JPS6159525B2 - - Google Patents
Info
- Publication number
- JPS6159525B2 JPS6159525B2 JP53066384A JP6638478A JPS6159525B2 JP S6159525 B2 JPS6159525 B2 JP S6159525B2 JP 53066384 A JP53066384 A JP 53066384A JP 6638478 A JP6638478 A JP 6638478A JP S6159525 B2 JPS6159525 B2 JP S6159525B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- porcelain
- semiconductor
- parts
- mol parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 239000003985 ceramic capacitor Substances 0.000 claims abstract description 4
- 229910052573 porcelain Inorganic materials 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 10
- 239000012298 atmosphere Substances 0.000 claims description 7
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- 239000012212 insulator Substances 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims 1
- 230000007935 neutral effect Effects 0.000 claims 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 abstract description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000010304 firing Methods 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 8
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910002367 SrTiO Inorganic materials 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005324 grain boundary diffusion Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1272—Semiconductive ceramic capacitors
- H01G4/1281—Semiconductive ceramic capacitors with grain boundary layer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/47—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Capacitors (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
本発明は誘電率が高く、その温度変化率が非常
に小さく、かつ10KHz、100KHzでの誘電損失
(tanδ)が小さなCaTiO3−SrTiO3系半導体磁器
コンデンサ素体の製造方法に関するものである。
従来、水晶腕時計の発振回路にトリマー磁器コ
ンデンサが使用され、その容量を調製することに
よつて時計の遅れ進みを調節していた。このよう
な時計の小形化に伴い、トリマーコンデンサの小
形化が要求されてきた。そのためには誘電率の大
きな磁器材料が必要となつて来ているが、従来の
磁器材料の誘電率は100〜300程度であつた。
BaTiO3磁器はその誘電率が2000程度と大きいも
のであるけれども、強誘電体であるために容量の
温度ヒステリシスとtanδが大きく、上述のよう
な用途に適した材料とは言えないものである。
今までの半導体コンデンサにはBaTiO3あるい
はSrTiO3を母体としたものがあり、これらの見
掛誘電率は数万程度である。このような見掛誘電
率はトリマーコンデンサとしてはあまりにも大き
すぎる値であるため、トリマーコンデンサの加工
上、あるいはそのロータ回転角度あたりの容量変
化が大きすぎ、容量調節が困難であつたため、上
述のような磁器をトリマーコンデンサに使用でき
なかつた。またこれらの容量の温度変化率は、20
℃における容量を基準として、−25゜〜+85℃で
BaTiO3が±15〜40%、SrTiO3が±10〜15%と大
きかつた。
本発明はトリマーコンデンサとして必要な、3
つの特性、すなわち誘電率が1000〜3500、tanδ
(10KHz)およびtanδ(100KHz)が1%以下、
容量の温度変化率が±8%以内の要請を満たすも
のである。その磁器材料はSrTiO2−CaTiO3固溶
体を母体とし、これに半導体化させる元素として
Nb2O5またはTa2O5を加え、さらに添加剤として
SiO2とBi2O3とをともに添加してなり、この組成
物を混合、仮焼、成形して、N2またはN2−H2混
合ガス中で焼成し、この磁器表面にB2O3を塗布
して後、熱処理を行い粒界のみを絶縁体化させ
る。すなわち、CaO14〜21モル%、SrO29〜36モ
ル%、TiO249.5〜51モル%からなる主成分100モ
ル部に対してTa2O5とNb2O5のうちの1種以上を
0.5〜1.0モル部、およびSiO2とBi2O3とをそれぞ
れ0.5〜6.0モル部を含む磁器となるよう調製され
た混合粉末を900゜〜1200℃で仮焼し粉砕、成形
後、中性雰囲気または還元雰囲中で1270℃から
1380℃の雰囲気の温度で焼成し、得られた磁器
1gに対して0.3〜6mgのB2O3を付与し、それぞれ
1000゜〜1200℃、950゜〜1200℃で熱処理を行な
つて後、この磁器の両面に電極を付与してなる。
これらの組成、製法の限定された理由は実施例を
あげて説明する。
〔実験1〕
工業用原料であるSrCO3、CaCO3、TiO2、
Nb2O5、Ta2O5、SiO2およびBi2O3を第1表に示
す組成比に配合し、湿式混合、300Kg/cm2の圧力
で仮成形してから、1100℃で2時間仮焼し、湿式
粉砕してから、1000Kg/cm2の圧力で直径12mm、厚
み0.6mmに成形した。各成型体を1320℃で4時
間、90%N2−10%H2混合ガス中で焼成した。こ
の磁器の表面に1g当り1.5mgのCu2Oを塗布し、
1080℃で2時間、熱処理を行なつて、この磁器の
両面に銀ペーストを塗布し、800℃で15分間その
焼付けを行なつた。この素子の誘電率tanδ容量
の温度変化を第2表に示す。
The present invention relates to a method for manufacturing a CaTiO 3 --SrTiO 3 based semiconductor ceramic capacitor body which has a high dielectric constant, a very small temperature change rate, and a small dielectric loss (tan δ) at 10 KHz and 100 KHz. Conventionally, a trimmer porcelain capacitor has been used in the oscillation circuit of a quartz wristwatch, and by adjusting its capacitance, the lag or advance of the clock has been adjusted. With the miniaturization of such watches, there has been a demand for trimmer capacitors to be miniaturized. For this purpose, porcelain materials with high dielectric constants are becoming necessary, but conventional porcelain materials have dielectric constants of about 100 to 300.
Although BaTiO 3 porcelain has a high dielectric constant of about 2000, since it is a ferroelectric material, the temperature hysteresis of the capacitance and tan δ are large, so it cannot be said to be a material suitable for the above-mentioned uses. Conventional semiconductor capacitors include those based on BaTiO 3 or SrTiO 3 , and their apparent dielectric constants are on the order of tens of thousands. Such an apparent permittivity is too large for a trimmer capacitor, and the capacitance changes due to processing of the trimmer capacitor or its rotor rotation angle are too large, making it difficult to adjust the capacitance. Such porcelain could not be used for trimmer capacitors. Also, the temperature change rate of these capacitances is 20
-25° to +85°C based on capacity at °C
BaTiO 3 was large at ±15 to 40%, and SrTiO 3 was large at ±10 to 15%. The present invention provides three
properties, i.e. dielectric constant 1000-3500, tanδ
(10KHz) and tanδ (100KHz) are 1% or less,
This satisfies the requirement that the temperature change rate of capacitance is within ±8%. The porcelain material has a SrTiO 2 −CaTiO 3 solid solution as a matrix, and as an element to convert it into a semiconductor.
Add Nb2O5 or Ta2O5 and further as an additive
It is made by adding both SiO 2 and Bi 2 O 3 , and this composition is mixed, calcined, shaped, and fired in N 2 or N 2 - H 2 mixed gas, and B 2 O is added to the surface of this porcelain. After coating No. 3 , heat treatment is performed to convert only the grain boundaries into insulators. That is, one or more of Ta 2 O 5 and Nb 2 O 5 is added to 100 mol parts of the main components consisting of 14 to 21 mol% of CaO, 29 to 36 mol% of SrO, and 49.5 to 51 mol% of TiO 2 .
A mixed powder prepared to form porcelain containing 0.5 to 1.0 mole parts and 0.5 to 6.0 mole parts each of SiO 2 and Bi 2 O 3 is calcined at 900° to 1200°C, pulverized, molded, and then neutralized. From 1270℃ in atmosphere or reducing atmosphere
Porcelain obtained by firing at an ambient temperature of 1380℃
Add 0.3 to 6 mg of B 2 O 3 to 1 g, respectively.
After heat treatment at 1000° to 1200°C and 950° to 1200°C, electrodes are applied to both sides of the porcelain.
The reason for these limited compositions and manufacturing methods will be explained with reference to examples. [Experiment 1] Industrial raw materials SrCO 3 , CaCO 3 , TiO 2 ,
Nb 2 O 5 , Ta 2 O 5 , SiO 2 and Bi 2 O 3 were blended in the composition ratio shown in Table 1, wet mixed, preformed at a pressure of 300 Kg/cm 2 and then heated at 1100°C for 2 hours. After calcining and wet grinding, it was molded to a diameter of 12 mm and a thickness of 0.6 mm under a pressure of 1000 Kg/cm 2 . Each molded body was fired at 1320° C. for 4 hours in a 90% N 2 -10% H 2 mixed gas. Apply 1.5 mg of Cu 2 O per 1 g to the surface of this porcelain,
A heat treatment was performed at 1080° C. for 2 hours to coat both sides of the porcelain with silver paste, and the porcelain was baked at 800° C. for 15 minutes. Table 2 shows the temperature change in dielectric constant tan δ capacitance of this element.
【表】【table】
【表】【table】
【表】【table】
実験1における試料18、24、28、29と同組成に
なるよう調整した試料(以下組成番号18、24、
28、29として表わす)について、その焼成温度と
特性との関係を調べた。焼成温度は第3表に示す
とおりであり、それぞれの温度で4時間焼成し
た。他の製造条件については、実験1のそれと同
じくした。
なお、試料117〜120についてはN2範囲気中
で、また同101〜116については90%N2−10%H2
雰囲気中でそれぞれ焼成した。
Samples adjusted to have the same composition as samples 18, 24, 28, and 29 in Experiment 1 (hereinafter composition numbers 18, 24,
28, 29), the relationship between firing temperature and properties was investigated. The firing temperatures are as shown in Table 3, and firing was performed at each temperature for 4 hours. Other manufacturing conditions were the same as those in Experiment 1. In addition, samples 117 to 120 were in the N 2 range, and samples 101 to 116 were in 90% N 2 -10% H 2
Each was fired in an atmosphere.
【表】
上記試料108は、焼成の際素体同士が融合接着
し、その特性を調べることができなかつた。
SiO2とBi2O3とがそれぞれ1モル部添加された
組成では、還元雰囲気中において1270゜〜1380℃
で焼成すると、所期の特性を得ることができる。
SiO2、Bi2O3がともに6モル部という添加量の多
い組成では、焼成温度の上限がそれよりやや低く
なる傾向を示し、1270〜1360℃で良好な特性を得
ることができる。焼成温度が1250℃以下であると
きには焼成不足となり、半導体元素の固溶が不充
分であるため、Cu2Oの粒界拡散工程で再酸化さ
れる。1400℃以上で焼成すると、過焼成となり、
緻密な磁器が得られず、tanδが大きくなる。
N2雰囲気中での焼成は還元雰囲気に比べて最
適な焼成温度を高め、特性もやや低下させる傾向
となるが、トリマーコンデンサ用としての特性を
満たしている。
実施例 1
参考例として実験1における試料18、24、28、
29と同組成の磁器素体を同じ条件で作り、それに
Cu2Oを第4表に示す割合で塗布し、1080℃で2
時間熱処理した。
さらにまた、実施例として、試料18と同組成の
試料221〜225については、B2O3量を変えて塗布
し、熱処理した。
その特性を第4表にまとめて示す。[Table] In the above sample 108, the element bodies were fused and adhered to each other during firing, and its properties could not be investigated. In a composition in which 1 mol part each of SiO 2 and Bi 2 O 3 is added, the temperature is 1270° to 1380°C in a reducing atmosphere.
By firing it, the desired properties can be obtained.
In a composition in which both SiO 2 and Bi 2 O 3 are added in large amounts of 6 mol parts, the upper limit of the firing temperature tends to be slightly lower, and good characteristics can be obtained at 1270 to 1360°C. When the firing temperature is 1250°C or less, the firing is insufficient and the solid solution of the semiconductor element is insufficient, so that it is reoxidized in the grain boundary diffusion process of Cu 2 O. If fired at 1400℃ or higher, it will be overfired.
Dense porcelain cannot be obtained and tanδ becomes large. Firing in an N 2 atmosphere raises the optimum firing temperature compared to a reducing atmosphere and tends to lower the characteristics slightly, but the characteristics for trimmer capacitors are met. Example 1 As a reference example, samples 18, 24, 28, and
A porcelain body with the same composition as 29 was made under the same conditions, and
Apply Cu 2 O at the ratio shown in Table 4 and heat it at 1080℃ for 2 hours.
Heat treated for hours. Furthermore, as an example, samples 221 to 225 having the same composition as sample 18 were coated with different amounts of B 2 O 3 and heat treated. Its characteristics are summarized in Table 4.
【表】
誘電率と温度特性については各試料とも良好で
あり、またtanδに関してはCu2Oが磁器素体1g当
たり0.1〜2.5mg、B2O3が同じく0.3〜6mgで1%
以下となる。
実施例 2
実験1の試料18と同組成になるよう調整された
成型体を、90%N2−10%H2雰囲気中において、
1320℃で4時間焼成した。それから磁器素体1g
当たり2mgのB2O3、または参考例として15mgの
Cu2Oをそれぞれ塗布し、第5表に示す温度で2
時間熱処理した。その特性を第5表にまとめて示
す。
試料301〜307についてはCu2O、また同308〜
313についてはB2O3をそれぞれ塗布した。[Table] Each sample has good dielectric constant and temperature characteristics, and regarding tan δ, Cu 2 O is 0.1 to 2.5 mg per 1 g of porcelain body, and B 2 O 3 is 0.3 to 6 mg, which is 1%.
The following is true. Example 2 A molded body adjusted to have the same composition as Sample 18 of Experiment 1 was placed in a 90% N 2 -10% H 2 atmosphere.
It was baked at 1320°C for 4 hours. Then 1g of porcelain body
2 mg of B 2 O 3 or as a reference example 15 mg of
Cu 2 O was applied respectively, and 2
Heat treated for hours. Its characteristics are summarized in Table 5. Cu 2 O for samples 301-307 and 308-
As for 313, B 2 O 3 was applied respectively.
【表】
上表の結果から明らかなように、Cu2OとB2O3
の拡散温度範囲は若干異なり、前者については
1000゜〜1200℃、後者については950〜1200℃で
ある。
以上の説明から明らかなように、本発明の方法
によれば、温度特性の良好な小型コンデンサに適
した磁器素体を製造することができる。[Table] As is clear from the results in the table above, Cu 2 O and B 2 O 3
The diffusion temperature range of is slightly different, and for the former
1000° to 1200°C, and 950 to 1200°C for the latter. As is clear from the above description, according to the method of the present invention, a ceramic body suitable for a small capacitor with good temperature characteristics can be manufactured.
Claims (1)
びTiO249.5〜51モル%からなる主成分100モル部
に対して、Ta2O5とNb2O5のうちの少なくとも1
種を0.05〜1.0モル部、SiO2を0.5〜6モル部、お
よびSi2O3を0.5〜6モル部の割合で含むよう調製
された組成物を、中性雰囲気または還元雰囲気中
で焼成して半導体磁器とした後、半導体磁器にそ
の1g当たり0.3〜6mgの割合でB2O3を付与した
後、空気中において加熱して、前記半導体磁器の
結晶粒界層のみを絶縁体化することを特徴とする
半導体磁器コンデンサ用素体の製造方法。 2 半導体磁器の結晶粒界層を絶縁体化するため
の加熱温度が950゜〜1200℃であることを特徴と
する特許請求の範囲第1項記載の半導体磁器コン
デンサ用素体の製造方法。[Claims] 1. Ta 2 O 5 and Nb 2 O 5 based on 100 mol parts of the main components consisting of 14 to 21 mol % of CaO, 29 to 36 mol % of SrO, and 49.5 to 51 mol % of TiO 2 . at least 1
A composition prepared to contain 0.05 to 1.0 mol parts of seeds, 0.5 to 6 mol parts of SiO 2 , and 0.5 to 6 mol parts of Si 2 O 3 is fired in a neutral or reducing atmosphere. to make semiconductor porcelain, then add B 2 O 3 to the semiconductor porcelain at a rate of 0.3 to 6 mg per 1 g, and then heat it in air to convert only the grain boundary layer of the semiconductor porcelain into an insulator. A method for manufacturing a semiconductor ceramic capacitor body, characterized by: 2. The method for producing an element body for a semiconductor ceramic capacitor according to claim 1, wherein the heating temperature for converting the crystal grain boundary layer of the semiconductor ceramic into an insulator is 950° to 1200°C.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6638478A JPS54157300A (en) | 1978-06-01 | 1978-06-01 | Semi-conductor porcelain capacitorsigma element manufacturing method |
DE19792921807 DE2921807A1 (en) | 1978-06-01 | 1979-05-29 | SEMICONDUCTOR CERAMIC CAPACITOR AND METHOD OF ITS PRODUCTION |
CH509379A CH638948B (en) | 1978-06-01 | 1979-05-31 | SEMI-CONDUCTIVE CERAMIC DIELECTRIC FOR A CERAMIC CAPACITOR. |
GB7919035A GB2026466B (en) | 1978-06-01 | 1979-05-31 | Ceramic capacitor composition |
HK208/85A HK20885A (en) | 1978-06-01 | 1985-03-21 | Semiconductor ceramic capacitor and method for making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6638478A JPS54157300A (en) | 1978-06-01 | 1978-06-01 | Semi-conductor porcelain capacitorsigma element manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54157300A JPS54157300A (en) | 1979-12-12 |
JPS6159525B2 true JPS6159525B2 (en) | 1986-12-17 |
Family
ID=13314266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6638478A Granted JPS54157300A (en) | 1978-06-01 | 1978-06-01 | Semi-conductor porcelain capacitorsigma element manufacturing method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPS54157300A (en) |
CH (1) | CH638948B (en) |
DE (1) | DE2921807A1 (en) |
GB (1) | GB2026466B (en) |
HK (1) | HK20885A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56144522A (en) * | 1980-04-11 | 1981-11-10 | Matsushita Electric Ind Co Ltd | Grain boundary dielectric layer type semiconductor porcelain composition |
JPS5739520A (en) * | 1980-08-20 | 1982-03-04 | Matsushita Electric Ind Co Ltd | Grain boundary dielectric layer type semiconductor porcelain composition |
DE3035793C2 (en) * | 1980-09-23 | 1985-11-07 | Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto | Process for the production of boundary layer semiconductor ceramic capacitors |
US4347167A (en) * | 1980-10-01 | 1982-08-31 | University Of Illinois Foundation | Fine-grain semiconducting ceramic compositions |
US4367265A (en) * | 1981-04-06 | 1983-01-04 | North American Philips Corporation | Intergranular insulation type semiconductive ceramic and method of producing same |
JPS5920908A (en) * | 1982-07-26 | 1984-02-02 | 株式会社村田製作所 | Temperature compensating dielectric porcelain composition |
FR2645850A1 (en) * | 1989-04-17 | 1990-10-19 | Commissariat Energie Atomique | FERRITE-BASED DIELECTRIC CERAMIC COMPOSITION AND METHOD FOR MANUFACTURING THE SAME |
-
1978
- 1978-06-01 JP JP6638478A patent/JPS54157300A/en active Granted
-
1979
- 1979-05-29 DE DE19792921807 patent/DE2921807A1/en not_active Ceased
- 1979-05-31 GB GB7919035A patent/GB2026466B/en not_active Expired
- 1979-05-31 CH CH509379A patent/CH638948B/en unknown
-
1985
- 1985-03-21 HK HK208/85A patent/HK20885A/en unknown
Also Published As
Publication number | Publication date |
---|---|
CH638948B (en) | |
CH638948GA3 (en) | 1983-10-31 |
GB2026466B (en) | 1982-07-14 |
JPS54157300A (en) | 1979-12-12 |
HK20885A (en) | 1985-03-29 |
DE2921807A1 (en) | 1979-12-06 |
GB2026466A (en) | 1980-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920003027B1 (en) | Semiconductive ceramic composition | |
JPS6159525B2 (en) | ||
JPS5820133B2 (en) | Porcelain for semiconductor porcelain capacitors and manufacturing method thereof | |
GB2027008A (en) | Ceramic Dielectrics | |
JPS6242368B2 (en) | ||
RU2804938C1 (en) | Method for producing ceramic material based on bismuth-zinc-niobium oxides | |
JPS5828726B2 (en) | Porcelain for semiconductor capacitors | |
JPS6217368B2 (en) | ||
JPS6312373B2 (en) | ||
JPS6032344B2 (en) | Grain boundary insulated semiconductor porcelain capacitor material | |
JPS6128209B2 (en) | ||
JPS6128208B2 (en) | ||
JPS6242365B2 (en) | ||
JPS5936363B2 (en) | Semiconductor ceramic capacitor composition and method for manufacturing the same | |
JPS6242363B2 (en) | ||
JPS6242366B2 (en) | ||
JPH0426545A (en) | Semiconductive porcelain and its manufacture | |
JPS5823922B2 (en) | Porcelain for semiconductor capacitors | |
KR940004381B1 (en) | Composition of ceramic dielectric substance | |
JPH05345663A (en) | Semiconductor ceramic and its production | |
JPS6242367B2 (en) | ||
JPS5823731B2 (en) | Method for producing element bodies for semiconductor ceramic capacitors | |
JPS633442B2 (en) | ||
JPS5946085B2 (en) | Porcelain for semiconductor capacitors | |
JPS6159654B2 (en) |