JPS6342849B2 - - Google Patents

Info

Publication number
JPS6342849B2
JPS6342849B2 JP56053654A JP5365481A JPS6342849B2 JP S6342849 B2 JPS6342849 B2 JP S6342849B2 JP 56053654 A JP56053654 A JP 56053654A JP 5365481 A JP5365481 A JP 5365481A JP S6342849 B2 JPS6342849 B2 JP S6342849B2
Authority
JP
Japan
Prior art keywords
semiconductor
capacitance
mol
porcelain
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56053654A
Other languages
Japanese (ja)
Other versions
JPS57167617A (en
Inventor
Harufumi Bandai
Yasuyuki Naito
Kyoshi Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP5365481A priority Critical patent/JPS57167617A/en
Publication of JPS57167617A publication Critical patent/JPS57167617A/en
Publication of JPS6342849B2 publication Critical patent/JPS6342849B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は粒界絶縁形半導体磁器コンデンサ用
の組成物に関するものである。 従来、小型で大容量のコンデンサとしては、堰
層容量形半導体磁器コンデンサ、表面絶縁層形半
導体磁器コンデンサ、あるいは粒界絶縁形半導体
磁器コンデンサがある。 このうち、堰層容量形半導体磁器コンデンサは
400〜500nF/cm2の静電容量値を示すが、tanδは
4〜5%と大きく、絶縁抵抗(IR)も1MΩの値
しか得られていない。また表面絶縁層形半導体磁
器コンデンサは、tanδ、静電容量温度特性、静電
容量変化率、歪率などの特性に良好なものが得ら
れない。さらに粒界絶縁形半導体磁器コンデンサ
は表面絶縁層形半導体磁器にくらべてほとんどの
点ですぐれた電気特性を示すが、静電容量はせい
ぜい300nF/cm2である。 粒界絶縁形半導体磁器コンデンサは主成分がチ
タン酸バリウム系、チタン酸ストロンチウム系か
らなるが、半導体化するためにはLa、Yなどの
希土類元素、Nb、Ta、Wなどの半導体化剤が微
量添加される。しかしながら、特にチタン酸スト
ロンチウム系のものでは半導体化が容易ではな
く、半導体化剤の微量添加のほか焼成段階での雰
囲気を中性、還元性としなければならなかつた。
一方、焼成雰囲気を中性、還元性とした場合、主
成分中にスズ酸塩を含有させると、SnO2そのも
のが還元されやすいため金属錫となり、磁器化が
困難であるという問題がみられた。 したがつて、この発明は中性、還元性雰囲気で
の焼成を行わなくても半導体化ができる粒界絶縁
形半導体磁器組成物を提供することを目的とす
る。 また、この発明はスズ酸塩を含んでいても磁器
化が可能な粒界絶縁形半導体磁器組成物を提供す
ることを目的とする。 すなわち、この発明の要旨とするところは、
(Ba1-xSrx)(Ti1-ySny)O3(x=0〜0.4、0.6≦
x+4y≦1.6)、または(Ba1-xSrx)(Ti1-ySny
O3(x=0〜0.4、0.6≦x+4y≦1.6)を主体とし
てその他にチタン酸塩、ジルコン酸塩を含む主成
分に対し、La、Yなどの希土類元素、Nb、Ta、
Wなどの半導体化剤を含有し、かつ最大結晶粒径
が100〜250μmである半導体磁器であつて、その
半導体磁器の結晶粒界が金属酸化物により絶縁体
化されてなる粒界絶縁形半導体磁器組成物であ
る。 上記したうち、(Ba1-xSrx)(Ti1-ySny)O3
おいて、xは0〜0.4の範囲に限定される。これ
はSrを含有させなくてもよいが、Sr量が0.4を越
えると静電容量が低下するからである。また、y
は0.6≦x+4y≦1.6の範囲に限定されるが、この
範囲外では大きな静電容量が得られにくくなる。
第1図はxとyの量的な相関関係を示したもので
あり、多角形で囲まれた領域が発明範囲内を示
す。 また、(Ba1−xSrx)(Ti1-ySny)O3に、その他
の、たとえばCaTiO3などのチタン酸塩、
BaZrO3などのジルコン酸塩のうち少なくとも1
種を含有させる場合、含有させる量は10モル%以
下が適当である。これは10モル%を超えると、そ
の含有効果である焼結性の向上や、電気特性の再
現性が期待できないことによる。 さらに、半導体化剤の含有範囲としては、0.1
〜1.0モル%が好ましい。この範囲を外れると通
常の自然雰囲気中で焼成しても、10〜10-1Ω・cm
程度の値を有する半導体磁器が得られなくなる。 さらにまた、半導体磁器にはSiO2、Al2O3
TiO2のうち少なくとも1種を含有させることも
許されるが、その含有効果としては焼成温度を低
下させることができ、絶縁破壊も高めることがで
きる。このうちSiO2の含有範囲としては0.05〜
0.5モル%が好ましい。これはSiO2が0.05モル%
未満ではまだ焼成温度が高く、その添加効果が現
われないからであり、0.5モル%を超えると誘電
率の低下が見られる。またAl2O3の含有範囲とし
ては0.02〜0.2モル%が好ましい。これは、0.02モ
ル%未満では絶縁破壊を高める効果が得られず、
0.2モル%を超えると誘電率の低下が見られる。
さらにTiO2の含有範囲としては0.05モル%以下
が好ましい。これは0.05モル%を超えると、大き
な粒径の結晶が得られにくく、十分な静電容量が
得られないことによる。 半導体磁器の結晶粒界を絶縁体化するものとし
て、たとえばPb、Bi、Cu、B、Mnなどの金属、
酸化物などの化合物があり、結晶粒界には熱処理
により拡散させる方法が採られる。このほか、結
晶粒界を絶縁体化処理するには、蒸着法、スパツ
タリング法などの乾式メツキにより半導体磁器表
面に付与したのち熱処理する方法、あるいは化合
物のペーストを塗布し熱処理する方法などがあ
る。 この半導体磁器組成物は、原料を所定比率に混
合し、一定の形に成型したのち自然雰囲気中で焼
成されるが、得られた半導体磁器の結晶粒径、特
に最大結晶粒径が100〜250μmの範囲にあるもの
が電気特性に好ましい結果をもたらす。もし最大
結晶粒径が100μm未満であれば、静電容量、静
電容量温度特性、静電容量変化率が低下すること
になる。また250μmを超えると電気特性が劣化
するとともに、大きな静電容量を得るための薄膜
化に障害となるからである。 また、半導体磁器にMnを0.02〜0.5モル%の範
囲で含有させることによつて、絶縁抵抗(IR)
を向上させることができる。 なお、半導体磁器には特性に悪影響を与えない
程度に不可避的な不純物が含まれることが許容さ
れるが、たとえば、ZnO、Bi2O3、CuOなどを含
有させると、焼結性、再現性などに効果をもたら
す。含有させる範囲は明確に限定できないが、特
性改善のため微量含有させればよい。 以下、この発明を実施例に従つて詳細に説明す
る。 実施例 第1表の組成比の半導体磁器が得られるよう
に、SrCO3、BaCO3、TiO2、SnO2、CaTiO3
BaZrO3などの主材料、Y2O3、La2O5、WO3
Mb2O5、Er2O3などの半導体化剤、SiO2、Al2O3
TiO2などの鉱化剤を秤量、混合し、1100℃で2
時間仮焼した。 次いで、酢酸ビニル系樹脂を10重量%加えて湿
式粉砕し、30メツシユの篩で整粒したのち、成型
圧力750Kg/cm2で直径10mmφ、肉厚0.5mmの円板に
成型した。 成型円板を自然雰囲気中にて1400℃で2〜4時
間焼成し、半導体磁器を得た。 得られた半導体磁器の結晶粒界を絶縁体化する
ため、あらかじめ用意した金属酸化物のペースト
を塗布方法により半導体磁器表面に付与し、空気
中1150℃で2時間熱処理を行い、結晶粒界を絶縁
体化した。 金属酸化物のペーストの種類としては次のよう
なものを用い、各試料に付与する金属酸化物のペ
ーストは記号A、B、Cで第1表に示した。 A:Bi2O345重量%、H3BO35重量%、樹脂ワニ
ス50重量%。 B:Bi2O342重量%、CuO4重量%、MnCO34重量
%、樹脂ワニス50重量%。 C:Pb3O440重量%、MnCO310重量%、樹脂ワ
ニス50重量%。 さらに、粒界絶縁形半導体磁器の両面に銀ペー
ストを印刷、塗布し、800℃で30分間焼付けてコ
ンデンサを作成した。 得られたコンデンサについて電気特性を測定
し、その結果を第2表に示した。第1表、第2表
中※印を付したものはこの発明範囲外のものであ
り、それ以外は発明範囲内のものである。
This invention relates to a composition for a grain-boundary insulated semiconductor ceramic capacitor. Conventionally, small-sized, large-capacity capacitors include barrier layer capacitance type semiconductor ceramic capacitors, surface insulation layer type semiconductor ceramic capacitors, and grain boundary insulation type semiconductor ceramic capacitors. Among these, weir layer capacitance type semiconductor ceramic capacitors are
Although it shows a capacitance value of 400 to 500 nF/cm 2 , tan δ is as large as 4 to 5%, and the insulation resistance (IR) is only 1 MΩ. Furthermore, surface insulating layer type semiconductor ceramic capacitors do not have good characteristics such as tan δ, capacitance temperature characteristics, capacitance change rate, and distortion rate. Furthermore, grain boundary insulated semiconductor ceramic capacitors exhibit superior electrical properties in most respects compared to surface insulated layer type semiconductor ceramic capacitors, but their capacitance is at most 300 nF/cm 2 . The main components of grain boundary insulated semiconductor ceramic capacitors are barium titanate and strontium titanate, but in order to make them semiconductor, rare earth elements such as La and Y, and small amounts of semiconductor agents such as Nb, Ta, and W are required. added. However, it is not easy to convert strontium titanate-based materials into semiconductors, and in addition to adding a small amount of a semiconductor agent, the atmosphere during the firing stage must be neutral and reducing.
On the other hand, when the firing atmosphere is neutral and reducing, if stannate is included in the main component, SnO 2 itself is easily reduced and becomes metallic tin, making it difficult to make into porcelain. . Therefore, an object of the present invention is to provide a grain-boundary insulated semiconductor ceramic composition that can be converted into a semiconductor without firing in a neutral or reducing atmosphere. Another object of the present invention is to provide a grain-boundary insulated semiconductor ceramic composition that can be made into porcelain even if it contains stannate. In other words, the gist of this invention is:
(Ba 1-x Sr x ) (Ti 1-y Sn y ) O 3 (x=0~0.4, 0.6≦
x+4y≦1.6) or (Ba 1-x Sr x ) (Ti 1-y Sn y )
The main component is O 3 (x=0~0.4, 0.6≦x+4y≦1.6) and also includes titanate and zirconate, rare earth elements such as La and Y, Nb, Ta,
Semiconductor porcelain containing a semiconducting agent such as W and having a maximum crystal grain size of 100 to 250 μm, a grain boundary insulated semiconductor in which the crystal grain boundaries of the semiconductor porcelain are made into an insulator by a metal oxide. It is a porcelain composition. Among the above, in (Ba 1-x Sr x )(Ti 1-y Sn y )O 3 , x is limited to a range of 0 to 0.4. This is because, although it is not necessary to contain Sr, if the amount of Sr exceeds 0.4, the capacitance decreases. Also, y
is limited to a range of 0.6≦x+4y≦1.6, but outside this range it becomes difficult to obtain a large capacitance.
FIG. 1 shows the quantitative correlation between x and y, and the area surrounded by polygons indicates the area within the scope of the invention. In addition , other titanates such as CaTiO3 ,
At least one of the zirconates such as BaZrO3
When seeds are contained, the amount to be contained is suitably 10 mol% or less. This is because if the content exceeds 10 mol%, the effects of its inclusion, such as improvement in sinterability and reproducibility of electrical properties, cannot be expected. Furthermore, the content range of the semiconducting agent is 0.1
~1.0 mol% is preferred. Outside this range, even if fired in a normal natural atmosphere, the resistance will be 10 to 10 -1 Ω・cm.
Semiconductor porcelain having a certain value cannot be obtained. Furthermore, semiconductor ceramics include SiO 2 , Al 2 O 3 ,
It is also permissible to contain at least one type of TiO 2 , but the effect of its inclusion is that it can lower the firing temperature and increase dielectric breakdown. Among these, the content range of SiO 2 is 0.05~
0.5 mol% is preferred. This is 0.05 mol% SiO2
If it is less than 0.5 mol %, the firing temperature will still be high and the effect of its addition will not be apparent, and if it exceeds 0.5 mol %, a decrease in the dielectric constant will be observed. Moreover, the content range of Al 2 O 3 is preferably 0.02 to 0.2 mol %. This means that if it is less than 0.02 mol%, the effect of increasing dielectric breakdown cannot be obtained;
If it exceeds 0.2 mol%, a decrease in dielectric constant is observed.
Further, the content range of TiO 2 is preferably 0.05 mol% or less. This is because if the content exceeds 0.05 mol %, it is difficult to obtain crystals with a large particle size and sufficient capacitance cannot be obtained. For example, metals such as Pb, Bi, Cu, B, Mn,
There are compounds such as oxides, and a method of diffusing them at grain boundaries by heat treatment is adopted. Other methods of insulating grain boundaries include applying it to the surface of semiconductor porcelain by dry plating such as vapor deposition or sputtering, and then heat-treating it, or applying a compound paste and heat-treating it. This semiconductor porcelain composition is made by mixing raw materials in a predetermined ratio, molding it into a certain shape, and then firing it in a natural atmosphere. A value within this range brings about favorable results in electrical properties. If the maximum crystal grain size is less than 100 μm, capacitance, capacitance temperature characteristics, and capacitance change rate will decrease. Moreover, if the thickness exceeds 250 μm, the electrical characteristics deteriorate and it becomes an obstacle to thinning the film to obtain a large capacitance. In addition, by incorporating Mn in the range of 0.02 to 0.5 mol% into semiconductor porcelain, insulation resistance (IR) can be improved.
can be improved. Semiconductor porcelain is allowed to contain unavoidable impurities to the extent that they do not adversely affect its properties, but for example, the inclusion of ZnO, Bi 2 O 3 , CuO, etc. may impair sinterability and reproducibility. etc. has an effect. Although the range in which it is contained cannot be clearly defined, it may be contained in a small amount in order to improve properties. Hereinafter, this invention will be explained in detail according to examples. Example SrCO 3 , BaCO 3 , TiO 2 , SnO 2 , CaTiO 3 ,
Main materials such as BaZrO3 , Y2O3 , La2O5 , WO3 ,
Semiconducting agents such as Mb 2 O 5 , Er 2 O 3 , SiO 2 , Al 2 O 3 ,
Weigh and mix mineralizers such as TiO 2 and heat them at 1100°C.
Calcined for an hour. Next, 10% by weight of vinyl acetate resin was added, wet-pulverized, sieved through a 30-mesh sieve, and then molded into a disc with a diameter of 10 mmφ and a wall thickness of 0.5 mm at a molding pressure of 750 kg/cm 2 . The molded disk was fired at 1400° C. for 2 to 4 hours in a natural atmosphere to obtain semiconductor porcelain. In order to make the grain boundaries of the obtained semiconductor porcelain an insulator, a metal oxide paste prepared in advance was applied to the surface of the semiconductor porcelain by a coating method, and heat treatment was performed in air at 1150°C for 2 hours to transform the grain boundaries. Made into an insulator. The following types of metal oxide pastes were used, and the metal oxide pastes applied to each sample are shown in Table 1 with symbols A, B, and C. A: Bi 2 O 3 45% by weight, H 3 BO 3 5% by weight, resin varnish 50% by weight. B: Bi 2 O 3 42% by weight, CuO 4% by weight, MnCO 3 4% by weight, resin varnish 50% by weight. C: 40% by weight of Pb3O4 , 10% by weight of MnCO3 , 50% by weight of resin varnish. Furthermore, a capacitor was created by printing and applying silver paste on both sides of the grain-boundary insulated semiconductor porcelain and baking it at 800°C for 30 minutes. The electrical characteristics of the obtained capacitor were measured and the results are shown in Table 2. Items marked with * in Tables 1 and 2 are outside the scope of this invention, and the others are within the scope of the invention.

【表】【table】

【表】【table】

【表】 第1表中の電気特性は次に示す条件で測定した
値である。 静電容量(Cs)、誘電体損失(tanδ):+20℃、
周波数1KHz、電圧0.2Vrms以下で測定した値。 絶縁抵抗(IR):+20℃において、試料の厚み単
位mm当り、直流電圧10Vを印加した30秒後の値
である。 静電容量温度特性(△TC):+20℃を基準とし
て、−25℃〜+85℃温度範囲における最大容量
変化率を示した値。 静電容量変化率(DCB):+20℃において、直流
電圧0.2Vを印加したときの静電容量に対して、
直流電圧10Vを印加したときの静電容量の変化
を百分率で表わした値。 歪 率:+20℃、周波数1KHz、印加電圧1Vにお
ける全高調波歪率を示した値。 周波数特性(E.S.R.):1MHz付近の値。 上記した実施例から明らかなように、この発明
にかかる粒界絶縁形半導体磁器組成物を用いてコ
ンデンサを構成することによつて、Cs、△TC、
tanδ、DCB、歪率、E.S.Rの各特性とも実用上十
分な値のものが得られている。特に、この発明の
組成によるものは自然雰囲気中で焼成が可能とな
り、その主成分中に錫酸塩を含有させることがで
き、焼成段階において従来のようにMo−Si発熱
体などの高価なものが不必要となつた。また従来
の組成物によるモル比のズレの許容度は1/1000
程度であつたが、この発明によれば5/1000以上
の許容度となり、調合組成のズレに対しても安定
な特性が得られるという効果を有する。
[Table] The electrical properties in Table 1 are values measured under the following conditions. Capacitance (Cs), dielectric loss (tanδ): +20℃,
Values measured at a frequency of 1KHz and a voltage of 0.2Vrms or less. Insulation resistance (IR): Value at +20°C, 30 seconds after applying a DC voltage of 10 V per mm of sample thickness. Capacitance temperature characteristic (△TC): A value indicating the maximum capacitance change rate in the temperature range of -25°C to +85°C, with +20°C as the standard. Capacitance change rate (DCB): At +20℃, with respect to the capacitance when applying a DC voltage of 0.2V,
The value expressed as a percentage of the change in capacitance when a DC voltage of 10V is applied. Distortion rate: Value showing the total harmonic distortion rate at +20℃, frequency 1KHz, and applied voltage 1V. Frequency characteristics (ESR): Value around 1MHz. As is clear from the above examples, by constructing a capacitor using the grain boundary insulated semiconductor ceramic composition according to the present invention, Cs, △TC,
Practically sufficient values of tanδ, DCB, distortion rate, and ESR were obtained. In particular, the composition according to the present invention can be fired in a natural atmosphere, and can contain stannate as its main component. became unnecessary. In addition, the tolerance for molar ratio deviation due to conventional compositions is 1/1000.
However, according to the present invention, the tolerance is 5/1000 or more, and it has the effect that stable characteristics can be obtained even with deviations in the formulation composition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はx(Sr量)とY(Sn量)の相関関係を
示す図である。
FIG. 1 is a diagram showing the correlation between x (Sr amount) and Y (Sn amount).

Claims (1)

【特許請求の範囲】[Claims] 1 (Ba1-xSrx)(Ti1-ySny)O3(x=0〜0.4、
0.6≦x+4y≦1.6)、または(Ba1-xSrx)(Ti1-y
Sny)O3(x=0〜0.4、0.6≦x+4y≦1.6)を主
体としてその他にチタン酸塩、ジルコン酸塩を含
む主成分に対し、La、Yなどの希土類元素、
Nb、Ta、Wなどの半導体化剤を含有し、かつ最
大結晶粒径が100〜250μmである半導体磁器であ
つて、その半導体磁器の結晶粒界が金属酸化物に
より絶縁体化されてなる粒界絶縁形半導体磁器組
成物。
1 (Ba 1-x Sr x ) (Ti 1-y Sn y ) O 3 (x=0 to 0.4,
0.6≦x+4y≦1.6) or (Ba 1-x Sr x ) (Ti 1-y
The main component is mainly Sn y ) O 3 (x=0~0.4, 0.6≦x+4y≦1.6) and also includes titanate and zirconate, rare earth elements such as La and Y,
Semiconductor porcelain containing a semiconducting agent such as Nb, Ta, W, etc. and having a maximum crystal grain size of 100 to 250 μm, which is a grain in which the crystal grain boundaries of the semiconductor porcelain are made into an insulator by a metal oxide. Field-insulated semiconductor ceramic composition.
JP5365481A 1981-04-08 1981-04-08 Grain boundary insulating type semiconductor porcelain composition Granted JPS57167617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5365481A JPS57167617A (en) 1981-04-08 1981-04-08 Grain boundary insulating type semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5365481A JPS57167617A (en) 1981-04-08 1981-04-08 Grain boundary insulating type semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPS57167617A JPS57167617A (en) 1982-10-15
JPS6342849B2 true JPS6342849B2 (en) 1988-08-25

Family

ID=12948852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5365481A Granted JPS57167617A (en) 1981-04-08 1981-04-08 Grain boundary insulating type semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JPS57167617A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687364B2 (en) * 1986-05-09 1994-11-02 宇部興産株式会社 High dielectric constant porcelain composition
JPH0687365B2 (en) * 1986-05-09 1994-11-02 宇部興産株式会社 High dielectric constant porcelain composition
KR100997379B1 (en) * 2008-08-08 2010-11-30 한국과학기술연구원 Dielectric thin film composition showing linear electric properties

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317961A (en) * 1976-08-03 1978-02-18 Siemens Ag Capacitor dielectric having internal bloking layer and method of manufacturing said derivative
JPS5384200A (en) * 1976-12-30 1978-07-25 Siemens Ag Condenser dielectrics having internal barrier and method of manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317961A (en) * 1976-08-03 1978-02-18 Siemens Ag Capacitor dielectric having internal bloking layer and method of manufacturing said derivative
JPS5384200A (en) * 1976-12-30 1978-07-25 Siemens Ag Condenser dielectrics having internal barrier and method of manufacturing same

Also Published As

Publication number Publication date
JPS57167617A (en) 1982-10-15

Similar Documents

Publication Publication Date Title
JPS6328324B2 (en)
JPS6249977B2 (en)
JPS6342849B2 (en)
JPS6129903B2 (en)
JPS6249976B2 (en)
JPS6249975B2 (en)
JPS6133249B2 (en)
JP2848712B2 (en) Dielectric porcelain composition
JPS6129902B2 (en)
JPH0522372B2 (en)
JP3125481B2 (en) Grain boundary insulating layer type semiconductor ceramic composition
JP2734910B2 (en) Method for producing semiconductor porcelain composition
JP2681981B2 (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPH0761897B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPS6133250B2 (en)
JP2584985B2 (en) Semiconductor porcelain composition
JPH0761898B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JP3333017B2 (en) Dielectric ceramic composition for temperature compensation
JPH0761894B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPS6341207B2 (en)
JPS59127826A (en) Grain boundary insulating semiconductor porcelain capacitor
JPH0761895B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH07108812B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same