JPS5946085B2 - Porcelain for semiconductor capacitors - Google Patents

Porcelain for semiconductor capacitors

Info

Publication number
JPS5946085B2
JPS5946085B2 JP4055376A JP4055376A JPS5946085B2 JP S5946085 B2 JPS5946085 B2 JP S5946085B2 JP 4055376 A JP4055376 A JP 4055376A JP 4055376 A JP4055376 A JP 4055376A JP S5946085 B2 JPS5946085 B2 JP S5946085B2
Authority
JP
Japan
Prior art keywords
semiconductor
mol
oxide
porcelain
bi2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4055376A
Other languages
Japanese (ja)
Other versions
JPS52124200A (en
Inventor
鉉 板倉
隆 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4055376A priority Critical patent/JPS5946085B2/en
Priority to CA269,514A priority patent/CA1095704A/en
Priority to NLAANVRAGE7700357,A priority patent/NL169723C/en
Priority to GB1797/77A priority patent/GB1526152A/en
Priority to US05/759,807 priority patent/US4143207A/en
Priority to AU21430/77A priority patent/AU490459B2/en
Priority to DE2702071A priority patent/DE2702071C2/en
Priority to FR7701402A priority patent/FR2339235A1/en
Publication of JPS52124200A publication Critical patent/JPS52124200A/en
Publication of JPS5946085B2 publication Critical patent/JPS5946085B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To produce semiconductor capacitor with reduced thermal volume variation in such a manner that insulation layer is formed by diffusing Bi2 O3, MnO2 and Cu2O into granulated crystal of SrTiO3-Bi2O3-Nb2O5 or Ta2O5 system ceramic semiconductor.

Description

【発明の詳細な説明】 本発明はチタン酸ストロンチウム(SrTiO3)を主
体とする半導体磁器の粒界に高絶縁層を設けることによ
り得られる半導体コンデンサ用磁器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic for a semiconductor capacitor obtained by providing a highly insulating layer at the grain boundaries of a semiconductor ceramic mainly composed of strontium titanate (SrTiO3).

従来、半導体磁器の粒界を絶縁化させることにより得ら
れるコンデンサ材料としてチタン酸バリウム系半導体コ
ンデンサ用磁器が知られている。
BACKGROUND ART Barium titanate ceramics for semiconductor capacitors have been known as capacitor materials obtained by insulating the grain boundaries of semiconductor ceramics.

このチタン酸バリウム系半導体コンデンサ用磁器は絶縁
抵抗が1011Ω−】、実効誘電率が50.00070
.000と非常に大きな値が得られるが、20℃を基準
として−30℃〜+85℃の範囲における静電容量の変
化が±40%程度であり、また誘電損失(tanδ)も
約5〜10%と大きいことが欠点である。近年、チタン
酸ストロンチウムを主体とし、特に静電容量の温度変化
率を少さくさせた半導体磁器コンデンサが開発されてき
ている。
This barium titanate-based ceramic for semiconductor capacitors has an insulation resistance of 1011Ω-] and an effective dielectric constant of 50.00070.
.. Although a very large value of 000 can be obtained, the change in capacitance in the range of -30°C to +85°C is about ±40% with respect to 20°C, and the dielectric loss (tan δ) is also about 5 to 10%. The disadvantage is that it is large. In recent years, semiconductor ceramic capacitors have been developed that are mainly made of strontium titanate and have a particularly low temperature change rate of capacitance.

このチタン酸ストロンチウムを主体とする半導体磁器コ
ンデンサは当初ストロンチウム(SrTiO3)に少量
の二酸化マンガン(MnO2)、酸化ケイ素(SiO2
)等を添加し、還元雰囲気中で焼結してなる半導体磁器
を、単に熱処理して粒界を再び酸化するか、二酸化マン
ガン(MnO2)、酸化ビスマス(Bi2O3)等を粒
界に熱拡散させることにより得られていた。
Semiconductor ceramic capacitors mainly made of strontium titanate were initially produced using strontium (SrTiO3), a small amount of manganese dioxide (MnO2), and silicon oxide (SiO2).
) etc. and sintered in a reducing atmosphere, the semiconductor porcelain is simply heat treated to oxidize the grain boundaries again, or manganese dioxide (MnO2), bismuth oxide (Bi2O3), etc. are thermally diffused into the grain boundaries. It was obtained by

これらの特徴として、チタン酸バリウム系に比較して静
電容量の温度変化率が小さく、誘電損失(tanδ)の
値も小さいことがあげられる。一方、実効誘電率がチタ
ン酸バリウム系に比較して極めて小さいことが欠点であ
つた。そこで、実効誘電率の向上を目的として、チタン
酸ストロンチウム(SrTiO3)に添加する不純物が
いくつか提案されている。たとえば、酸化タンタル(T
a2O5)、酸化ニオブ(Nb2O5)、酸化タングス
テン(WO3)等の半導体に必要な物質以外に酸化亜鉛
(ZnO)、希土類酸化物等を単一またはそれらを組み
合わせて添加することにより、実効誘電率40、000
〜50、000程度、誘電損失1%以下の半導体磁器コ
ンデンサが得られるようになり、一段と小型高性能化が
計られてきている。しカルながら、このように小型高性
能な素子においては、高性能な故に問題点もある。その
一つに拡散物を塗布する場合の塗布量のバラツキの与え
る特性への影響が大きく、工程管理が極めて難しい欠屯
があつた。さらに、電気的特性においても、より高性能
化への努力がなされているが、特に周囲温度の変化に対
する静電容量変化を小さくさせることについては、チタ
ン酸バリウム系に比較して小さくなつたとはいえ、十分
ではなかつた。また、諸特性との兼ね合い、特に静電容
量との兼ね合いにおいて、絶縁抵抗が十分に大きいとは
いえなかつた。本発明は種々の実験を積み重ねたすえ、
上述のごとき拡散工程による素子特性のバラツキを極め
て小さくさせ、さらに諸特性の向上、特に静電容量の温
度変化率、及び絶縁抵抗の改善を計ることができた結果
によるものである。
These characteristics include that the rate of change in capacitance with temperature is smaller than that of barium titanate-based materials, and the value of dielectric loss (tan δ) is also small. On the other hand, the drawback was that the effective dielectric constant was extremely small compared to barium titanate. Therefore, several impurities have been proposed to be added to strontium titanate (SrTiO3) for the purpose of improving the effective dielectric constant. For example, tantalum oxide (T
In addition to substances necessary for semiconductors such as a2O5), niobium oxide (Nb2O5), and tungsten oxide (WO3), the effective dielectric constant can be increased to 40 by adding zinc oxide (ZnO), rare earth oxides, etc. singly or in combination. ,000
Semiconductor ceramic capacitors with a dielectric loss of about 50,000 or less and a dielectric loss of 1% or less are now available, and efforts are being made to make them even more compact and high-performance. However, such a small and high-performance element has its own problems due to its high performance. One of the problems was that when applying a diffusion material, variations in the amount applied had a large effect on the characteristics, making process control extremely difficult. Furthermore, efforts are being made to improve the performance of electrical properties, but in particular, the change in capacitance due to changes in ambient temperature has been reduced compared to barium titanate. No, it wasn't enough. Furthermore, the insulation resistance could not be said to be sufficiently high in terms of balance with various properties, especially with respect to capacitance. The present invention was developed after various experiments,
This is due to the fact that variations in device characteristics caused by the above-mentioned diffusion process can be extremely reduced, and various characteristics can be improved, particularly the temperature change rate of capacitance and insulation resistance.

以下、実施例に基づき、本発明を詳細に説明する。Hereinafter, the present invention will be explained in detail based on Examples.

く実施例〉 チタン酸ストロンチウム(SrTiO3)に酸化ニオブ
(Nb2O3)を0.1〜2モル%及び酸化ビスマス(
Bi2O3)を0.1〜5モル%の範囲で添加し、十分
に混合した後、15闘φ×0.7m1tの円板状に加圧
成型する。
Examples> Strontium titanate (SrTiO3) is mixed with 0.1 to 2 mol% of niobium oxide (Nb2O3) and bismuth oxide (
Bi2O3) is added in a range of 0.1 to 5 mol%, mixed thoroughly, and then pressure-molded into a disc shape of 15 mφ x 0.7 m1t.

この後、水素1〜10%、窒素99〜9001)からな
る雰囲気中で1370℃〜1460℃で2〜4時間焼成
する。しかる後に、焼結体の片面に拡散用物質を公知の
適当なバインダー(たとえば、ポリビニルアルコール)
を用いて塗布し、1.000℃〜1.200℃で2時間
程度熱処理する。このようにして得られた焼結体の両面
に銀電極を設ける。第1表拡散用物質としては酸化銅(
Cu2O)、酸化ビスマス(Bi2O3)及び二酸化マ
ンガン(MnO2)からなる種々の組成の混合物を上記
焼結体に塗布し、拡散させたときの各種20枚の電気的
特性の結果をまとめたものである。
Thereafter, it is fired at 1370° C. to 1460° C. for 2 to 4 hours in an atmosphere consisting of 1% to 10% hydrogen and 99% to 900% nitrogen. Thereafter, a diffusion substance is applied to one side of the sintered body using a known suitable binder (for example, polyvinyl alcohol).
and heat-treated at 1.000°C to 1.200°C for about 2 hours. Silver electrodes are provided on both sides of the sintered body thus obtained. Table 1 Diffusion substances include copper oxide (
This is a summary of the results of the electrical characteristics of 20 various sheets when mixtures of various compositions consisting of Cu2O), bismuth oxide (Bi2O3), and manganese dioxide (MnO2) were applied to the above sintered body and diffused. .

ただし、このときの酸化ビスマス(Bi2O3)及び酸
化ニオブ(Nb2O5)添加量はそれぞれ0.2モル%
、また焼成は温度1400℃で4時間、雰囲気条件は水
素10%、窒素90%であり、さらに熱処理は温度11
00℃で2時間行つたものである。
However, the amount of bismuth oxide (Bi2O3) and niobium oxide (Nb2O5) added at this time was 0.2 mol% each.
, the firing was performed at a temperature of 1400°C for 4 hours, the atmospheric conditions were 10% hydrogen and 90% nitrogen, and the heat treatment was performed at a temperature of 11%.
The test was carried out at 00°C for 2 hours.

尚、表中の実効誘電率ε及び誘電損失Tanδは周波数
1KHz、1VA.Cにて測定した値であり、絶縁抵抗
は50VD.Cの電圧で30秒間充電した後に測定した
値である。
Note that the effective permittivity ε and dielectric loss Tanδ in the table are at a frequency of 1 KHz and 1 VA. The insulation resistance is 50VD.C. This value was measured after charging at a voltage of C for 30 seconds.

この表から明らかなごとく、組成点1〜3のように、C
U2O,Bi2O3またはMnO2を単一に塗布し拡散
させた場合には、D値が非常に大きく、すなわち特性の
変動の大きいことがわかる。
As is clear from this table, like composition points 1 to 3, C
It can be seen that when U2O, Bi2O3 or MnO2 is applied singly and diffused, the D value is very large, that is, the characteristics fluctuate greatly.

また、絶縁抵抗rが小さい。次に、組成点4,5及び6
は二成分を選定した場合におけるその最良の組成であり
、一成分の時に比較して特性の変動は小さくなり、r値
は大きくなる。さらに、三成分を選定した場合の組成点
7〜15において、組成点11,12のようなMnO2
が20モル%を越える場合はTanδの値が大きく、特
性の変動も若干大きいが、組成点7,8,9,10,1
3,14及び15では一成分や二成分の組成の場合に比
して、特にr値は大きくなり、特性の変動が極めて小さ
くなつている。ところで、コンデンサの特性を静電容量
Cと絶縁抵抗Rの積で示すことができる。
Furthermore, the insulation resistance r is small. Next, composition points 4, 5 and 6
is the best composition when two components are selected, and the variation in characteristics is smaller and the r value is larger than when one component is selected. Furthermore, at composition points 7 to 15 when three components are selected, MnO2 such as composition points 11 and 12
If it exceeds 20 mol%, the value of Tan δ is large and the fluctuation of properties is also slightly large, but at composition points 7, 8, 9, 10, 1
In No. 3, No. 14, and No. 15, the r value is particularly large compared to the case of one-component or two-component compositions, and the fluctuations in characteristics are extremely small. Incidentally, the characteristics of a capacitor can be expressed as the product of capacitance C and insulation resistance R.

このC−R積はコンデンサの形状によらない定数であり
、これをKで表わすと、K=CIR=εε0r となる。
This C-R product is a constant that does not depend on the shape of the capacitor, and if it is expressed by K, then K=CIR=εε0r.

ここで、εoは真空の誘電率である。すなわち、このK
値の大きいことはコンデンサとして優良である条件の一
つである。実施例において、一成分、二成分及び三成分
からなる拡散剤を用いた場合のそれぞれのK値を比較し
てみると、一成分では最高34(MΩ・μF)程度、二
成分では最高289(MΩ・μF)程度であるのに対し
、三成分では第1表の組成点7,8,9,10,13,
14,15についてみると、最低で329(MΩ・μF
)、最高で496(MΩ・μF)程度と非常に大きくな
つている。
Here, εo is the dielectric constant of vacuum. In other words, this K
A large value is one of the conditions for an excellent capacitor. In the example, when comparing the respective K values when using one-component, two-component, and three-component diffusing agents, the maximum K value is about 34 (MΩ・μF) for one component, and the maximum 289 (MΩ・μF) for two components. MΩ・μF), whereas for the three components, the composition points 7, 8, 9, 10, 13,
Looking at 14 and 15, the lowest value is 329 (MΩ・μF
), which is extremely large, at the maximum of about 496 (MΩ·μF).

以上の結果から、CU2O,Bi2O3及びMnO2の
配合組成は、Cu2O:5〜85モル%、Bi2O3:
5〜85モル%及びMnO2:5〜15モル%と定め得
る。
From the above results, the blending composition of CU2O, Bi2O3 and MnO2 is as follows: Cu2O: 5-85 mol%, Bi2O3:
5 to 85 mol% and MnO2: 5 to 15 mol%.

第1図は20℃を基準とした場合の静電容量の温度変化
率の代表例を示したものである。
FIG. 1 shows a typical example of the rate of change in capacitance with temperature when 20° C. is used as a reference.

図中Aはチタン酸バリウム系半導体コンデンサ、Bは実
施例におけるCU2O,Bi2O3の二成分からなる拡
散剤を用いた磁器の場合であり、Cは本発明の磁器(組
成点8)についての静電容量の温度変化率を示す曲線で
ある。この図から明らかなごとく、本発明のCU2O,
Bi2O3及びMnO2三成分からなる拡散剤を用いた
磁器においては静電容量の温度変化率も極めて小さく、
使用温度範囲を拡大できる利点をもつている。
In the figure, A is a barium titanate-based semiconductor capacitor, B is a case of porcelain using a diffusing agent consisting of two components of CU2O and Bi2O3 in the example, and C is an electrostatic charge of the porcelain of the present invention (composition point 8). This is a curve showing the rate of change in capacitance with temperature. As is clear from this figure, the CU2O of the present invention,
In porcelain using a diffusing agent consisting of the three components Bi2O3 and MnO2, the rate of change in capacitance with temperature is extremely small.
It has the advantage of expanding the operating temperature range.

以上述べたように、本発明のごとくチタン酸ストロンチ
ウム(SrTiO3)に酸化ニオブ(Nb2O,)を0
.1〜2.0モル%、及び酸化ビスマス(Bi2O3)
をO〜2.0モル%添加し、焼結させた半導体磁器に、
酸化銅(Cu2O)、酸化ビスマス(Bi2O3)及び
二酸化マンガン(MnO2)を単一に粒界に拡散させる
のではなく、Cu2O:5〜85モル%、Bl2O3:
5〜85モル%及びMnO2:5〜15モル%の範囲か
らなる組成物の形で塗布し、拡散させ、粒界に絶縁層を
設けた半導体コンデンサ用磁器は、従来になく特性値に
バラツキの小さい、製造しやすいことが特徴であるばか
りでなく、絶縁抵抗値の大きいこと、静電容量の温度変
化率の小さいことなど、特性面においても極めて優秀で
あく。
As described above, according to the present invention, niobium oxide (Nb2O,) is added to strontium titanate (SrTiO3).
.. 1 to 2.0 mol%, and bismuth oxide (Bi2O3)
To the semiconductor porcelain which was added O~2.0 mol% and sintered,
Rather than simply diffusing copper oxide (Cu2O), bismuth oxide (Bi2O3), and manganese dioxide (MnO2) into the grain boundaries, Cu2O: 5 to 85 mol%, Bl2O3:
The ceramic for semiconductor capacitors, which is coated in the form of a composition consisting of 5 to 85 mol% MnO2 and 5 to 15 mol% MnO2, is diffused, and an insulating layer is provided at the grain boundaries. Not only is it small and easy to manufacture, but it also has excellent characteristics such as high insulation resistance and low temperature change rate of capacitance.

尚、実施例において、チタン酸ストロンチウムの半導体
の目的で酸化ニオブ(Nb2O,)を用いたが、酸化タ
ンタル(Ta2O5)でもよく、実験結果では酸化タン
タル(Ta2O,)は酸化ニオブ(Nb2O5)に比較
して蒸発しにくいという若干の差異はあるが、これは添
加量に比してほとんど無視し得る範囲内のオーダである
In the examples, niobium oxide (Nb2O, ) was used for the purpose of strontium titanate semiconductor, but tantalum oxide (Ta2O5) may also be used, and experimental results showed that tantalum oxide (Ta2O, ) was compared to niobium oxide (Nb2O5). Although there is a slight difference in that it is difficult to evaporate, this is on the order of almost negligible compared to the amount added.

たとえば、チタン酸ストロンチウム(SrTlO3)に
酸化ニオブ(Nb2O,)を0.2モル%添加し、水素
10%、窒素90%からなる雰囲気中で、1400℃で
4時間焼成して得られる半導体磁器の比抵抗は0.5Ω
−礪であり、平均結晶粒径は12.5μmであるのに対
し、酸化タンタル(Ta2O,)の添加量を0.18モ
ル%とし、他の条件は同条件とすると、比抵抗0.5Ω
一礪、平均結晶粒径12.3μmの半導体磁器が得られ
る。通常、ニオブ(Nb)及びタンタル(Ta)はバナ
ジウム族元素と呼ばれる同族の元素であり、またその中
でもこの2つの元素はランタノイド収縮により共有結合
半径がほとんど同じ(1.34オングストロームである
ため、同時に産出され、化学的性質はほとんど同じであ
ることは周知である。この2つの5価の元素はチタン酸
ストロンチウム(SrTiO3)のTi元素の共有結合
半径(132オングストローム)とほぼ一致するため、
比較的置換が容易に行われ、SrTlO3+Nb2O5
(またはTa2O,)→SrTll−δNbδ03(ま
たはSrTil−δTaδ03)+δe−として自由電
子が放出され、チタン酸ストロンチウム(SrTiO3
)は半導体化される。
For example, semiconductor porcelain is obtained by adding 0.2 mol% of niobium oxide (Nb2O,) to strontium titanate (SrTlO3) and firing it at 1400°C for 4 hours in an atmosphere consisting of 10% hydrogen and 90% nitrogen. Specific resistance is 0.5Ω
- The average crystal grain size is 12.5 μm, but when the amount of tantalum oxide (Ta2O,) added is 0.18 mol% and other conditions are the same, the specific resistance is 0.5 Ω.
Semiconductor porcelain with an average crystal grain size of 12.3 μm is obtained in one batch. Normally, niobium (Nb) and tantalum (Ta) are elements in the same group called vanadium group elements, and among them, these two elements have almost the same covalent bond radius (1.34 angstroms) due to lanthanoid contraction, so they can be used simultaneously. It is well known that these two pentavalent elements are produced and have almost the same chemical properties.The covalent bond radius (132 angstroms) of the Ti element in strontium titanate (SrTiO3) almost matches that of these two pentavalent elements.
Replacement is relatively easy, SrTlO3+Nb2O5
(or Ta2O,) → SrTll-δNbδ03 (or SrTil-δTaδ03) + δe-, free electrons are released, and strontium titanate (SrTiO3
) will be made into semiconductors.

ここで、δは置換したNb(またはTa)元素の原子数
、e−は電子を表わす。このような半導体化の方法は一
般に原子価制御の方法と呼ばれている。したがつて、上
記実施例における酸化ニオブ(Nb2O5)を酸化タン
タル(Ta2O5)に置換することにより、同等の結果
が得られることはいうまでもないものである。また、本
実施例で焼成は水素1〜10%、窒素99〜90%から
なる雰囲気中に限ることもなく、試料が十分に半導体化
されうる雰囲気中であればよいことはいうまでもない。
Here, δ represents the number of atoms of the substituted Nb (or Ta) element, and e- represents an electron. Such a semiconductor manufacturing method is generally called a valence control method. Therefore, it goes without saying that equivalent results can be obtained by replacing niobium oxide (Nb2O5) in the above embodiments with tantalum oxide (Ta2O5). Furthermore, in this example, the firing is not limited to an atmosphere consisting of 1 to 10% hydrogen and 99 to 90% nitrogen, and it goes without saying that any atmosphere that can sufficiently convert the sample into a semiconductor may be used.

さらに、電極として銀電極を用いたが、その他の公知の
電極材料を用いてもさしつかえない。
Furthermore, although a silver electrode was used as the electrode, other known electrode materials may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は静電容量の温度変化率を示すグラフで、Aはチタ
ン酸バリウム系半導体コンデンサの場合、Bは比較例で
CU2O及びBi2O3からなる拡散剤を用いた磁器の
場合、Cは本発明の磁器の場合を示す。
The drawing is a graph showing the temperature change rate of capacitance, where A is a barium titanate semiconductor capacitor, B is a comparative example of porcelain using a diffusing agent consisting of CU2O and Bi2O3, and C is a porcelain of the present invention. The case is shown below.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン酸ストロンチウム(SrTiO_3)99.
8〜93.0モル%、酸化ビスマス(Bi_2O_3)
0.1〜5.0モル%及び酸化ニオブ(Nb_2O_5
)または酸化タンタル(Ta_2O_5)0.1〜2.
0モル%からなる半導体磁器の粒界に、ビスマス成分、
銅成分及びマンガン成分が偏在し、そのビスマス成分、
銅成分及びマンガン成分のモル比が5〜85:5〜85
:5〜15であることを特徴とする半導体コンデンサ用
磁器。
1 Strontium titanate (SrTiO_3) 99.
8-93.0 mol%, bismuth oxide (Bi_2O_3)
0.1-5.0 mol% and niobium oxide (Nb_2O_5
) or tantalum oxide (Ta_2O_5) 0.1-2.
Bismuth component,
Copper and manganese components are unevenly distributed, and its bismuth component,
Molar ratio of copper component and manganese component is 5-85:5-85
: Porcelain for semiconductor capacitors, characterized in that the number is 5 to 15.
JP4055376A 1976-01-20 1976-04-10 Porcelain for semiconductor capacitors Expired JPS5946085B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP4055376A JPS5946085B2 (en) 1976-04-10 1976-04-10 Porcelain for semiconductor capacitors
CA269,514A CA1095704A (en) 1976-01-20 1977-01-12 Semiconductive ceramics
NLAANVRAGE7700357,A NL169723C (en) 1976-01-20 1977-01-14 METHOD FOR MANUFACTURING A POLYCRYSTALLINE CERAMIC SEMICONDUCTOR
GB1797/77A GB1526152A (en) 1976-01-20 1977-01-17 Semiconductive ceramics
US05/759,807 US4143207A (en) 1976-01-20 1977-01-17 Semiconductive ceramics
AU21430/77A AU490459B2 (en) 1977-01-19 Semiconductive ceramics
DE2702071A DE2702071C2 (en) 1976-01-20 1977-01-19 Process for the production of a capacitor ceramic based on strontium titanate
FR7701402A FR2339235A1 (en) 1976-01-20 1977-01-19 SEMICONDUCTOR CERAMICS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4055376A JPS5946085B2 (en) 1976-04-10 1976-04-10 Porcelain for semiconductor capacitors

Publications (2)

Publication Number Publication Date
JPS52124200A JPS52124200A (en) 1977-10-18
JPS5946085B2 true JPS5946085B2 (en) 1984-11-10

Family

ID=12583630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4055376A Expired JPS5946085B2 (en) 1976-01-20 1976-04-10 Porcelain for semiconductor capacitors

Country Status (1)

Country Link
JP (1) JPS5946085B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683919A (en) * 1979-12-12 1981-07-08 Matsushita Electric Ind Co Ltd Grain boundary dielectric layer type semiconductor porcelain composition

Also Published As

Publication number Publication date
JPS52124200A (en) 1977-10-18

Similar Documents

Publication Publication Date Title
SE432097B (en) SINTERED BODY OF SEMI-CONDUCTIVE CERAMIC MATERIAL, PROCEDURE FOR MANUFACTURING THE BODY AND ANY USE OF THE BODY
JPH0226775B2 (en)
JPS5946085B2 (en) Porcelain for semiconductor capacitors
JPS5828726B2 (en) Porcelain for semiconductor capacitors
JPS6159525B2 (en)
US3505574A (en) Ceramic composition for barrier layer capacitors
JPS5823922B2 (en) Porcelain for semiconductor capacitors
JP2681981B2 (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JPS5826650B2 (en) Porcelain for semiconductor capacitors
JPH04188504A (en) Dielectric porcelain composition
JPS5823729B2 (en) Porcelain for semiconductor capacitors
JPS5830731B2 (en) Porcelain for semiconductor capacitors
JPH08124781A (en) Manufacture of semiconductor ceramic
JPS5823730B2 (en) Porcelain for semiconductor capacitors
JPS6217368B2 (en)
JPH03285209A (en) High dielectric constant dielectric porcelain composition
JPS5827649B2 (en) Porcelain for semiconductor capacitors
JPH0536308A (en) High permittivity dielectric ceramic composition
JPH01274411A (en) Semiconductor porcelain substance
JPH0345557A (en) Dielectric ceramic composition
JPH0135489B2 (en)
JPS6120504B2 (en)
JPH05345663A (en) Semiconductor ceramic and its production
JPS5830733B2 (en) Method for manufacturing semiconductor ceramic energy storage element
JPS633442B2 (en)