JPS6250968B2 - - Google Patents
Info
- Publication number
- JPS6250968B2 JPS6250968B2 JP54140712A JP14071279A JPS6250968B2 JP S6250968 B2 JPS6250968 B2 JP S6250968B2 JP 54140712 A JP54140712 A JP 54140712A JP 14071279 A JP14071279 A JP 14071279A JP S6250968 B2 JPS6250968 B2 JP S6250968B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric constant
- grain
- added
- capacitors
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 claims description 13
- 229910052573 porcelain Inorganic materials 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- 229910002367 SrTiO Inorganic materials 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 description 25
- 239000004065 semiconductor Substances 0.000 description 19
- 229910002113 barium titanate Inorganic materials 0.000 description 10
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 10
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 8
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 239000003985 ceramic capacitor Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229940071182 stannate Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Description
本発明は粒界絶縁型の半導体コンデンサとして
有用な誘電体磁器組成物に関するものであり、特
に大きな比誘電率を持つと同時に誘電正接(tan
δ)および絶縁性の優れた半導体コンデンサを提
供することを目的としたものである。
近年、多結晶焼結体において半導性を持たせ結
晶の粒界を選択的に絶縁化し、半導性結晶の表面
に得た誘電体層による容量素子が製造されるよう
になり、従来の磁器コンデンサに比較して非常に
大きな比誘電率が得られることは一般に知られて
いる。
これは粒界絶縁型半導体コンデンサと言われ、
主成分としてチタン酸バリウムとチタン酸ストロ
ンチウムを用いたものがある。チタン酸バリウム
にチタン酸ストロンチウムやスズ酸バリウム等を
固溶させたチタン酸バリウム固溶体を主成分とす
るものをチタン酸バリウム系の粒界絶縁型半導体
コンデンサと称し、この種のものは比誘電率が
30000〜70000と非常に大きいものが得られ、小型
の容量素子を提供している。このチタン酸バリウ
ム系粒界絶縁型半導体コンデンサは約50〜100μ
の結晶粒径を有する半導性磁器の表面にCuO、
Cr2O3、Bi2O3、MnO等の酸化物を塗布し熱拡散
処理を施し、結晶粒界にこれら酸化物を拡散さ
せ、粒界を絶縁化することは一般によく知られて
いる。
チタン酸バリウム系磁器の結晶粒界は内外の文
献等より考察すると速い拡散を生じさせる拡散パ
イプとなつており、言いかえれば結晶粒界の乱れ
の極めて多い状態を形成し、その厚みもかなり厚
いものとなつている。このためチタン酸バリウム
系の粒界絶縁型半導体コンデンサのtanδは3〜
5%と高く、またその強誘電性の影響のため容量
のバイアス電圧依存性が悪い等の欠点があり、コ
ンデンサとしての実用上の有用性が制限されてい
た。
これに反してチタン酸ストロンチウムを主成分
とする粒界絶縁型半導体コンデンサにおいて、チ
タン酸ストロンチウムの結晶粒界はチタン酸バリ
ウムに比較すると、拡散パイプとしてのはたらき
が顕著でない。即ち結晶粒界は余り乱れておら
ず、その厚さも極めて薄いものであろう。このた
めチタン酸ストロンチウムの比誘電率がチタン酸
バリウムに比較して1桁低いにもかかわらず、粒
界絶縁型半導体コンデンサの比誘電率としてみた
とき、10000以上の比誘電率が得られるのはこの
相違に基因するものであろう。
従来知られているチタン酸ストロンチウムを主
成分とする粒界絶縁型半導体コンデンサは誘電正
接(tanδ)が1%前後であり、容量の温度特性
およびDCバイアス依存性はチタン酸バリウム系
粒界絶縁型半導体コンデンサに比較しても、一般
の高誘電率磁器コンデンサと比較しても優れてい
る。しかし小型化された容量素子を工業的に提供
するには未だ比誘電率が充分でなく、絶縁抵抗の
DC電圧依存性および耐電圧も悪く使用用途の制
約となつている。
しかしチタン酸ストロンチウム系粒界絶縁型半
導体コンデンサは従来知られている高誘電率磁器
コンデンサおよび半導体コンデンサに比較して誘
電正接容量の温度特性およびDCバイアス特性は
極めて優れており、比誘電率が大きくかつ耐電圧
の高い磁器誘電体組成物の出現により低電圧電子
回路の小型化、安定化に大きく寄与するものであ
る。
本発明はSrTiO3のSr2+イオンの一部をBi3+イ
オンで置換したものを主成分とし、これにZnOを
微量添加してなる組成物を焼成および還元して得
た半導性磁器の結晶粒界を選択的に絶縁化するこ
とを特徴とした粒界絶縁型半導体コンデンサ用の
誘電体磁器組成物であり、チタン酸ストロンチウ
ム系粒界絶縁型半導体コンデンサの優れた誘電正
接、容量の温度特性およびDCバイアス特性を保
持し、極めて大きな比誘電率にもかかわらず高い
耐電圧を有することを特徴とするものであり、以
下にその実施例を示す。
実施例 (1)
本発明は(Sr1-xBix)TiO3(但しxは原子数
比を示し、0.0003〜0.007)で表される組成物を
主成分とし、この主成分に対しZnOをy重量%
(yは0.03〜3.0)添加する場合においてx、yの
組成割合を第1表に示す。第1表に示す組成中
(Sr1-xBix)TiO3となるよう正確に秤量し、湿式
混合を行い、空気中1100℃で2時間予備焼成を行
い、原料粉末の分解および固相反応を起さしめ、
得られた反応生成粉末に対してZnOをy重量%添
加し、ボールミルにて粉砕、混合し、調整原料を
得た。
得られた調整原料にバインダとしてPVAの有
機バインダを約3.0重量%添加混合し、顆粒状に
造粒して、1000Kg/cm2の圧力で円板状に加圧成型
し、空気中で1400〜1450℃で2時間焼成した。さ
らに焼結した磁器を水素を10%含有した窒素の還
元雰囲気中にて1450℃2時間還元し、直径約12.0
mmφ、厚み約0.40mmの円板状の半導性磁器を得
た。この半導性磁器にBi2O3とCuOを含有した拡
散ペーストを3〜10mg塗布し、1100〜1150℃にて
2時間熱処理を行い、結晶粒界を選択的に絶縁化
し、得られた円板状誘電体磁器に通常の方法で銀
ペーストを塗布し、800℃で30分間焼付を行つて
電極を形成し、粒界絶縁型半導体コンデンサ用素
子を得た。
このように作成したコンデンサ各試料につき測
定した結果を第1表に示した。容量tanδは周波
数1kHz、1vrmsで測定し、容量は比誘電率に換算
し、tanδは実測値を示した。
絶縁抵抗は25VDCを30秒間印加後の抵抗値を
抵抗率に換算した値である。
破壊電圧はDC電圧の昇圧破壊方式にて行い、
破壊した電圧を電界強度に換算して示した。
The present invention relates to a dielectric ceramic composition useful as a grain-boundary insulated semiconductor capacitor.
δ) and provides a semiconductor capacitor with excellent insulation properties. In recent years, capacitive elements have been manufactured by imparting semiconductivity to polycrystalline sintered bodies and selectively insulating the grain boundaries of the crystals, thereby creating a dielectric layer on the surface of the semiconducting crystal. It is generally known that a very large dielectric constant can be obtained compared to a ceramic capacitor. This is called a grain boundary insulated semiconductor capacitor.
Some use barium titanate and strontium titanate as the main ingredients. Capacitors whose main component is barium titanate solid solution in which strontium titanate, barium stannate, etc. are dissolved in barium titanate are called barium titanate-based grain boundary insulated semiconductor capacitors, and this type of capacitor has a relative dielectric constant. but
Very large capacitors of 30,000 to 70,000 can be obtained, providing small capacitive elements. This barium titanate grain boundary insulated semiconductor capacitor is approximately 50 to 100μ
CuO on the surface of semiconducting porcelain with a grain size of
It is generally well known that oxides such as Cr 2 O 3 , Bi 2 O 3 , MnO, etc. are applied and thermally diffused to diffuse these oxides into the grain boundaries to insulate the grain boundaries. Considering the grain boundaries of barium titanate-based porcelain based on domestic and foreign literature, etc., it is found that they act as diffusion pipes that cause rapid diffusion.In other words, they form a highly disordered state of grain boundaries and are quite thick. It has become a thing. Therefore, the tan δ of barium titanate-based grain boundary insulated semiconductor capacitors is 3 to 3.
5%, and has drawbacks such as poor bias voltage dependence of capacitance due to its ferroelectric properties, limiting its practical usefulness as a capacitor. On the other hand, in a grain boundary insulated semiconductor capacitor mainly composed of strontium titanate, the grain boundaries of strontium titanate do not function as a diffusion pipe as prominently as compared to barium titanate. That is, the grain boundaries are not very disordered and their thickness is probably extremely thin. Therefore, even though the dielectric constant of strontium titanate is an order of magnitude lower than that of barium titanate, when viewed as the dielectric constant of a grain boundary insulated semiconductor capacitor, it is possible to obtain a dielectric constant of 10,000 or more. This may be due to this difference. Conventionally known grain boundary insulated semiconductor capacitors mainly composed of strontium titanate have a dielectric loss tangent (tan δ) of around 1%, and the temperature characteristics and DC bias dependence of capacitance are lower than that of barium titanate grain boundary insulated capacitors. It is superior to both semiconductor capacitors and general high dielectric constant ceramic capacitors. However, the dielectric constant is still insufficient to provide miniaturized capacitive elements industrially, and the insulation resistance is still insufficient.
It also has poor DC voltage dependence and withstand voltage, which limits its usage. However, strontium titanate-based grain boundary insulated semiconductor capacitors have extremely superior temperature characteristics and DC bias characteristics of dissipation tangent capacitance compared to conventionally known high dielectric constant ceramic capacitors and semiconductor capacitors, and have a large relative dielectric constant. In addition, the appearance of ceramic dielectric compositions with high withstand voltage greatly contributes to the miniaturization and stabilization of low-voltage electronic circuits. The present invention is a semiconducting porcelain obtained by firing and reducing a composition whose main component is SrTiO 3 in which some of the Sr 2+ ions have been replaced with Bi 3+ ions, to which a small amount of ZnO is added. This is a dielectric ceramic composition for grain boundary insulated semiconductor capacitors that is characterized by selectively insulating the grain boundaries of strontium titanate based grain boundary insulated semiconductor capacitors. It is characterized by maintaining temperature characteristics and DC bias characteristics and having a high withstand voltage despite an extremely large dielectric constant. Examples thereof are shown below. Examples (1) The present invention has a composition represented by (S r1-x Bix)TiO 3 (where x indicates the atomic ratio, 0.0003 to 0.007) as the main component, and ZnO is added to this main component as y. weight%
(y is 0.03 to 3.0) Table 1 shows the composition ratios of x and y when added. Accurately weigh TiO3 to have the composition (S r1-x Bix) shown in Table 1, perform wet mixing, and pre-calcine in air at 1100°C for 2 hours to decompose the raw material powder and undergo solid phase reaction. Wake me up,
Y% by weight of ZnO was added to the obtained reaction product powder, which was ground and mixed in a ball mill to obtain a prepared raw material. Approximately 3.0% by weight of an organic binder of PVA is added and mixed to the obtained prepared raw material as a binder, granulated into granules, pressure molded into a disk shape at a pressure of 1000 kg/ cm2 , and heated in air at 1400 kg/cm2. It was baked at 1450°C for 2 hours. Furthermore, the sintered porcelain was reduced for 2 hours at 1450°C in a nitrogen reducing atmosphere containing 10% hydrogen.
A disk-shaped semiconducting porcelain with mmφ and thickness of about 0.40 mm was obtained. 3 to 10 mg of a diffusion paste containing Bi 2 O 3 and CuO was applied to this semiconducting porcelain, and heat treatment was performed at 1100 to 1150°C for 2 hours to selectively insulate the grain boundaries. Silver paste was applied to plate-shaped dielectric ceramic using a conventional method and baked at 800°C for 30 minutes to form electrodes, thereby obtaining a grain-boundary insulated semiconductor capacitor element. Table 1 shows the measurement results for each sample of the capacitor thus prepared. The capacitance tan δ was measured at a frequency of 1 kHz and 1 Vrms, the capacitance was converted to a dielectric constant, and the tan δ was the actual measured value. Insulation resistance is the value obtained by converting the resistance value after applying 25VDC for 30 seconds to resistivity. The breakdown voltage is determined by DC voltage step-up breakdown method.
The breakdown voltage is converted into electric field strength and shown.
【表】
第1表において試料番号1,11,12,16,17は
本発明の範囲外のものであり、試料番号2〜10お
よび13〜15は本発明に関するものである。試料番
号6の組成においては比誘電率が50600と極めて
大きく、tanδも0.6%と優れている。この試料を
用いて0.1μFの粒界絶縁型半導体コンデンサと
したとき次のような特性となつた。[Table] In Table 1, sample numbers 1, 11, 12, 16, and 17 are outside the scope of the present invention, and sample numbers 2 to 10 and 13 to 15 are related to the present invention. The composition of sample number 6 has an extremely large dielectric constant of 50,600, and an excellent tan δ of 0.6%. When this sample was used to make a 0.1 μF grain boundary insulated semiconductor capacitor, the following characteristics were obtained.
【表】
粒界絶縁型半導体コンデンサにおいて、比誘電
率を向上させると、一般に絶縁抵抗耐電圧が悪く
なる傾向があるが、本発明に係る磁器組成物にお
いては、比誘電率が50000という良好な特性にも
かかわらず、破壊電圧は400Vと極めて高い特性
を有していることが大きな特徴である。
第1表の特性を出すために使用した拡散ペース
トはBi2O3とCuOをモル比で3:1の割合で充分
混合し、650℃で2時間反応させ、これをエチル
セルロース系樹脂を混ぜペースト状にして半導性
磁器の両表面に3〜10mg塗布し、熱処理により拡
散剤を結晶粒界に熱拡散し、結晶粒界を選択的に
絶縁化して誘電体磁器としたものである。
本発明の(Sr1-xBix)TiO3+yZnO組成におい
て、Bi3+の含有量であるxを0.0003〜0.007(原子
数比)またy(ZnOの添加量)を0.03〜3.0重量
%と限定した理由は以下による。
Bi2O3およびZnOの添加量が0の場合、、第1表
の試料番号1,12,17より明きらかなように比誘
電率が低い。これは1450℃の焼成にても粒成長し
ないためである。
Bi2O3の添加量は原子数比で0.0003程度含有さ
せれば明きらかに粒成長がみられ、比誘電率も向
上する。このためxの特許請求の範囲の下限とし
た。
ZnOの添加量は0.03重量%程度含有させること
により粒成長が顕著にみられ、その効果は著し
い。このためyの特許請求の範囲の下限とした。
ZnOの添加量が3.0重量%を越えると粒成長を
促進するが、磁器の融着が起り、また結晶粒が成
長しすぎて絶縁抵抗および破壊電圧が低下する。
Bi2O3の添加量が0.7重量%を越えるとtanδが増
加し比誘電率も低下するため好ましくない。
本発明の実施例においてはBi2O3、ZnOを用い
たが、BiまたはZnの炭酸塩、硝酸塩等の塩類を
用いても同等の特性が期待できる。
Bi2O3、ZnOの最適添加量は第1表より明らか
なようにxが0.003、yは0.2重量%のときであ
る。このとき比誘電率は50600と極めて良好であ
り、この誘電体磁器を用いた半導体コンデンサの
特性は第2表に示した通りである。
本発明に係る誘電体磁器組成物は上述したよう
に極めて高い比誘電率を有し、かつ絶縁抵抗およ
び破壊電圧は優れた特性を合わせ持つことが大き
な特徴であり、小型大容量でかつ高い耐電圧を有
する極めて有用な粒界絶縁型半導体コンデンサで
ある。[Table] In grain boundary insulated semiconductor capacitors, improving the dielectric constant generally tends to worsen the insulation resistance withstand voltage, but the ceramic composition according to the present invention has a good dielectric constant of 50,000. Despite its characteristics, its major feature is that it has an extremely high breakdown voltage of 400V. The diffusion paste used to achieve the properties shown in Table 1 was made by thoroughly mixing Bi 2 O 3 and CuO at a molar ratio of 3:1, reacting at 650°C for 2 hours, and mixing this with ethyl cellulose resin. 3 to 10 mg of the dielectric material is applied to both surfaces of semiconductive porcelain, and the diffusing agent is thermally diffused to the grain boundaries by heat treatment to selectively insulate the grain boundaries, resulting in dielectric porcelain. In the (S r1-x Bix)TiO 3 +yZnO composition of the present invention, the Bi 3+ content x is limited to 0.0003 to 0.007 (atomic ratio) and y (added amount of ZnO) is limited to 0.03 to 3.0% by weight. The reason for this is as follows. When the amounts of Bi 2 O 3 and ZnO added are 0, the dielectric constant is low as is clear from sample numbers 1, 12, and 17 in Table 1. This is because grains do not grow even when fired at 1450°C. If the amount of Bi 2 O 3 added is approximately 0.0003 in terms of atomic ratio, grain growth will be clearly observed and the dielectric constant will also improve. Therefore, it is set as the lower limit of the claim of x. When ZnO is added in an amount of about 0.03% by weight, grain growth becomes remarkable, and the effect is remarkable. Therefore, the lower limit of the scope of the claims of y is set. When the amount of ZnO added exceeds 3.0% by weight, grain growth is promoted, but porcelain fusion occurs and crystal grains grow too much, resulting in a decrease in insulation resistance and breakdown voltage.
If the amount of Bi 2 O 3 added exceeds 0.7% by weight, tan δ increases and the dielectric constant decreases, which is not preferable. In the examples of the present invention, Bi 2 O 3 and ZnO were used, but equivalent characteristics can be expected even if salts such as carbonates and nitrates of Bi or Zn are used. As is clear from Table 1, the optimum amounts of Bi 2 O 3 and ZnO to be added are when x is 0.003 and y is 0.2% by weight. At this time, the dielectric constant was extremely good at 50,600, and the characteristics of the semiconductor capacitor using this dielectric ceramic are shown in Table 2. As mentioned above, the dielectric ceramic composition of the present invention has an extremely high dielectric constant, and has excellent properties in terms of insulation resistance and breakdown voltage. This is a very useful grain boundary insulated semiconductor capacitor with voltage.
Claims (1)
オンをBi3+イオンに置換したものを主成分とし、
この主成分に対しZnOを0.03〜3.0重量%添加し
てなる組成物を焼成および還元により半導性磁器
とし、その結晶粒界を絶縁化した誘電体磁器組成
物。1 SrTiO 3 whose main component is 0.03 to 0.7 atomic % of Sr 2+ ions replaced with Bi 3+ ions,
A dielectric porcelain composition in which a composition in which 0.03 to 3.0% by weight of ZnO is added to this main component is made into semiconducting porcelain by firing and reduction, and the crystal grain boundaries are insulated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14071279A JPS5664422A (en) | 1979-10-30 | 1979-10-30 | Dielectric porcelain composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14071279A JPS5664422A (en) | 1979-10-30 | 1979-10-30 | Dielectric porcelain composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5664422A JPS5664422A (en) | 1981-06-01 |
JPS6250968B2 true JPS6250968B2 (en) | 1987-10-28 |
Family
ID=15274957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14071279A Granted JPS5664422A (en) | 1979-10-30 | 1979-10-30 | Dielectric porcelain composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5664422A (en) |
-
1979
- 1979-10-30 JP JP14071279A patent/JPS5664422A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5664422A (en) | 1981-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5820133B2 (en) | Porcelain for semiconductor porcelain capacitors and manufacturing method thereof | |
JPS6250968B2 (en) | ||
JP2614228B2 (en) | Ceramic forming composition, semiconductor porcelain base and dielectric porcelain base using the same, and capacitor | |
JP2848712B2 (en) | Dielectric porcelain composition | |
JPS606535B2 (en) | porcelain composition | |
JPS6032344B2 (en) | Grain boundary insulated semiconductor porcelain capacitor material | |
JPS6126208B2 (en) | ||
JPH0734415B2 (en) | Grain boundary insulation type semiconductor porcelain composition | |
JP2689439B2 (en) | Grain boundary insulation type semiconductor porcelain body | |
JPS6043651B2 (en) | Composition for semiconductor ceramic capacitors | |
JPS62262303A (en) | High dielectric constant porcelain compound | |
JPS6046811B2 (en) | Composition for semiconductor ceramic capacitors | |
JP2734910B2 (en) | Method for producing semiconductor porcelain composition | |
JPS6128209B2 (en) | ||
JPS6126207B2 (en) | ||
JP2762831B2 (en) | Method for producing semiconductor porcelain composition | |
JP2900687B2 (en) | Semiconductor porcelain composition and method for producing the same | |
JP2734888B2 (en) | Method for producing semiconductor porcelain composition | |
JP2936876B2 (en) | Semiconductor porcelain composition and method for producing the same | |
JPS6048897B2 (en) | Composition for semiconductor ceramic capacitors | |
JPS6159654B2 (en) | ||
JPS6248368B2 (en) | ||
JP2862654B2 (en) | Dielectric ceramic composition for temperature compensation | |
JPS6128208B2 (en) | ||
JPS622695B2 (en) |