by a process substantially similar to a conventional process. .

【0023】[0023]

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結晶粒の主成分が(Sr1-x-yCaxMgy) Ti
1-zAzO3 (式中、AはNbあるいはYのうちの1種または
2種の元素を示しており、X、YおよびZはそれぞれ
0.10≦X≦0.30、0.05≦Y≦0.15、
0.002≦Z≦0.008の範囲にある)で示される
組成を有する原料混合物の焼結体であって、該焼結体の
結晶粒界にCoあるいはCsのうち1種以上及び Bi 元素を
含み、結晶粒の平均粒径が10μm以上から15μm未
満までの範囲内であることを特徴とする高直流耐圧用粒
界絶縁型半導体磁器物質。
The main component of the crystal grains is (Sr 1-xy Ca x Mg y ) Ti
1-z A z O 3 (where A represents one or two elements of Nb or Y, and X, Y and Z each represent
0.10 ≦ X ≦ 0.30, 0.05 ≦ Y ≦ 0.15,
A sintered material of a raw material mixture having a composition represented by the following formula: 0.002 ≦ Z ≦ 0.008), wherein at least one of Co and Cs and a Bi element Wherein the average grain size of the crystal grains is in a range from 10 μm or more to less than 15 μm.
【請求項2】 SrCO3、 CaCO3 MgOおよび Ti02 からな
る主原料に Nb205あるいは Y203 のうち1種または2種
を添加し、仮焼合成した後に解砕し、次にAl203、 Si02
あるいは H3B03 のうちの少なくとも1種以上を含む焼
結用助剤を添加して1400℃から1450℃未満までの温度範
囲で半導体化焼成工程を施し、半導体化焼成された焼結
体に CoOあるいは Cs2CO3 のうちの1種以上及び Bi2O3
の化合物を含む拡散剤を塗布し、この後粒界絶縁化焼成
を行なうことを特徴とする請求項1記載の粒界絶縁型半
導体磁器物質の製造方法。
Wherein the addition of SrCO 3, CaCO 3, 1 kind or two kinds of MgO and Ti0 Nb 2 0 5 in the main raw material consisting of 2 or Y 2 0 3, and pulverized after calcination synthesis, following Al 2 O 3 , Si 0 2
Or subjected to semiconductive firing step at a temperature range of additives to 1400 ° C. The sintering aid to less than 1450 ° C. comprising at least one or more of H 3 B0 3, the sintered body is sintered semiconductive CoO or one or more of Cs 2 CO 3 and Bi 2 O 3
2. The method for producing a grain boundary insulated semiconductor porcelain material according to claim 1, wherein a diffusing agent containing the above compound is applied, followed by baking with grain boundary insulation.
JP21514691A 1991-08-27 1991-08-27 Grain boundary insulated semiconductor porcelain material and method of manufacturing the same Expired - Lifetime JP2773479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21514691A JP2773479B2 (en) 1991-08-27 1991-08-27 Grain boundary insulated semiconductor porcelain material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21514691A JP2773479B2 (en) 1991-08-27 1991-08-27 Grain boundary insulated semiconductor porcelain material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0555073A JPH0555073A (en) 1993-03-05
JP2773479B2 true JP2773479B2 (en) 1998-07-09

Family

ID=16667444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21514691A Expired - Lifetime JP2773479B2 (en) 1991-08-27 1991-08-27 Grain boundary insulated semiconductor porcelain material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2773479B2 (en)

Also Published As

Publication number Publication date
JPH0555073A (en) 1993-03-05

Similar Documents

Publication Publication Date Title
JP2773479B2 (en) Grain boundary insulated semiconductor porcelain material and method of manufacturing the same
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JP2734910B2 (en) Method for producing semiconductor porcelain composition
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JP2936876B2 (en) Semiconductor porcelain composition and method for producing the same
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JP2979915B2 (en) Semiconductor porcelain composition and method for producing the same
JP2762831B2 (en) Method for producing semiconductor porcelain composition
JP2531548B2 (en) Porcelain composition for temperature compensation
JP3588210B2 (en) Dielectric porcelain composition
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0555074A (en) Grain boundary insulation type semiconductor porcelain substance and manufacture thereof
JP3512587B2 (en) Multilayer ceramic capacitors
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JP2725372B2 (en) Dielectric porcelain composition
JPH1174144A (en) Laminated ceramic capacitor
JP2937024B2 (en) Semiconductor porcelain composition and method for producing the same
KR910001344B1 (en) Multilayer ceramic capacitor and method for producing thereof
JP2903991B2 (en) Semiconductor porcelain composition and method for producing the same
JPH05266711A (en) Dielectric ceramic composition
JPH05270908A (en) Semiconductor porcelain composition and its production
JPS6364889B2 (en)
JPH05335172A (en) Semiconductor porcelain composition and manufacture thereof