JP2505030B2 - High-permittivity porcelain composition for temperature compensation and method for producing the same - Google Patents

High-permittivity porcelain composition for temperature compensation and method for producing the same

Info

Publication number
JP2505030B2
JP2505030B2 JP63234200A JP23420088A JP2505030B2 JP 2505030 B2 JP2505030 B2 JP 2505030B2 JP 63234200 A JP63234200 A JP 63234200A JP 23420088 A JP23420088 A JP 23420088A JP 2505030 B2 JP2505030 B2 JP 2505030B2
Authority
JP
Japan
Prior art keywords
composition
temperature compensation
weight
sio
porcelain composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63234200A
Other languages
Japanese (ja)
Other versions
JPH0283257A (en
Inventor
信明 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP63234200A priority Critical patent/JP2505030B2/en
Publication of JPH0283257A publication Critical patent/JPH0283257A/en
Application granted granted Critical
Publication of JP2505030B2 publication Critical patent/JP2505030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は温度補償用高誘電率磁器組成物に係り,特
に,SrTiO3‐CaTiO3‐Nb2O5系の温度補償用高誘電率磁
器組成物の改良に関する。
The present invention relates to a high-permittivity porcelain composition for temperature compensation, and more particularly to a SrTiO 3 -CaTiO 3 -Nb 2 O 5 system high-permittivity porcelain for temperature compensation. It relates to improvements in compositions.

〔従来の技術〕[Conventional technology]

従来,高誘電率で高いQ値を有すると同時に優れた電
気絶縁破壊電圧を有する磁器組成物であって,しかも高
誘電率の温度係数が多くの一般電気回路や素子特性の温
度係数を補償し得る温度補償用高誘電率磁器組成物が種
々開発されている。
Conventionally, it is a porcelain composition having a high dielectric constant, a high Q value, and an excellent electric breakdown voltage at the same time, and yet, the temperature coefficient of the high dielectric constant compensates for the temperature coefficient of many general electric circuits and device characteristics. Various types of high-permittivity porcelain compositions for temperature compensation have been developed.

例えば,誘電率が10〜500,その温度係数が+100から
−5000×10-6/℃の範囲のものを求めようとする場合,
組成物としては,BaTiO3,SrTiO3,CaTiO3,MgTiO3ある
いはLa2O3,TiO2,MgO・SiO2,Bi2O3・2TiO2等の組成系
から選択されるが,一般に高誘電率−小温度係数−高Q
値の組合せを一つの組成物に求めることは至難である。
For example, when trying to find a dielectric constant of 10 to 500 and its temperature coefficient in the range of +100 to −5000 × 10 −6 / ° C,
Compositions, BaTiO 3, SrTiO 3, CaTiO 3, MgTiO 3 or La 2 O 3, TiO 2, MgO · SiO 2, Bi 2 O 3 · 2TiO 2 , etc. is selected from the composition system, generally high dielectric Rate-Small temperature coefficient-High Q
It is difficult to find a combination of values for one composition.

即ち,上記組成系では,常温での誘電率とその温度係
数との関係は概略的に見て誘電率が大きくなる程温度係
数の値も大きくなる関係にあり,温度係数の利用を優先
すると誘電率が小さくなってしまう。さらに高周波数の
損失角の悪化も不随するため,これらの温度補償用組成
物はたとえ温度係数を十分小さくし得ても,マイナスの
温度係数を有する誘電率と,これと組合されるQ値がい
ずれも温度補償対象の電気素子や回路特性よりも相当に
劣ってしまい,実用的見地からみて必要十分な温度補償
機能を果し得ない。
That is, in the above composition system, the relationship between the dielectric constant at room temperature and its temperature coefficient is such that the value of the temperature coefficient increases as the dielectric constant increases, and if the use of the temperature coefficient is prioritized, the dielectric constant will increase. The rate becomes small. Further, since the deterioration of the loss angle at high frequencies is also accompanied, even if these temperature compensating compositions can have a sufficiently small temperature coefficient, the dielectric constant having a negative temperature coefficient and the Q value combined therewith are In either case, they are considerably inferior to the electrical elements and circuit characteristics to be temperature-compensated, and they cannot fulfill the necessary and sufficient temperature compensation functions from a practical point of view.

一例を示せば,温度係数を小さく,かつ自由に制御出
来,しかも誘電率が高く高周波の損失角が小さな温度補
償用高誘電率磁器組成物として提案された,CaO-TiO2‐S
iO2‐SrO2系組成物は,その誘電率が18.4〜145(1MHz25
℃)と相当に低い。
For example, CaO-TiO 2 -S was proposed as a high-permittivity porcelain composition for temperature compensation, which has a small temperature coefficient and can be controlled freely, and has a high dielectric constant and a high-frequency loss angle.
The iO 2 -SrO 2 composition has a dielectric constant of 18.4 to 145 (1MHz25
℃) is considerably low.

さらにCaTiO3‐Sb2O3・2MgO‐SrO・Nb2O5系組成物また
はCaTiO3‐La2O3・2TiO2‐PbO・TiO3‐Bi2O3・2TiO2系組
成物でも誘電率は100〜180に止まっており,実用的な範
囲とは云いがたい。
Further CaTiO 3 -Sb 2 O 3 · 2MgO -SrO · Nb 2 O 5 based composition or CaTiO 3 permittivity in -La 2 O 3 · 2TiO 2 -PbO · TiO 3 -Bi 2 O 3 · 2TiO 2 based composition Has stopped at 100 to 180, which is not a practical range.

本出願人は先に,各種開発された高誘電率磁器組成物
を背景に優れた特性を有する温度補償用高誘電率磁器組
成物を提案した(特公昭56-17771号公報参照)。
The present applicant previously proposed a high-permittivity porcelain composition for temperature compensation having excellent characteristics against the background of various developed high-permittivity porcelain compositions (see Japanese Patent Publication No. 56-17771).

ところでこのような温度補償用高誘電率磁器組成物を
製造するとき,第7図に示す方式も一般的である。即
ち,SrCO3,TiO2と酸化剤としてMnCO3の原料を混合し,
脱水乾燥後,仮成形,仮焼成を行い粗粉砕してSrTiO3
完成する。同様にCaCO3,TiO2,MnCO3の原料も同様の手
順をふんでCaTiO3を完成する。そして両方のチタン酸塩
(SrTiO3とCaTiO3)を混合,脱水乾燥して所望の材料を
完成するチタン酸塩方式である。
By the way, when manufacturing such a high-permittivity ceramic composition for temperature compensation, the method shown in FIG. 7 is also common. That is, mixing SrCO 3 , TiO 2 and MnCO 3 raw material as an oxidant,
After dehydration and drying, temporary forming and preliminary firing are performed and coarse pulverization is performed to complete SrTiO 3 . Similarly, for CaCO 3 , TiO 2 , and MnCO 3 raw materials, the same procedure is followed to complete CaTiO 3 . Then, both titanates (SrTiO 3 and CaTiO 3 ) are mixed, dehydrated and dried to complete the desired material.

上記組成物の基礎となるSrTiO3‐CaTiO3系磁器組成物
は第4図に示す通り,相互の組成比の変化に伴ないQ
値,誘電率ε,誘電率の温度係数T.C.が多様に変化する
ため,実質的にはある一つの特性だけを利用するにとど
まっていた。
As shown in Fig. 4, the SrTiO 3 -CaTiO 3 based porcelain composition, which is the basis of the above composition, is
Since the value, the permittivity ε, and the temperature coefficient TC of the permittivity vary in various ways, only one characteristic was practically used.

しかし本出願人の先の発明(特公昭56-17771号公報)
によれば,第6図に示すように,第3成分のNb2O5が誘
電率ε,Q値に対する変化をコントロールし,固有特性の
高度利用を可能とするとともに,温度係数T.C.に単純な
変化を併起させることが出来る。従って各組成点ごとに
安定に現われるこの単純な温度係数の変化範囲から,所
要の温度補償に必要な温度係数を良い特性値との組合せ
で求めることが出来るようになった。
However, the applicant's earlier invention (Japanese Patent Publication No. 56-17771)
According to Fig. 6, as shown in Fig. 6, Nb 2 O 5 of the third component controls the change with respect to the permittivity ε and Q value, and enables the advanced use of the characteristic properties, and the simple temperature coefficient TC. Changes can occur together. Therefore, it became possible to obtain the temperature coefficient required for the required temperature compensation in combination with a good characteristic value from this simple temperature coefficient variation range that appears stably at each composition point.

〔発明が解決すべき課題〕[Problems to be solved by the invention]

ところが,これらのSrTiO3‐CaTiO3‐Nb2O5系磁器組
成物の結晶粒径は通常10〜25μmと比較的大きい。
However, the crystal grain size of these SrTiO 3 —CaTiO 3 —Nb 2 O 5 based porcelain compositions is relatively large, usually 10 to 25 μm.

そして最近の誘電体素子,例えば積層チップコンデン
サは小型,大容量化,コストダウン等が要求され,例え
ば厚み10μmなどますます薄層化の方向へ進んでいる。
これを達成するためには,従来の結晶粒径10〜25μmで
は不可能である。
Recent dielectric elements, such as multilayer chip capacitors, are required to be small in size, large in capacity, and low in cost. For example, thicknesses of 10 μm are becoming thinner and thinner.
In order to achieve this, it is impossible with the conventional crystal grain size of 10 to 25 μm.

また,たとえコンデンサの1層当りのシート厚みを20
〜30μmにする場合でも従来の結晶粒径の大きさでは1
シート当りの結晶粒が1〜2個となる計算になる。これ
はデラミネーションを発生させ素子の絶縁抵抗や絶縁破
壊を低下させる原因となっていた。
In addition, even if the sheet thickness per capacitor layer is 20
Even if it is ~ 30μm, it is 1 with the conventional crystal grain size.
The calculation results in 1 to 2 crystal grains per sheet. This has been a cause of causing delamination and reducing the insulation resistance and breakdown of the element.

従って本発明の目的は本出願人が先に発明した温度補
償用高誘電率磁器組成物の諸特性を損うことなく,その
結晶粒径を微小化した温度補償用高誘電率磁器組成物を
提供するものである。
Therefore, an object of the present invention is to provide a temperature-compensating high-dielectric-constant porcelain composition whose crystal grain size is reduced without impairing the various properties of the temperature-compensating high-dielectric-constant porcelain composition previously invented by the applicant. It is provided.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記目的を達成するため,SrTiO366〜71wt
%,CaTiO329〜34wt%から成る組成物100部に対して,N
b2O5を0.2〜11.0wt%,SiO20.1〜1.0wt%添加してSrTiO
3‐CaTiO3‐Nb2O5‐SiO2系温度補償用高誘電率磁器組成
物とするものである。
In order to achieve the above object, the present invention provides SrTiO 3 66 to 71 wt.
%, CaTiO 3 29-34 wt% for 100 parts of the composition, N
b 2 O 5 0.2 to 11.0 wt%, SiO 2 0.1 to 1.0 wt% SrTiO 3
3 it is an -CaTiO 3 -Nb 2 O 5 -SiO 2 system for temperature compensation high dielectric constant ceramic composition.

本発明と本出願人による先の発明との相違点,即ち改
良点は,先の発明のSrTiO3‐CaTiO3‐Nb2O5系温度補償
用高誘電率磁器組成物にSiO2を添加するものであり,Si
O2の添加はこの磁器組成物原料を仮焼成後の粉砕工程で
添加する。
The difference between the present invention and the previous invention by the applicant, that is, the improvement is that SiO 2 is added to the SrTiO 3 -CaTiO 3 -Nb 2 O 5 -based temperature-compensating high-dielectric-constant porcelain composition of the present invention. The one, Si
O 2 is added in the crushing step after the calcination of the porcelain composition raw material.

〔作用〕[Action]

本発明によって先の発明の磁器組成物の仮焼成後の微
粉砕時にSiO2を所定量添加することにより,本焼成温度
を低下させ,そのため組成物の結晶粒の成長を抑制し,
製造される磁器組成物の結晶粒径を小さくすることが出
来る。
According to the present invention, by adding a predetermined amount of SiO 2 during fine pulverization after calcination of the porcelain composition of the previous invention, the main calcination temperature is lowered, and therefore the growth of crystal grains of the composition is suppressed,
The crystal grain size of the manufactured porcelain composition can be reduced.

〔実施例〕〔Example〕

本発明の実施例を説明する。 An example of the present invention will be described.

市販の工業用原料であるSrCO3,CaCO3,TiO2,Nb2O5
を出発原料とし,焼成後の組成が後述する第1表に示す
ものとなるように,SrCO3,CaCO3,TiO2,Nb2O5を秤量
する。
Commercially available industrial raw materials SrCO 3 , CaCO 3 , TiO 2 , Nb 2 O 5
As a starting material, SrCO 3 , CaCO 3 , TiO 2 , and Nb 2 O 5 are weighed so that the composition after firing is as shown in Table 1 below.

さらに焼成時の還元性を防止するため酸化剤として,
MnCO3を約0.2wt%添加し,同時に焼結性をよくするため
に鉱化剤としてCeO2,La2O3等の希土類金属の酸化物等
を添加する。
Furthermore, as an oxidant to prevent reducibility during firing,
About 0.2 wt% of MnCO 3 is added, and at the same time, oxides of rare earth metals such as CeO 2 and La 2 O 3 are added as mineralizers to improve sinterability.

この原料を磁製ポットミルで20時間湿式混合を行う
(第1図(a)参照)。
This raw material is wet-mixed for 20 hours in a porcelain pot mill (see FIG. 1 (a)).

次にこの混合物を脱水乾燥後,1100〜1200℃で2時間
仮焼成する(第1図(b)参照)。
Next, this mixture is dehydrated and dried, and then calcined at 1100 to 1200 ° C. for 2 hours (see FIG. 1 (b)).

さらにこの仮焼成物を粗粉砕した後,SiO2を上記の成
分に対して第1表に示す添加量となるように添加し,再
度ポットミルで湿式混合,微粉砕を20時間行う(第1図
(c)参照)。
Furthermore, after roughly crushing this pre-baked product, SiO 2 was added to the above components in the amounts shown in Table 1, wet mixing was again carried out in the pot mill, and fine grinding was carried out for 20 hours (Fig. 1). (See (c)).

これを脱水乾燥して材料を完成する(第1図(d)参
照)。
This is dehydrated and dried to complete the material (see FIG. 1 (d)).

その後,材料にバインダーを添加して,16.5φ×0.6tm
mの円板を約3トン/cm2の圧力で加圧成形し,1240〜132
0℃で2時間保持して本焼成を行い,磁器組成物を得
る。
After that, a binder is added to the material, and 16.5φ × 0.6tm
1240-132 by press-molding a disk of m with a pressure of about 3 tons / cm 2.
Main calcination is performed by holding at 0 ° C. for 2 hours to obtain a porcelain composition.

得られた円板形の磁器組成物に銀電極を850℃で焼付
け,リード線を半田付けし洗浄後,電気的諸特性等の測
定を行う。測定条件は室温20℃以下で行い,横河電機製
作所製のQメータ(4340A)及びIRメータ(4329A)を使
用し,誘電率の温度係数はLCRメータ4274A,恒温槽はエ
レクトップ社製BT-100を使用し,測定電圧AC1V,周波数1
KHzで測定する。
Silver electrodes are baked on the obtained disk-shaped porcelain composition at 850 ° C., lead wires are soldered and washed, and then electrical characteristics are measured. The measurement conditions are room temperature 20 ° C or less, and use the Q meter (4340A) and IR meter (4329A) manufactured by Yokogawa Electric Corporation, the temperature coefficient of the dielectric constant is LCR meter 4274A, and the temperature chamber is BT-made by Elektop. 100 is used, measurement voltage AC1V, frequency 1
Measure in KHz.

このような製造条件で製造した組成比の異なる磁器組
成物の特性値等を第1表に示す。表中,組成比は重量%
(wt%)に換算して各組成内容を示しており,測定結果
は誘電率ε,誘電率の温度係数T.C.,Q値,絶縁抵抗I
R,結晶粒径,焼結性を示す。
Table 1 shows characteristic values and the like of porcelain compositions having different composition ratios manufactured under such manufacturing conditions. In the table, composition ratio is% by weight
The content of each composition is shown in terms of (wt%). The measurement results are: permittivity ε S , temperature coefficient of permittivity TC, Q value, insulation resistance I
R, grain size, and sinterability.

なお,組成物の成形焼成以前の粉末の粒径は0.5〜1.5
μmであることが望ましい。
The particle size of the powder before molding and firing of the composition is 0.5 to 1.5.
μm is desirable.

なお,資料番号に×印のついたものは本発明の範囲外
のものである。
Materials marked with an X are outside the scope of the present invention.

第1表に示す如く,本発明の磁器組成物は誘電率の温
度係数は(−500〜−3000)×10-6/℃の範囲で滑らか
に変化していて,温度補償に最適の温度係数を自在に求
めることが出来る。また誘電率はこの種の磁器組成物の
従来値より際立って大きな200〜320を維持し,Q値もほぼ
1500〜5000の範囲であり,Nb2O5を添加することにより
絶縁抵抗も従来の0.8×1011Ωより大きな1〜10×1011
Ωの値に改良できる。
As shown in Table 1, in the porcelain composition of the present invention, the temperature coefficient of the dielectric constant changes smoothly in the range of (−500 to −3000) × 10 −6 / ° C., which is the optimum temperature coefficient for temperature compensation. Can be freely requested. In addition, the permittivity is maintained at 200 to 320, which is significantly higher than the conventional value of this type of porcelain composition, and the Q value is almost
The range is 1500 to 5000, and the addition of Nb 2 O 5 makes the insulation resistance 1 to 10 × 10 11 larger than the conventional 0.8 × 10 11 Ω.
It can be improved to the value of Ω.

そして,本発明によって,SiO2を仮焼成後の粉砕工程
で添加することによって,本焼成温度を1240〜1320℃と
低下することが出来る。それに伴って結晶の粒成長が抑
制される。
Further, according to the present invention, the main calcination temperature can be lowered to 1240 to 1320 ° C. by adding SiO 2 in the pulverizing step after the calcination. Along with that, grain growth of crystals is suppressed.

第2図は磁器組成物の焼成温度と結晶粒径の相関を示
し,第3図は製造される磁器組成物の結晶の構造を示す
写真である。
FIG. 2 shows the correlation between the firing temperature of the porcelain composition and the crystal grain size, and FIG. 3 is a photograph showing the crystal structure of the porcelain composition produced.

第2図,第3図から明らかな如く,本発明のSiO2を仮
焼成後に添加して本焼成する生調合方式によれば焼成温
度は1280℃以下で,製造される磁器組成物の結晶粒径は
2〜5μmと小さいものが得られる。なお,この方式で
は焼成温度が1320℃以上では付着がおきる。
As is clear from FIGS. 2 and 3, according to the raw blending method of the present invention, in which SiO 2 is added after calcination, the calcination temperature is 1280 ° C. or less, and the crystal grains of the porcelain composition produced are The diameter is as small as 2 to 5 μm. In this method, adhesion occurs when the firing temperature is 1320 ° C or higher.

一方,SiO2を添加しない従来のチタン酸塩方式で磁器
組成物を製造する場合,焼成温度が1280℃では焼け不足
で焼結困難となるので,1300℃以上で焼成する必要があ
る。また製造される結晶粒径も15〜25μm程度と比較的
大きい。これは第8図の写真からも明らかである。
On the other hand, when producing a ceramic composition by the conventional titanate method without adding SiO 2 , if the firing temperature is 1280 ° C, it will be difficult to sinter due to insufficient burning, so it is necessary to fire at 1300 ° C or higher. Also, the crystal grain size produced is relatively large, about 15 to 25 μm. This is also clear from the photograph in FIG.

ここで,本発明の磁器組成物においてその特性と組成
比の相関について検討する。
Here, the correlation between the characteristics and the composition ratio of the porcelain composition of the present invention will be examined.

第4図は本発明の基礎となるSrTiO3‐CaTiO3系磁器組
成物の組成比と特性との相関図である。
FIG. 4 is a correlation diagram between the composition ratio and characteristics of the SrTiO 3 —CaTiO 3 based porcelain composition which is the basis of the present invention.

第4図において,SrTiO3が71wt%以上即ち,CaTiO3
29wt%になると誘電率の温度係数が大きくなり,焼結性
が悪くなる。他方,SrTiO3が66wt%以下,即ち,CaTiO3
が34wt%以上でも同様に誘電率の温度係数が大きくな
り,Q値が低下していく。
In Fig. 4, SrTiO 3 is 71 wt% or more, that is, CaTiO 3 is
When it becomes 29 wt%, the temperature coefficient of the dielectric constant becomes large and the sinterability deteriorates. On the other hand, SrTiO 3 is 66 wt% or less, that is, CaTiO 3
When the value is more than 34 wt%, the temperature coefficient of permittivity also increases and the Q value decreases.

この傾向は本発明の如く,Nb2O5,SiO2を含む場合も
同様であり(例えば第1表No.7,8参照),SrTiO3とCaTi
O3の組成比はSrTiO3:66〜71wt%,CaTiO3:29〜34wt%と
するのが適当である。
This tendency is the same when Nb 2 O 5 and SiO 2 are contained as in the present invention (see, for example, Table 1, Nos. 7 and 8), SrTiO 3 and CaTi.
It is appropriate that the composition ratio of O 3 is SrTiO 3 : 66 to 71 wt% and CaTiO 3 : 29 to 34 wt%.

次にNb2O5とSiO2の添加量について検討する。Next, the amounts of Nb 2 O 5 and SiO 2 added will be examined.

第5図,第6図はSrTiO3:68wt%,CaTiO3:32wt%の時
のNb2O5の添加量と各特性との相関図である。
Figure 5, Figure 6 is SrTiO 3: 68wt%, CaTiO 3 : is a correlation diagram between the added amount and the characteristics of the Nb 2 O 5 when the 32 wt%.

第5図,第6図から明らかなように,Nb2O5の添加量
が0.2wt%以下では絶縁抵抗,誘電率の温度係数を高め
る効果は顕著ではない。また,Nb2O5の添加量が11wt%
以上になるとQ値が著しく低下する。そしてこれらの傾
向はSiO2を添加した場合も同様であり(例えば第1表N
o.11,12,17参照),Nb2O5の添加量は0.2〜11.0wt%の範
囲が適当である。また,Nb2O5はCaO・Nb2O5の形で作用さ
せても同様の総合的改良効果が得られる。
As is clear from FIGS. 5 and 6, when the amount of Nb 2 O 5 added is 0.2 wt% or less, the effect of increasing the temperature coefficient of insulation resistance and dielectric constant is not remarkable. Also, the amount of Nb 2 O 5 added is 11 wt%
If it becomes above, Q value will fall remarkably. And these tendencies are the same when SiO 2 is added (for example, Table 1 N
o.11,12,17), Nb 2 O 5 is suitable to be added in the range of 0.2-11.0wt%. In addition, Nb 2 O 5 can also be used in the form of CaO · Nb 2 O 5 to obtain the same overall improvement effect.

さらにSiO2の添加量が0.1wt%以下では本焼成温度を
下げる効果は顕著でなく,結晶粒径も小さくならない
(例えば第1表No.18,19参照)。またSiO2の添加量が1.
0wt%以上では誘電率が著しく低下して実用的でない
(例えば第1表No.23参照)。従ってSiO2の添加量は0.1
〜1.0wt%が適当である。
Furthermore, when the amount of SiO 2 added is 0.1 wt% or less, the effect of lowering the main firing temperature is not remarkable, and the crystal grain size does not decrease (see Table 1, Nos. 18 and 19). The amount of SiO 2 added is 1.
When it is 0 wt% or more, the dielectric constant is remarkably reduced and it is not practical (for example, see Table 1, No. 23). Therefore, the addition amount of SiO 2 is 0.1
〜1.0wt% is suitable.

また,Mn,Cr,Sb,Feの酸化物,Ce,La等を含む希土類元素
の酸化物ないしカオリン,カオリナイト,ペントナイト
等の粘土質物質の一種ないし二種以上の元素を含有させ
ることによって磁器組成物の焼成温度条件を緩和するな
ど一層の工業的有意義性が期待できる。
In addition, rare earth element oxides including Mn, Cr, Sb, Fe oxides, Ce, La, etc. or one or more elements of clayey substances such as kaolin, kaolinite, pentonite, etc. Further industrial significance can be expected by relaxing the firing temperature condition of the porcelain composition.

〔発明の効果〕〔The invention's effect〕

本発明の如くSrTiO3‐CaTiO3‐Nb2O5‐SiO2の4成分
系で温度補償用高誘電率磁器組成物を製造することによ
り,高い誘電率,小さい誘電率の温度係数及び高いQ値
を得るとともに,結晶粒径の細かい良好な性質を有する
ものを得ることが出来る。
By producing a high-permittivity porcelain composition for temperature compensation with a four-component system of SrTiO 3 -CaTiO 3 -Nb 2 O 5 -SiO 2 as in the present invention, a high dielectric constant, a low dielectric constant temperature coefficient and a high Q are obtained. In addition to obtaining the value, it is possible to obtain a material having a fine grain size and good properties.

また、副成分を含有させることにより磁器組成物の焼
成温度条件を緩和することができる。
Moreover, the firing temperature condition of the porcelain composition can be relaxed by including the subcomponent.

さらに、SiO2を原料の仮焼成後微粉砕時に添加するこ
とにより、本焼成温度を低下させ、そのため組成物の結
晶粒の成長を抑制し、製造される磁器組成物の結晶粒径
を小さくすることができる。
Further, by adding SiO 2 during the fine pulverization after the calcination of the raw material, the main calcination temperature is lowered, so that the growth of the crystal grains of the composition is suppressed and the crystal grain size of the porcelain composition produced is reduced. be able to.

また、本焼成以前の組成物の粉体粒径が0.5〜1.5μm
とすることにより結晶粒径の細かい良好な性質を有する
ものを得ることができる。
Also, the powder particle size of the composition before the main firing is 0.5 to 1.5 μm.
With the above, it is possible to obtain a fine crystal grain having good properties.

従ってこの磁器組成物を用いて,誘電体素子,例えば
薄層化した積層チップコンデンサ等を製造することが可
能となった。
Therefore, using this porcelain composition, it has become possible to manufacture a dielectric element, for example, a laminated multilayer chip capacitor.

【図面の簡単な説明】[Brief description of drawings]

第1図は,本発明の磁器組成物の製造工程説明図, 第2図は,磁器組成物の焼成温度と結晶粒径の相関図, 第3図は,本発明のSiO2を添加した磁器組成物の結晶の
構造を示す写真, 第4図は,SrTiO3‐CaTiO3系磁器組成物の組成比と特性
の相関図, 第5図,第6図は,Nb2O5添加量と特性の相関図, 第7図は従来の磁器組成物の製造工程説明図, 第8図は従来のSiO2を添加しない磁器組成物の結晶の構
造を示す写真である。
FIG. 1 is a diagram for explaining the manufacturing process of the porcelain composition of the present invention, FIG. 2 is a correlation diagram of the firing temperature of the porcelain composition and the crystal grain size, and FIG. 3 is a porcelain containing the SiO 2 of the present invention. A photograph showing the crystal structure of the composition, Fig. 4 is a correlation diagram of composition ratio and characteristics of SrTiO 3 -CaTiO 3 based porcelain composition, and Figs. 5 and 6 are Nb 2 O 5 addition amount and characteristics FIG. 7 is an explanatory view of the manufacturing process of a conventional porcelain composition, and FIG. 8 is a photograph showing a crystal structure of a conventional porcelain composition to which SiO 2 is not added.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】SrTiO3が66〜71重量%、CaTiO3が29〜34重
量%からなる組成物100部に対してNb2O5を0.2〜11.0重
量%、SiO2を0.1〜1.0重量%添加することを特徴とする
温度補償用高誘電率磁器組成物。
1. Nb 2 O 5 is 0.2 to 11.0 wt% and SiO 2 is 0.1 to 1.0 wt% with respect to 100 parts of a composition comprising 66 to 71 wt% of SrTiO 3 and 29 to 34 wt% of CaTiO 3. A high dielectric constant porcelain composition for temperature compensation, which is added.
【請求項2】SrTiO3が66〜71重量%、CaTiO3が29〜34重
量%からなる組成物100部に対してNb2O5を0.2〜11.0重
量%、SiO2が0.1〜1.0重量%添加したものを主成分とす
る組成物に対して、副成分としてMn、Cr、Sb、Feの酸化
物、Ce、La等を含む希土類元素の酸化物及び粘土物質の
うち一種または二種以上を含有することを特徴とする請
求項(1)記載の温度補償用高誘電率磁器組成物。
2. Nb 2 O 5 is 0.2 to 11.0% by weight and SiO 2 is 0.1 to 1.0% by weight based on 100 parts of a composition comprising 66 to 71% by weight of SrTiO 3 and 29 to 34% by weight of CaTiO 3. One or two or more of rare earth element oxides and clay substances containing Mn, Cr, Sb, Fe oxides, Ce, La, etc. as auxiliary components to the composition whose main component is added. The high dielectric constant porcelain composition for temperature compensation according to claim 1, characterized in that the composition is contained.
【請求項3】SrTiO3が66〜71重量%、CaTiO3が29〜34重
量%からなる組成物100部に対してNb2O5を0.2〜11.0重
量%、SiO2を0.1〜1.0重量%添加する温度補償用高誘電
率磁器組成物の製造方法において、原料の仮焼成後微粉
砕時にSiO2を0.1〜1.0重量%添加して本焼成を行うこと
を特徴とする温度補償用高誘電率磁器組成物の製造方
法。
3. Nb 2 O 5 is 0.2 to 11.0% by weight and SiO 2 is 0.1 to 1.0% by weight based on 100 parts of a composition containing 66 to 71% by weight of SrTiO 3 and 29 to 34% by weight of CaTiO 3. In the method for producing a high-permittivity porcelain composition for temperature compensation to be added, a high-permittivity for temperature compensation, characterized in that 0.1 to 1.0% by weight of SiO 2 is added during main pulverization after calcination of the raw material to perform main calcination. A method for producing a porcelain composition.
【請求項4】本焼成以前の組成物の粉体粒径が0.5〜1.5
μmであることを特徴とする請求項(3)記載の温度補
償用高誘電率磁器組成物の製造方法。
4. The powder particle size of the composition before the main firing is 0.5 to 1.5.
The method for producing a high-permittivity porcelain composition for temperature compensation according to claim (3), wherein the composition is μm.
JP63234200A 1988-09-19 1988-09-19 High-permittivity porcelain composition for temperature compensation and method for producing the same Expired - Fee Related JP2505030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63234200A JP2505030B2 (en) 1988-09-19 1988-09-19 High-permittivity porcelain composition for temperature compensation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63234200A JP2505030B2 (en) 1988-09-19 1988-09-19 High-permittivity porcelain composition for temperature compensation and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0283257A JPH0283257A (en) 1990-03-23
JP2505030B2 true JP2505030B2 (en) 1996-06-05

Family

ID=16967255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63234200A Expired - Fee Related JP2505030B2 (en) 1988-09-19 1988-09-19 High-permittivity porcelain composition for temperature compensation and method for producing the same

Country Status (1)

Country Link
JP (1) JP2505030B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839614A (en) 1991-12-06 1998-11-24 Aptar Group, Inc. Dispensing package
WO2001025164A1 (en) * 1999-10-05 2001-04-12 Tdk Corporation Process for producing dielectric ceramic composition
US6530504B2 (en) 2001-03-02 2003-03-11 Seaquist Closures Foreign, Inc. Multiple orifice valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020345B2 (en) * 1978-07-12 1985-05-21 株式会社村田製作所 Grain boundary insulated semiconductor ceramic composition
JPS63215019A (en) * 1987-03-04 1988-09-07 松下電器産業株式会社 Voltage-dependent nonlinear resistor porcelain compound

Also Published As

Publication number Publication date
JPH0283257A (en) 1990-03-23

Similar Documents

Publication Publication Date Title
JP3028503B2 (en) Non-reducing dielectric porcelain composition
JP2958817B2 (en) Non-reducing dielectric porcelain composition
JPH10310469A (en) Production of powdery starting material for dielectric ceramic and dielectric ceramic composition
JP2505030B2 (en) High-permittivity porcelain composition for temperature compensation and method for producing the same
JPS597665B2 (en) High dielectric constant porcelain composition
JP3250923B2 (en) Dielectric porcelain composition
JPS6128621B2 (en)
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JP3250917B2 (en) Dielectric porcelain composition
JP2902925B2 (en) Dielectric porcelain composition
JP3064518B2 (en) Dielectric porcelain composition
JP3109171B2 (en) Non-reducing dielectric porcelain composition
JP3250927B2 (en) Dielectric porcelain composition
JPS6117087B2 (en)
JPS6128620B2 (en)
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPS6211444B2 (en)
JP2958824B2 (en) Non-reducing dielectric porcelain composition
JPS6211443B2 (en)
JPS6230483B2 (en)
JPS6230482B2 (en)
JPH08183658A (en) Dielectric porcelain composition
JPS6216482B2 (en)
JPS63170807A (en) Manufacture of non-reducing dielectric ceramic
JPH0449504B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees