JPS6159525B2 - - Google Patents

Info

Publication number
JPS6159525B2
JPS6159525B2 JP53066384A JP6638478A JPS6159525B2 JP S6159525 B2 JPS6159525 B2 JP S6159525B2 JP 53066384 A JP53066384 A JP 53066384A JP 6638478 A JP6638478 A JP 6638478A JP S6159525 B2 JPS6159525 B2 JP S6159525B2
Authority
JP
Japan
Prior art keywords
mol
porcelain
semiconductor
parts
mol parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53066384A
Other languages
Japanese (ja)
Other versions
JPS54157300A (en
Inventor
Masanori Fujimura
Shunichiro Kawashima
Yosuke Fujita
Yoshihiro Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6638478A priority Critical patent/JPS54157300A/en
Priority to DE19792921807 priority patent/DE2921807A1/en
Priority to CH509379A priority patent/CH638948B/en
Priority to GB7919035A priority patent/GB2026466B/en
Publication of JPS54157300A publication Critical patent/JPS54157300A/en
Priority to HK208/85A priority patent/HK20885A/en
Publication of JPS6159525B2 publication Critical patent/JPS6159525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1272Semiconductive ceramic capacitors
    • H01G4/1281Semiconductive ceramic capacitors with grain boundary layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

A semiconductive ceramic capacitor composition has a main component consisting of 14-21 mol% CaO, 29-36 mol% of SrO and 49.5-51 mol% of Ti2O2 which contains 0.05-1 mol part of at least one of Ta2O5 and Nb2O5, 0.5-6 parts of SiO2 and 0.5-6 parts of Bi2O3 per 100 mol parts of the main component.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は誘電率が高く、その温度変化率が非常
に小さく、かつ10KHz、100KHzでの誘電損失
(tanδ)が小さなCaTiO3−SrTiO3系半導体磁器
コンデンサ素体の製造方法に関するものである。 従来、水晶腕時計の発振回路にトリマー磁器コ
ンデンサが使用され、その容量を調製することに
よつて時計の遅れ進みを調節していた。このよう
な時計の小形化に伴い、トリマーコンデンサの小
形化が要求されてきた。そのためには誘電率の大
きな磁器材料が必要となつて来ているが、従来の
磁器材料の誘電率は100〜300程度であつた。
BaTiO3磁器はその誘電率が2000程度と大きいも
のであるけれども、強誘電体であるために容量の
温度ヒステリシスとtanδが大きく、上述のよう
な用途に適した材料とは言えないものである。 今までの半導体コンデンサにはBaTiO3あるい
はSrTiO3を母体としたものがあり、これらの見
掛誘電率は数万程度である。このような見掛誘電
率はトリマーコンデンサとしてはあまりにも大き
すぎる値であるため、トリマーコンデンサの加工
上、あるいはそのロータ回転角度あたりの容量変
化が大きすぎ、容量調節が困難であつたため、上
述のような磁器をトリマーコンデンサに使用でき
なかつた。またこれらの容量の温度変化率は、20
℃における容量を基準として、−25゜〜+85℃で
BaTiO3が±15〜40%、SrTiO3が±10〜15%と大
きかつた。 本発明はトリマーコンデンサとして必要な、3
つの特性、すなわち誘電率が1000〜3500、tanδ
(10KHz)およびtanδ(100KHz)が1%以下、
容量の温度変化率が±8%以内の要請を満たすも
のである。その磁器材料はSrTiO2−CaTiO3固溶
体を母体とし、これに半導体化させる元素として
Nb2O5またはTa2O5を加え、さらに添加剤として
SiO2とBi2O3とをともに添加してなり、この組成
物を混合、仮焼、成形して、N2またはN2−H2
合ガス中で焼成し、この磁器表面にB2O3を塗布
して後、熱処理を行い粒界のみを絶縁体化させ
る。すなわち、CaO14〜21モル%、SrO29〜36モ
ル%、TiO249.5〜51モル%からなる主成分100モ
ル部に対してTa2O5とNb2O5のうちの1種以上を
0.5〜1.0モル部、およびSiO2とBi2O3とをそれぞ
れ0.5〜6.0モル部を含む磁器となるよう調製され
た混合粉末を900゜〜1200℃で仮焼し粉砕、成形
後、中性雰囲気または還元雰囲中で1270℃から
1380℃の雰囲気の温度で焼成し、得られた磁器
1gに対して0.3〜6mgのB2O3を付与し、それぞれ
1000゜〜1200℃、950゜〜1200℃で熱処理を行な
つて後、この磁器の両面に電極を付与してなる。
これらの組成、製法の限定された理由は実施例を
あげて説明する。 〔実験1〕 工業用原料であるSrCO3、CaCO3、TiO2
Nb2O5、Ta2O5、SiO2およびBi2O3を第1表に示
す組成比に配合し、湿式混合、300Kg/cm2の圧力
で仮成形してから、1100℃で2時間仮焼し、湿式
粉砕してから、1000Kg/cm2の圧力で直径12mm、厚
み0.6mmに成形した。各成型体を1320℃で4時
間、90%N2−10%H2混合ガス中で焼成した。こ
の磁器の表面に1g当り1.5mgのCu2Oを塗布し、
1080℃で2時間、熱処理を行なつて、この磁器の
両面に銀ペーストを塗布し、800℃で15分間その
焼付けを行なつた。この素子の誘電率tanδ容量
の温度変化を第2表に示す。
The present invention relates to a method for manufacturing a CaTiO 3 --SrTiO 3 based semiconductor ceramic capacitor body which has a high dielectric constant, a very small temperature change rate, and a small dielectric loss (tan δ) at 10 KHz and 100 KHz. Conventionally, a trimmer porcelain capacitor has been used in the oscillation circuit of a quartz wristwatch, and by adjusting its capacitance, the lag or advance of the clock has been adjusted. With the miniaturization of such watches, there has been a demand for trimmer capacitors to be miniaturized. For this purpose, porcelain materials with high dielectric constants are becoming necessary, but conventional porcelain materials have dielectric constants of about 100 to 300.
Although BaTiO 3 porcelain has a high dielectric constant of about 2000, since it is a ferroelectric material, the temperature hysteresis of the capacitance and tan δ are large, so it cannot be said to be a material suitable for the above-mentioned uses. Conventional semiconductor capacitors include those based on BaTiO 3 or SrTiO 3 , and their apparent dielectric constants are on the order of tens of thousands. Such an apparent permittivity is too large for a trimmer capacitor, and the capacitance changes due to processing of the trimmer capacitor or its rotor rotation angle are too large, making it difficult to adjust the capacitance. Such porcelain could not be used for trimmer capacitors. Also, the temperature change rate of these capacitances is 20
-25° to +85°C based on capacity at °C
BaTiO 3 was large at ±15 to 40%, and SrTiO 3 was large at ±10 to 15%. The present invention provides three
properties, i.e. dielectric constant 1000-3500, tanδ
(10KHz) and tanδ (100KHz) are 1% or less,
This satisfies the requirement that the temperature change rate of capacitance is within ±8%. The porcelain material has a SrTiO 2 −CaTiO 3 solid solution as a matrix, and as an element to convert it into a semiconductor.
Add Nb2O5 or Ta2O5 and further as an additive
It is made by adding both SiO 2 and Bi 2 O 3 , and this composition is mixed, calcined, shaped, and fired in N 2 or N 2 - H 2 mixed gas, and B 2 O is added to the surface of this porcelain. After coating No. 3 , heat treatment is performed to convert only the grain boundaries into insulators. That is, one or more of Ta 2 O 5 and Nb 2 O 5 is added to 100 mol parts of the main components consisting of 14 to 21 mol% of CaO, 29 to 36 mol% of SrO, and 49.5 to 51 mol% of TiO 2 .
A mixed powder prepared to form porcelain containing 0.5 to 1.0 mole parts and 0.5 to 6.0 mole parts each of SiO 2 and Bi 2 O 3 is calcined at 900° to 1200°C, pulverized, molded, and then neutralized. From 1270℃ in atmosphere or reducing atmosphere
Porcelain obtained by firing at an ambient temperature of 1380℃
Add 0.3 to 6 mg of B 2 O 3 to 1 g, respectively.
After heat treatment at 1000° to 1200°C and 950° to 1200°C, electrodes are applied to both sides of the porcelain.
The reason for these limited compositions and manufacturing methods will be explained with reference to examples. [Experiment 1] Industrial raw materials SrCO 3 , CaCO 3 , TiO 2 ,
Nb 2 O 5 , Ta 2 O 5 , SiO 2 and Bi 2 O 3 were blended in the composition ratio shown in Table 1, wet mixed, preformed at a pressure of 300 Kg/cm 2 and then heated at 1100°C for 2 hours. After calcining and wet grinding, it was molded to a diameter of 12 mm and a thickness of 0.6 mm under a pressure of 1000 Kg/cm 2 . Each molded body was fired at 1320° C. for 4 hours in a 90% N 2 -10% H 2 mixed gas. Apply 1.5 mg of Cu 2 O per 1 g to the surface of this porcelain,
A heat treatment was performed at 1080° C. for 2 hours to coat both sides of the porcelain with silver paste, and the porcelain was baked at 800° C. for 15 minutes. Table 2 shows the temperature change in dielectric constant tan δ capacitance of this element.

【表】【table】

【表】【table】

【表】【table】

〔実験2〕[Experiment 2]

実験1における試料18、24、28、29と同組成に
なるよう調整した試料(以下組成番号18、24、
28、29として表わす)について、その焼成温度と
特性との関係を調べた。焼成温度は第3表に示す
とおりであり、それぞれの温度で4時間焼成し
た。他の製造条件については、実験1のそれと同
じくした。 なお、試料117〜120についてはN2範囲気中
で、また同101〜116については90%N2−10%H2
雰囲気中でそれぞれ焼成した。
Samples adjusted to have the same composition as samples 18, 24, 28, and 29 in Experiment 1 (hereinafter composition numbers 18, 24,
28, 29), the relationship between firing temperature and properties was investigated. The firing temperatures are as shown in Table 3, and firing was performed at each temperature for 4 hours. Other manufacturing conditions were the same as those in Experiment 1. In addition, samples 117 to 120 were in the N 2 range, and samples 101 to 116 were in 90% N 2 -10% H 2
Each was fired in an atmosphere.

【表】 上記試料108は、焼成の際素体同士が融合接着
し、その特性を調べることができなかつた。 SiO2とBi2O3とがそれぞれ1モル部添加された
組成では、還元雰囲気中において1270゜〜1380℃
で焼成すると、所期の特性を得ることができる。
SiO2、Bi2O3がともに6モル部という添加量の多
い組成では、焼成温度の上限がそれよりやや低く
なる傾向を示し、1270〜1360℃で良好な特性を得
ることができる。焼成温度が1250℃以下であると
きには焼成不足となり、半導体元素の固溶が不充
分であるため、Cu2Oの粒界拡散工程で再酸化さ
れる。1400℃以上で焼成すると、過焼成となり、
緻密な磁器が得られず、tanδが大きくなる。 N2雰囲気中での焼成は還元雰囲気に比べて最
適な焼成温度を高め、特性もやや低下させる傾向
となるが、トリマーコンデンサ用としての特性を
満たしている。 実施例 1 参考例として実験1における試料18、24、28、
29と同組成の磁器素体を同じ条件で作り、それに
Cu2Oを第4表に示す割合で塗布し、1080℃で2
時間熱処理した。 さらにまた、実施例として、試料18と同組成の
試料221〜225については、B2O3量を変えて塗布
し、熱処理した。 その特性を第4表にまとめて示す。
[Table] In the above sample 108, the element bodies were fused and adhered to each other during firing, and its properties could not be investigated. In a composition in which 1 mol part each of SiO 2 and Bi 2 O 3 is added, the temperature is 1270° to 1380°C in a reducing atmosphere.
By firing it, the desired properties can be obtained.
In a composition in which both SiO 2 and Bi 2 O 3 are added in large amounts of 6 mol parts, the upper limit of the firing temperature tends to be slightly lower, and good characteristics can be obtained at 1270 to 1360°C. When the firing temperature is 1250°C or less, the firing is insufficient and the solid solution of the semiconductor element is insufficient, so that it is reoxidized in the grain boundary diffusion process of Cu 2 O. If fired at 1400℃ or higher, it will be overfired.
Dense porcelain cannot be obtained and tanδ becomes large. Firing in an N 2 atmosphere raises the optimum firing temperature compared to a reducing atmosphere and tends to lower the characteristics slightly, but the characteristics for trimmer capacitors are met. Example 1 As a reference example, samples 18, 24, 28, and
A porcelain body with the same composition as 29 was made under the same conditions, and
Apply Cu 2 O at the ratio shown in Table 4 and heat it at 1080℃ for 2 hours.
Heat treated for hours. Furthermore, as an example, samples 221 to 225 having the same composition as sample 18 were coated with different amounts of B 2 O 3 and heat treated. Its characteristics are summarized in Table 4.

【表】 誘電率と温度特性については各試料とも良好で
あり、またtanδに関してはCu2Oが磁器素体1g当
たり0.1〜2.5mg、B2O3が同じく0.3〜6mgで1%
以下となる。 実施例 2 実験1の試料18と同組成になるよう調整された
成型体を、90%N2−10%H2雰囲気中において、
1320℃で4時間焼成した。それから磁器素体1g
当たり2mgのB2O3、または参考例として15mgの
Cu2Oをそれぞれ塗布し、第5表に示す温度で2
時間熱処理した。その特性を第5表にまとめて示
す。 試料301〜307についてはCu2O、また同308〜
313についてはB2O3をそれぞれ塗布した。
[Table] Each sample has good dielectric constant and temperature characteristics, and regarding tan δ, Cu 2 O is 0.1 to 2.5 mg per 1 g of porcelain body, and B 2 O 3 is 0.3 to 6 mg, which is 1%.
The following is true. Example 2 A molded body adjusted to have the same composition as Sample 18 of Experiment 1 was placed in a 90% N 2 -10% H 2 atmosphere.
It was baked at 1320°C for 4 hours. Then 1g of porcelain body
2 mg of B 2 O 3 or as a reference example 15 mg of
Cu 2 O was applied respectively, and 2
Heat treated for hours. Its characteristics are summarized in Table 5. Cu 2 O for samples 301-307 and 308-
As for 313, B 2 O 3 was applied respectively.

【表】 上表の結果から明らかなように、Cu2OとB2O3
の拡散温度範囲は若干異なり、前者については
1000゜〜1200℃、後者については950〜1200℃で
ある。 以上の説明から明らかなように、本発明の方法
によれば、温度特性の良好な小型コンデンサに適
した磁器素体を製造することができる。
[Table] As is clear from the results in the table above, Cu 2 O and B 2 O 3
The diffusion temperature range of is slightly different, and for the former
1000° to 1200°C, and 950 to 1200°C for the latter. As is clear from the above description, according to the method of the present invention, a ceramic body suitable for a small capacitor with good temperature characteristics can be manufactured.

Claims (1)

【特許請求の範囲】 1 CaO14〜21モル%、SrO29〜36モル%、およ
びTiO249.5〜51モル%からなる主成分100モル部
に対して、Ta2O5とNb2O5のうちの少なくとも1
種を0.05〜1.0モル部、SiO2を0.5〜6モル部、お
よびSi2O3を0.5〜6モル部の割合で含むよう調製
された組成物を、中性雰囲気または還元雰囲気中
で焼成して半導体磁器とした後、半導体磁器にそ
の1g当たり0.3〜6mgの割合でB2O3を付与した
後、空気中において加熱して、前記半導体磁器の
結晶粒界層のみを絶縁体化することを特徴とする
半導体磁器コンデンサ用素体の製造方法。 2 半導体磁器の結晶粒界層を絶縁体化するため
の加熱温度が950゜〜1200℃であることを特徴と
する特許請求の範囲第1項記載の半導体磁器コン
デンサ用素体の製造方法。
[Claims] 1. Ta 2 O 5 and Nb 2 O 5 based on 100 mol parts of the main components consisting of 14 to 21 mol % of CaO, 29 to 36 mol % of SrO, and 49.5 to 51 mol % of TiO 2 . at least 1
A composition prepared to contain 0.05 to 1.0 mol parts of seeds, 0.5 to 6 mol parts of SiO 2 , and 0.5 to 6 mol parts of Si 2 O 3 is fired in a neutral or reducing atmosphere. to make semiconductor porcelain, then add B 2 O 3 to the semiconductor porcelain at a rate of 0.3 to 6 mg per 1 g, and then heat it in air to convert only the grain boundary layer of the semiconductor porcelain into an insulator. A method for manufacturing a semiconductor ceramic capacitor body, characterized by: 2. The method for producing an element body for a semiconductor ceramic capacitor according to claim 1, wherein the heating temperature for converting the crystal grain boundary layer of the semiconductor ceramic into an insulator is 950° to 1200°C.
JP6638478A 1978-06-01 1978-06-01 Semi-conductor porcelain capacitorsigma element manufacturing method Granted JPS54157300A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6638478A JPS54157300A (en) 1978-06-01 1978-06-01 Semi-conductor porcelain capacitorsigma element manufacturing method
DE19792921807 DE2921807A1 (en) 1978-06-01 1979-05-29 SEMICONDUCTOR CERAMIC CAPACITOR AND METHOD OF ITS PRODUCTION
CH509379A CH638948B (en) 1978-06-01 1979-05-31 SEMI-CONDUCTIVE CERAMIC DIELECTRIC FOR A CERAMIC CAPACITOR.
GB7919035A GB2026466B (en) 1978-06-01 1979-05-31 Ceramic capacitor composition
HK208/85A HK20885A (en) 1978-06-01 1985-03-21 Semiconductor ceramic capacitor and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6638478A JPS54157300A (en) 1978-06-01 1978-06-01 Semi-conductor porcelain capacitorsigma element manufacturing method

Publications (2)

Publication Number Publication Date
JPS54157300A JPS54157300A (en) 1979-12-12
JPS6159525B2 true JPS6159525B2 (en) 1986-12-17

Family

ID=13314266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6638478A Granted JPS54157300A (en) 1978-06-01 1978-06-01 Semi-conductor porcelain capacitorsigma element manufacturing method

Country Status (5)

Country Link
JP (1) JPS54157300A (en)
CH (1) CH638948B (en)
DE (1) DE2921807A1 (en)
GB (1) GB2026466B (en)
HK (1) HK20885A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144522A (en) * 1980-04-11 1981-11-10 Matsushita Electric Ind Co Ltd Grain boundary dielectric layer type semiconductor porcelain composition
JPS5739520A (en) * 1980-08-20 1982-03-04 Matsushita Electric Ind Co Ltd Grain boundary dielectric layer type semiconductor porcelain composition
DE3035793C2 (en) * 1980-09-23 1985-11-07 Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto Process for the production of boundary layer semiconductor ceramic capacitors
US4347167A (en) * 1980-10-01 1982-08-31 University Of Illinois Foundation Fine-grain semiconducting ceramic compositions
US4367265A (en) * 1981-04-06 1983-01-04 North American Philips Corporation Intergranular insulation type semiconductive ceramic and method of producing same
JPS5920908A (en) * 1982-07-26 1984-02-02 株式会社村田製作所 Temperature compensating dielectric porcelain composition
FR2645850A1 (en) * 1989-04-17 1990-10-19 Commissariat Energie Atomique FERRITE-BASED DIELECTRIC CERAMIC COMPOSITION AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
CH638948B (en)
CH638948GA3 (en) 1983-10-31
GB2026466B (en) 1982-07-14
JPS54157300A (en) 1979-12-12
HK20885A (en) 1985-03-29
DE2921807A1 (en) 1979-12-06
GB2026466A (en) 1980-02-06

Similar Documents

Publication Publication Date Title
KR920003027B1 (en) Semiconductive ceramic composition
JPS6159525B2 (en)
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
GB2027008A (en) Ceramic Dielectrics
JPS6242368B2 (en)
RU2804938C1 (en) Method for producing ceramic material based on bismuth-zinc-niobium oxides
JPS5828726B2 (en) Porcelain for semiconductor capacitors
JPS6217368B2 (en)
JPS6312373B2 (en)
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JPS6128209B2 (en)
JPS6128208B2 (en)
JPS6242365B2 (en)
JPS5936363B2 (en) Semiconductor ceramic capacitor composition and method for manufacturing the same
JPS6242363B2 (en)
JPS6242366B2 (en)
JPH0426545A (en) Semiconductive porcelain and its manufacture
JPS5823922B2 (en) Porcelain for semiconductor capacitors
KR940004381B1 (en) Composition of ceramic dielectric substance
JPH05345663A (en) Semiconductor ceramic and its production
JPS6242367B2 (en)
JPS5823731B2 (en) Method for producing element bodies for semiconductor ceramic capacitors
JPS633442B2 (en)
JPS5946085B2 (en) Porcelain for semiconductor capacitors
JPS6159654B2 (en)