JPS6159654B2 - - Google Patents

Info

Publication number
JPS6159654B2
JPS6159654B2 JP2552980A JP2552980A JPS6159654B2 JP S6159654 B2 JPS6159654 B2 JP S6159654B2 JP 2552980 A JP2552980 A JP 2552980A JP 2552980 A JP2552980 A JP 2552980A JP S6159654 B2 JPS6159654 B2 JP S6159654B2
Authority
JP
Japan
Prior art keywords
weight
parts
catio
mol
srtio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2552980A
Other languages
Japanese (ja)
Other versions
JPS56122119A (en
Inventor
Hirooki Naganuma
Hiroshi Shimamura
Tadao Koizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KCK CO Ltd
Original Assignee
KCK CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KCK CO Ltd filed Critical KCK CO Ltd
Priority to JP2552980A priority Critical patent/JPS56122119A/en
Publication of JPS56122119A publication Critical patent/JPS56122119A/en
Publication of JPS6159654B2 publication Critical patent/JPS6159654B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は、静電容量の温度変化率が良好で、誘
電損失の少ない小型コンデンサを容易に製造でき
る粒界絶縁型半導体磁器コンデンサ素子の製造方
法に関する。 チタン酸ストロンチウム(SrTiO3)を主成分と
した粒界絶縁型半導体磁器コンデンサは、小型大
容量に加えて電気的諸特性も良好なことから、各
方面に使用されている。 しかしながら、従来、開発材料が高誘電率系に
片寄り、発振回路用コンデンサ、同調用コンデン
サ、高周波回路用コンデンサ等として、100〜
1000pF程度の小容量小型コンデンサを設計する
ときに、素体を小さくして厚みを必要以上に厚く
する等の方法が行なわれたが、あまりにも誘電率
が大きく、成型厚みや、電極面積のわずかな誤差
等で、容量値の変動が大きくなり、許容差の小さ
いコンデンサを設計した場合、歩留りが悪い等不
都合が多かつた。また、一般的に高誘電率のもの
は温度特性も±10%〜±15%位で用いられている
が、それに対して、前述のような用途目的として
は、誘電率5000〜35000と幅広く、しかも誘電損
失1%以下、温度変化率±10%以内、とバランス
のとれたコンデンサ材料が要求されていた。 本発明は、かかる現状に鑑みてなされたもの
で、チタン酸ストロンチウム(SrTiO3)系を使用
して小型小容量のコンデンサを精度、歩留り良く
製造することを目的とし、チタン酸ストロンチウ
ム(SrTiO3)とチタン酸カルシウム(CaTiO3)を
適量組合せ、これにより温度変化率を少くし、ま
た誘電率も変動させるものである。 一般に、SrTiO3+CaTiO3系組成物は、単純な
方法では半導体化が難しく、特にCaTiO3添加量
が増す程困難となるため、好適なものではなかつ
た。 しかるに、本発明は、かかる不都合を有する
SrTiO3+CaTiO3を主成分とし、これに副成分と
してチタン酸ビスマス(Bi2O3・2TiO3)及び半導
体化剤として酸化ネオジウム(Nd2O3)を適当範
囲に組合せ添加し、更にやや強度の還元雰囲気で
焼成を行なうことにより、SrTiO3+CaTiO3系の
欠点を解消し、もつて前述した如き目的を達成し
得る半導体磁器コンデンサを提供するものであ
る。かくして得られた半導体磁器素体は、酸化鉛
を主成分とした再酸化剤を塗布し、大気中で熱処
理して、粒界を絶縁化される。 本発明に於て、主成分であるSrTiO3+CaTiO3
の配合割合は、SrTiO395〜70モル%、CaTiO35
〜30モル%である。SrTiO3が95モル%を越える
と、誘電損失、温度変化率が大きくなり、逆に70
モル%未満の場合には誘電率が低くなり、好まし
くない。また、CaTiO3が5モル%未満では、誘
電率、誘電損失、温度変化率が大きくなり、逆に
30モル%を越えると、誘電損失、温度変化率が大
きくなり、好ましくない。更に、主成分である
SrTiO3+CaTiO3の配合割合による半導体磁器コ
ンデンサに与える影響を知るため、主成分100重
量部に対し、副成分としてNd2O30.5重量部、
Bi2O3・2TiO21.0重量部を添加した組成物に於
て、SrTiO3とCaTiO3のモル比を変動させた時の
電気的特性を図面に示す。これによると、
SrTiO3のモル比が減少するにしたがつて誘電率
(ε)は低下し、誘電率温度変化率が小さくな
り、また、SrTiO3が95モル%を越えた時及び30
モル%未満のときにtanδが大きくなることが判
明した(第1表中、実験No.15,16,17,18,19,
20,21,22)。而して、誘電率が5000〜35000と幅
広く、tanδ1%以下、誘電率温度変化率±10%
以内、とバランスのとれたコンデンサ材料の条件
を満足し得るものは、上述した如く、主成分が
SrTiO395〜70モル%+CaTiO35〜30モル%の範
囲に在る場合に限られることが確認された。 また、副成分であるNd2O3とBi2O3・2TiO2の配
合割合は、SrTiO3+CaTiO3100重量部に対し、
Nd2O30.2〜1.0重量部、Bi2O3・2TiO20.5〜2.0重
量部の範囲に在る時にバランスのとれたコンデン
サ材料の条件を満足し得るものである(第1表
中、実験No.8,9,12,13,16〜21,24〜29)。
Nd2O3が0.2重量部未満では半導体化が進まず、
満足な特性が得られない。逆に、1.0重量部を越
えると、誘電損失が大きくなり、好ましくない。
また、Bi2O3・2TiO2が0.5重量部未満では、誘電
損失、温度変化率が大きく、逆に2.0重量部を越
えると、誘電損失が大きくなり、好ましくない。 以下、本発明を実施例及び比較例により詳述す
る。 実施例 SrTiO395〜70モル%とCaTiO35〜30モル%と
からなる主成分100重量部と、主成分100重量部に
対しNd2O30.2〜1.0重量部、Bi2O3・2TiO20.5〜
2.0重量部の副成分をそれぞれ秤量し、ポツトミ
ルに純水を加えて6時間回転混合後、乾燥、篩通
しを行つて仕上り原料とした。尚、各成分は前も
つて、仮焼、粉砕、製造されたものを使用した。
仕上り原料に有機質バインダーを添加して造粒
し、約500Kg/cm2で加圧成形し、4.0mm径×0.4mm
厚さの試料を作成した。 これを、ジルコニウムのサヤを用いて大気中
1100℃1時間、脱バインダー後引続き、H225%
−N275%の還元性雰囲気中で、1380℃、2時間
焼成して、半導体化磁器となした。この磁器素体
に酸化鉛を主成分とし、酸化ビスマス、酸化ホウ
素、酸化珪素等混合の拡散用ペーストを素体に対
し、4〜8重量%塗布し、大気中にて1100℃1時
間熱処理し、粒界を拡散再酸化させ、その後公知
の方法で銀電極を焼付て、コンデンサとなした。 かくして、得られたコンデンサの電気的特性の
測定結果及び各組成の配合割合を第1表に示す
(実験No.8,9,12,13,16〜21,24〜29)。尚、
誘電率及び誘電損失は20℃1kHz、1V.A.Cで測定
し、温度変化率は20℃を基準とした。 比較例 SrTiO3100〜65モル%とCaTiO30〜35モル%と
からなる主成分100重量部と、主成分100重量部に
対しNd2O30〜1.5重量部、Bi2O3・2TiO20〜2.5重
量部の副成分をそれぞれ秤量し、ポツトミルに純
水を加えて、実施例と同様の方法で半導体化磁器
を作成し、同様の方法でコンデンサとなした。か
くして得られたコンデンサの電気的特性の測定結
果を第1表中に示す。 実験No.1〜3はBi2O3・2TiO2を用いなかつた
もので、誘電損失、温度変化率が大きく、また実
験No.3は誘電率が低かつた。実験No.4〜7は副成
分の添加が少い領域で、半導体化が進まず満足な
特性は得られていない。実験No.10はNd2O3の多い
もので損失が大となつた。実験No.11はBi2O3
2TiO2の少いもので、誘電損失、温度変化率共に
大となつた。実験No.14はBi2O3・2TiO2の多いも
ので、誘電損失大となつた。実験No.15はCaTiO3
を添加しなかつたもので、誘電率が大き過ぎた。
実験No.22はCaTiO3が多く、誘電率が低過ぎた。
実験No.23はBi2O3・2TiO2が少く、誘電損失、温
度変化率共に大となつた。実験No.30,31は副成分
の両方を多く組合せた例であるが、誘電損失が大
きく、同主成分で他の組合せより誘電率も低下し
た。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a grain-boundary insulated semiconductor ceramic capacitor element that can easily manufacture a small capacitor with a good temperature change rate of capacitance and low dielectric loss. Grain-boundary insulated semiconductor ceramic capacitors containing strontium titanate (SrTiO 3 ) as a main component are used in various fields because of their small size, large capacity, and good electrical characteristics. However, conventionally, developed materials have been biased towards high dielectric constant materials, and have been used as capacitors for oscillation circuits, tuning capacitors, high frequency circuits, etc.
When designing small capacitors with a small capacitance of about 1000pF, methods such as making the element smaller and making it thicker than necessary were used, but the dielectric constant was too high and the molding thickness and electrode area were small. Due to such errors, the capacitance value fluctuates greatly, and if a capacitor with small tolerance is designed, there are many disadvantages such as poor yield. In addition, high dielectric constant materials are generally used with temperature characteristics of ±10% to ±15%, but in contrast, materials with a dielectric constant of 5,000 to 35,000 are widely used for the purposes mentioned above. Moreover, capacitor materials were required to have a well-balanced dielectric loss of less than 1% and a temperature change rate of less than ±10%. The present invention was made in view of the current situation, and aims to manufacture small and small capacitors with high accuracy and yield using strontium titanate (SrTiO 3 ). A suitable amount of calcium titanate (CaTiO 3 ) is combined to reduce the rate of temperature change and also change the dielectric constant. In general, SrTiO 3 +CaTiO 3 -based compositions are not suitable because it is difficult to convert them into semiconductors by simple methods, and it becomes particularly difficult as the amount of CaTiO 3 added increases. However, the present invention has such disadvantages.
The main component is SrTiO 3 +CaTiO 3 , to which are added bismuth titanate (Bi 2 O 3 .2TiO 3 ) as a subcomponent and neodymium oxide (Nd 2 O 3 ) as a semiconducting agent in an appropriate range, and it is also slightly stronger. By performing the firing in a reducing atmosphere, the drawbacks of the SrTiO 3 +CaTiO 3 system can be eliminated, thereby providing a semiconductor ceramic capacitor that can achieve the above-mentioned objectives. The semiconductor porcelain body thus obtained is coated with a reoxidizing agent containing lead oxide as a main component and heat-treated in the atmosphere to insulate the grain boundaries. In the present invention, the main components SrTiO 3 +CaTiO 3
The blending ratio is SrTiO 3 95 to 70 mol%, CaTiO 3 5
~30 mol%. When SrTiO 3 exceeds 95 mol%, dielectric loss and temperature change rate increase;
If it is less than mol%, the dielectric constant becomes low, which is not preferable. In addition, when CaTiO 3 is less than 5 mol%, the dielectric constant, dielectric loss, and temperature change rate increase;
If it exceeds 30 mol%, dielectric loss and temperature change rate will increase, which is not preferable. Furthermore, the main component
In order to understand the influence of the blending ratio of SrTiO 3 +CaTiO 3 on semiconductor ceramic capacitors, 0.5 parts by weight of Nd 2 O 3 as a subcomponent was added to 100 parts by weight of the main component,
The drawing shows the electrical characteristics when the molar ratio of SrTiO 3 and CaTiO 3 is varied in a composition to which 1.0 part by weight of Bi 2 O 3 .2TiO 2 is added. according to this,
As the molar ratio of SrTiO 3 decreases, the dielectric constant (ε) decreases, and the rate of change in dielectric constant with temperature decreases.
It was found that tan δ becomes large when the amount is less than mol% (in Table 1, Experiment Nos. 15, 16, 17, 18, 19,
20, 21, 22). Therefore, the dielectric constant is wide ranging from 5000 to 35000, tan δ1% or less, and the temperature change rate of the dielectric constant is ±10%.
As mentioned above, capacitor materials that can satisfy the condition of well-balanced capacitor materials, such as
It was confirmed that this is limited to the range of 95 to 70 mol % of SrTiO 3 + 5 to 30 mol % of CaTiO 3 . In addition, the blending ratio of the subcomponents Nd 2 O 3 and Bi 2 O 3 2TiO 2 is as follows :
When Nd 2 O 3 is in the range of 0.2 to 1.0 parts by weight and Bi 2 O 3 2TiO 2 is in the range of 0.5 to 2.0 parts by weight, the conditions for a well-balanced capacitor material can be satisfied. No. 8, 9, 12, 13, 16-21, 24-29).
If Nd 2 O 3 is less than 0.2 parts by weight, semiconductor formation will not progress;
Satisfactory characteristics cannot be obtained. On the other hand, if it exceeds 1.0 parts by weight, dielectric loss increases, which is not preferable.
Furthermore, if Bi 2 O 3 .2TiO 2 is less than 0.5 parts by weight, the dielectric loss and temperature change rate will be large, and if it exceeds 2.0 parts by weight, the dielectric loss will be large, which is not preferable. Hereinafter, the present invention will be explained in detail with reference to Examples and Comparative Examples. Example 100 parts by weight of main components consisting of 95-70 mol% SrTiO 3 and 5-30 mol% CaTiO 3 , 0.2-1.0 parts by weight of Nd 2 O 3 and Bi 2 O 3 2TiO based on 100 parts by weight of main components. 2 0.5~
2.0 parts by weight of each of the subcomponents was weighed, pure water was added to a pot mill, and the mixture was mixed by rotation for 6 hours, dried, and passed through a sieve to obtain a finished raw material. In addition, each component was previously prepared, calcined, crushed, and manufactured.
Add an organic binder to the finished raw material and granulate it, pressure mold at approximately 500Kg/ cm2 , 4.0mm diameter x 0.4mm
A sample of the same thickness was prepared. This is carried out into the atmosphere using a zirconium pod.
1100℃ for 1 hour, followed by debinding, H 2 25%
- Semiconductorized porcelain was obtained by firing at 1380° C. for 2 hours in a reducing atmosphere of 75% N 2 . A diffusion paste containing lead oxide as the main component and a mixture of bismuth oxide, boron oxide, silicon oxide, etc., was applied to the porcelain body in an amount of 4 to 8% by weight, and heat treated at 1100℃ for 1 hour in the atmosphere. , grain boundaries were diffused and reoxidized, and then silver electrodes were baked by a known method to form a capacitor. Table 1 shows the measurement results of the electrical characteristics of the capacitors thus obtained and the blending ratio of each composition (Experiment Nos. 8, 9, 12, 13, 16-21, 24-29). still,
The dielectric constant and dielectric loss were measured at 20°C, 1kHz, and 1V.AC, and the temperature change rate was based on 20°C. Comparative Example 100 parts by weight of the main component consisting of 100-65 mol% of SrTiO 3 and 0-35 mol% of CaTiO 3 , 0-1.5 parts by weight of Nd 2 O 3 and 0-1.5 parts by weight of Bi 2 O 3 2TiO based on 100 parts by weight of the main component. 20 to 2.5 parts by weight of each of the subcomponents were weighed, pure water was added to a pot mill, and semiconducting porcelain was prepared in the same manner as in the example, and a capacitor was made in the same manner. Table 1 shows the measurement results of the electrical characteristics of the capacitor thus obtained. Experiments No. 1 to 3 did not use Bi 2 O 3 .2TiO 2 and had large dielectric loss and temperature change rate, and Experiment No. 3 had a low dielectric constant. Experiment Nos. 4 to 7 were in the region where the addition of subcomponents was small, and the semiconductor formation did not progress and satisfactory characteristics were not obtained. Experiment No. 10 had a large amount of Nd 2 O 3 and had a large loss. Experiment No. 11 is Bi 2 O 3
With less 2TiO 2 , both dielectric loss and temperature change rate were large. Experiment No. 14 contained a large amount of Bi 2 O 3 2TiO 2 and had a large dielectric loss. Experiment No. 15 is CaTiO 3
was not added, and the dielectric constant was too large.
Experiment No. 22 had a large amount of CaTiO 3 and the dielectric constant was too low.
In Experiment No. 23, Bi 2 O 3 2TiO 2 was small, and both the dielectric loss and temperature change rate were large. Experiments No. 30 and 31 are examples in which a large number of both subcomponents were combined, but the dielectric loss was large and the dielectric constant was lower than in other combinations with the same main component. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図面はNd2O30.5重量部、Bi2O3・2TiO21.0重量
部の時、SrTiO3とCaTiO3のモル比を変動させた
場合の電気的特性図である。
The drawing is an electrical characteristic diagram when the molar ratio of SrTiO 3 and CaTiO 3 is varied when Nd 2 O 3 is 0.5 parts by weight and Bi 2 O 3 .2TiO 2 is 1.0 parts by weight.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン酸ストロンチウム(SrTiO3)95〜70
モル%、チタン酸カルシウム(CaTiO3)5〜30
モル%を含む主成分100重量部に対し、酸化ネオ
ジウム(Nd2O3)0.2〜1.0重量部、チタン酸ビス
マス(Bi2O3・2TiO2)0.5〜2.0重量部を添加後、
還元雰囲気中で焼成して半導体磁器とし、その後
結晶粒界を再酸化させたことを特徴とする半導体
磁器コンデンサ素子の製造方法。
1 Strontium titanate ( SrTiO3 ) 95-70
Mol%, calcium titanate (CaTiO 3 ) 5-30
After adding 0.2 to 1.0 parts by weight of neodymium oxide (Nd 2 O 3 ) and 0.5 to 2.0 parts by weight of bismuth titanate (Bi 2 O 3 .2TiO 2 ) to 100 parts by weight of the main component including mol%,
A method for manufacturing a semiconductor porcelain capacitor element, characterized in that the semiconductor porcelain is produced by firing in a reducing atmosphere, and then the crystal grain boundaries are reoxidized.
JP2552980A 1980-02-29 1980-02-29 Semiconductor porcelain condenser Granted JPS56122119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2552980A JPS56122119A (en) 1980-02-29 1980-02-29 Semiconductor porcelain condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2552980A JPS56122119A (en) 1980-02-29 1980-02-29 Semiconductor porcelain condenser

Publications (2)

Publication Number Publication Date
JPS56122119A JPS56122119A (en) 1981-09-25
JPS6159654B2 true JPS6159654B2 (en) 1986-12-17

Family

ID=12168561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2552980A Granted JPS56122119A (en) 1980-02-29 1980-02-29 Semiconductor porcelain condenser

Country Status (1)

Country Link
JP (1) JPS56122119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445145U (en) * 1987-09-09 1989-03-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445145U (en) * 1987-09-09 1989-03-17

Also Published As

Publication number Publication date
JPS56122119A (en) 1981-09-25

Similar Documents

Publication Publication Date Title
JPS6249977B2 (en)
JPS6159654B2 (en)
JPS6159525B2 (en)
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPS606535B2 (en) porcelain composition
JPS6126207B2 (en)
JPS5828726B2 (en) Porcelain for semiconductor capacitors
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JPH07114824A (en) Dielectric ceramic composition
JPS6248368B2 (en)
JP2762831B2 (en) Method for producing semiconductor porcelain composition
JPS61240622A (en) Semiconductor ceramic composition and semiconductor ceramicsand capacitor using the same
JP2862654B2 (en) Dielectric ceramic composition for temperature compensation
JPH06102573B2 (en) Composition for reduction / reoxidation type semiconductor ceramic capacitor
JPS6217368B2 (en)
JPS6342849B2 (en)
JPS6049151B2 (en) Method for manufacturing dielectric magnetic composition
JPS6250968B2 (en)
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPS633442B2 (en)
JPH08295560A (en) Nonreducible dielectric porcelain composition
JPS6032343B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JPH0632647A (en) Production of dielectric ceramic composition
JPS6129531B2 (en)