JPS5936365B2 - semiconductor porcelain materials - Google Patents

semiconductor porcelain materials

Info

Publication number
JPS5936365B2
JPS5936365B2 JP52019835A JP1983577A JPS5936365B2 JP S5936365 B2 JPS5936365 B2 JP S5936365B2 JP 52019835 A JP52019835 A JP 52019835A JP 1983577 A JP1983577 A JP 1983577A JP S5936365 B2 JPS5936365 B2 JP S5936365B2
Authority
JP
Japan
Prior art keywords
capacitance
dielectric loss
semiconductor
present
loss tangent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52019835A
Other languages
Japanese (ja)
Other versions
JPS53104898A (en
Inventor
宣雄 横江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP52019835A priority Critical patent/JPS5936365B2/en
Publication of JPS53104898A publication Critical patent/JPS53104898A/en
Publication of JPS5936365B2 publication Critical patent/JPS5936365B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は誘電正接が小さく、直流バイアスや交流信号電
圧による容量変化の小さい小形の磁器コンデンサという
電子回路設計上からの要求に対応すべくなされたもので
、比誘電率が高く、誘電正接が小さく、しかも容量の温
度特性ならびに電圧依存性が優れた半導体磁器材料に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention was made in response to the requirements for electronic circuit design of a small ceramic capacitor with a small dielectric loss tangent and a small capacitance change due to DC bias or AC signal voltage. The present invention relates to a semiconductor ceramic material that has a high dielectric loss tangent, a small dielectric loss tangent, and excellent temperature characteristics and voltage dependence of capacitance.

従来から半導体誘電体磁器として製造されているものに
、チタン酸バリウムまたはチタン酸バリウム固溶体を主
成分とするものがある。
BACKGROUND ART Among the semiconductor dielectric ceramics that have been produced in the past are those whose main component is barium titanate or barium titanate solid solution.

しかし、この種のものはチタン酸バリウムが有する強誘
電的性質を回避することができないので、磁器コンデン
サとして電気回路素子に応用する場合いくつかの基本的
な欠点を有していた。すなわち、使用温度範囲で主成分
の変態点に起因する誘電損失の影響を受けることおよび
容量温度特性を良好にする目的で添加される副成分の影
響を受けて誘電損失が大きくなることである。例えば、
第1表に示すように従来の半導体コンデンサは周波数1
kH2、温度20℃における誘電正接が3.5%であり
、容量温度特性も−25〜+85℃の温度範囲において
±15%以内の変化率にとどめることは困難であつた。
However, this type of capacitor cannot avoid the ferroelectric properties of barium titanate, so it has some fundamental drawbacks when applied to electrical circuit elements as a magnetic capacitor. That is, in the operating temperature range, the dielectric loss is influenced by the transformation point of the main component, and the dielectric loss becomes large due to the influence of the subcomponents added for the purpose of improving the capacitance-temperature characteristics. for example,
As shown in Table 1, conventional semiconductor capacitors have a frequency of 1
The dielectric loss tangent at kH2 and temperature of 20°C was 3.5%, and it was difficult to keep the capacitance temperature characteristics within ±15% in the temperature range of -25 to +85°C.

また、直流バイアス電圧による容量変化が大きく、25
Vバイアス印加の場合の容量はOVバイアスの場合の容
量に対して約30%低下する。さらにコンデンサに入力
される信号電圧によつても容量値が変化し、周波数1k
H2においてlVrmsの信号電圧による容量値に対し
て、4Vrmsの場合の容量値は約5%増加している。
本発明はチタン酸ストロンチウムを主成分としたもので
、上記チタン酸バリウムを主成分とする磁器誘電体の欠
点を除き、かつ半導体磁器コンデンサの特徴である大き
い見かけの比誘電率を有する半導体磁器材料を提供する
ものである。
In addition, the capacitance change due to DC bias voltage is large, and 25
The capacitance when V bias is applied is approximately 30% lower than the capacitance when OV bias is applied. Furthermore, the capacitance value changes depending on the signal voltage input to the capacitor, and the frequency 1k
In H2, the capacitance value in the case of 4Vrms increases by about 5% compared to the capacitance value due to the signal voltage of 1Vrms.
The present invention is a semiconductor ceramic material containing strontium titanate as a main component, which eliminates the drawbacks of the above-mentioned barium titanate-based ceramic dielectric material, and has a large apparent dielectric constant characteristic of semiconductor ceramic capacitors. It provides:

本発明の効果を簡潔に示すため、従来例との比較を第1
表に示した。
In order to briefly demonstrate the effects of the present invention, a comparison with the conventional example will be made first.
Shown in the table.

なお、第1表において容量変化率の直流バイアスの欄は
、直流25Vをバイアス電圧として印加した場合のバイ
アス電圧0Vの場合に対する容量変化率を、交流信号電
圧の欄は4Vrmsの場合の1Vrmsの場合に対する
容量変化率を、温度の欄は−25〜+85℃の温度範囲
における20℃のときの容量に対する容量変化率を示し
、絶縁抵抗は直流電圧50Vを印加し、l分後の抵抗値
を示した。
In Table 1, the DC bias column of the capacitance change rate shows the capacitance change rate when the bias voltage is 0 V when 25 V DC is applied as the bias voltage, and the AC signal voltage column shows the capacitance change rate when the bias voltage is 0 V when 4 V rms is applied. The temperature column shows the capacitance change rate with respect to the capacitance at 20°C in the temperature range of -25 to +85°C, and the insulation resistance shows the resistance value after 1 minute after applying a DC voltage of 50 V. Ta.

また比誘電率、比面積容量は周波数1kHz、電圧1V
rmsの正弦波で20℃において測定した容量値から算
出し、誘電正接は周波数1kHz、電圧1Vrmsの正
弦波で20℃において測定した等価抵抗RcからTan
δ=2πFRcCs(ただしCsはブリツジ基準容量値
1ItF)によつて算出した。さらに容量温度特性およ
び直流バイアス依存性を詳しく比較するため、容量温度
特性を第1図にまた容量の直流バイアス依存性を第2図
に示した。第1表、第1図および第2図から明らかなよ
うに、本発明品は誘電正接、絶縁抵抗および容量温度特
性、直流バイアス電圧依存性、信号電圧依存性のいずれ
においても従来品と比較して優れたものである。以下、
本発明を詳細に説明する。
In addition, the relative dielectric constant and specific area capacitance are at a frequency of 1 kHz and a voltage of 1 V.
It is calculated from the capacitance value measured at 20°C with a sine wave of rms, and the dielectric loss tangent is calculated from the equivalent resistance Rc measured at 20°C with a sine wave of frequency 1kHz and voltage 1Vrms.
It was calculated by δ=2πFRcCs (where Cs is the bridge reference capacitance value 1ItF). Furthermore, in order to compare the capacitance temperature characteristics and DC bias dependence in detail, the capacitance temperature characteristics are shown in FIG. 1, and the DC bias dependence of the capacitance is shown in FIG. As is clear from Table 1, Figures 1 and 2, the products of the present invention are superior to conventional products in terms of dielectric loss tangent, insulation resistance, capacitance temperature characteristics, DC bias voltage dependence, and signal voltage dependence. It is excellent. below,
The present invention will be explained in detail.

本発明は ただし において なる組成物を焼結し、しかるのち強制還元処理を施した
もので、このような本発明に係る半導体磁器材料を使用
した半導体磁気コンデンサは例えばつぎの方法で製造で
きる。
In the present invention, the composition described above is sintered and then subjected to a forced reduction treatment. A semiconductor magnetic capacitor using the semiconductor ceramic material according to the present invention can be manufactured, for example, by the following method.

すなわち、所定組成比に正確な割合で秤量した原料をボ
ールミルなどで混合し、1100〜1150℃の空気中
で予備焼成したのち、ボールミルで粉砕して調整粉末と
する。なお、この際使用する原料としては、酸化物の他
に加熱することにより酸化物となる化合物、例えば炭酸
塩、蓚酸塩などが用い得ることはもちろんである。こう
して得た調整粉末にポリビニールアルコールなどの有機
結合剤を添加し、500〜1400kg/C7Ilの圧
力で加圧成形を施し、焼成は1250〜1350℃で行
なう。
That is, raw materials weighed in an accurate proportion to a predetermined composition ratio are mixed in a ball mill or the like, pre-calcined in air at 1100 to 1150°C, and then ground in a ball mill to obtain a prepared powder. In addition to oxides, the raw materials used at this time may of course be compounds that become oxides when heated, such as carbonates and oxalates. An organic binder such as polyvinyl alcohol is added to the prepared powder thus obtained, and pressure molding is performed at a pressure of 500 to 1400 kg/C7Il, followed by firing at 1250 to 1350°C.

なお、焼成の際の雰囲気は空気雰囲気で、最高温度での
保持時間は一般にl〜6時間程度でよい。焼成した磁器
は水素炉を用いて水素中で強制還元処理し、半導体化す
る。この際の処理温度は1200〜1350℃が適当で
ある。こうして得た半導体磁器の表面にBi2O3粉末
を5〜20m9塗布し、空気中1250〜1350℃で
熱処理してBi2O3を磁器内に拡散し、結晶粒界を絶
縁化せしめたものであつて、従来品と比較して誘電正接
、容量温度特性、容量バイアス電圧依存性に優れ、高い
比誘電率を有する半導体磁器コンデンサを得たものであ
る。
Note that the atmosphere during firing is air, and the holding time at the maximum temperature may generally be about 1 to 6 hours. The fired porcelain is subjected to forced reduction treatment in hydrogen using a hydrogen furnace to convert it into a semiconductor. The appropriate treatment temperature at this time is 1200 to 1350°C. The surface of the semiconductor porcelain thus obtained is coated with 5 to 20 m9 of Bi2O3 powder, and heat treated in air at 1250 to 1350°C to diffuse Bi2O3 into the porcelain and insulate the grain boundaries. A semiconductor ceramic capacitor has been obtained which has excellent dielectric loss tangent, capacitance temperature characteristics, and capacitance bias voltage dependence, and has a high dielectric constant compared to the conventional capacitor.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

ただし において、第2表に示すモル%になるようSrO,Tl
O2,Ne2O3,ZnOの粉末をそれぞれ正確に秤量
し、これらの混合物を湿式混合した。
However, SrO, Tl
Powders of O2, Ne2O3, and ZnO were each accurately weighed, and a mixture thereof was wet-mixed.

ただし、SrOは同モル比のSrcO3を用いた。これ
らの混合物を空気中1140℃で2時間予備焼成し、次
にボールミルによつて粉砕して調製原料粉末を得た。し
かるのち、調整粉末にポリビニールアルコールを3.0
重量%添加し、1200kg/(−JモV1の圧力で直径
16關φ、厚さ0.7mmの円板に加圧成形し、空気中
1320℃で4時間焼成し、続いて焼成した磁気を水素
中1300℃で2時間還元して直径約14mmφ、厚さ
約0.6困の円板型半導体磁器を得た。こうして得た半
導体磁器表面にBl2O3粉末を5 〜 20Tnf7
塗布し、空気中1300℃で2時間熱*処理し、Bl2
O3を磁器内部に拡散せしめて、結晶粒界を絶縁化し、
得られた円板型誘電体磁器に通常の方法で銀ペーストを
塗布、乾燥し、800℃で30分間焼成し銀電極を形成
した。
However, SrcO3 having the same molar ratio as SrO was used. These mixtures were preliminarily calcined in air at 1140° C. for 2 hours, and then ground in a ball mill to obtain a prepared raw material powder. Afterwards, add 3.0% polyvinyl alcohol to the adjusted powder.
% by weight, pressure-molded into a disk with a diameter of 16 mm and a thickness of 0.7 mm at a pressure of 1200 kg / A disk-shaped semiconductor porcelain with a diameter of about 14 mmφ and a thickness of about 0.6 mm was obtained by reduction in hydrogen at 1300° C. for 2 hours. 5 to 20Tnf7 of Bl2O3 powder was applied to the surface of the semiconductor porcelain thus obtained.
Bl2
By diffusing O3 inside the porcelain, the grain boundaries are insulated,
A silver paste was applied to the disc-shaped dielectric ceramic obtained by a conventional method, dried, and fired at 800° C. for 30 minutes to form a silver electrode.

このようにして作成したコンデンサ各試料につき、電気
特性を測定した結果を第2表に示す。
Table 2 shows the results of measuring the electrical characteristics of each sample of the capacitor thus produced.

なお、容量および誘電正接はキヤパシタンスブリツジを
用いて20℃において周波数1kHz,入力電圧1Vr
msで測定し、絶縁抵抗は絶縁抵抗計によつて直流50
Vを1分間印加したのちの値を測定した。また比誘電率
(εr)は14・唖△そヤ亘(Prノ^ノ芋tナ(UI
IUの計算式により士n、ノ+ワl −ー、 求めた。
In addition, the capacitance and dielectric loss tangent are determined using a capacitance bridge at a frequency of 1 kHz and an input voltage of 1 Vr at 20°C.
ms, and the insulation resistance is measured at DC 50 ms using an insulation resistance meter.
The value was measured after applying V for 1 minute. Also, the relative dielectric constant (εr) is 14.
It was calculated using the IU formula.

と増大し、誘電正接も極めて小さく、また絶縁抵抗も数
倍〜数十倍と高いものである。
The dielectric loss tangent is extremely small, and the insulation resistance is several times to several tens of times higher.

なお、試料番号2〜8,11〜18,20は本発明に係
るものであり、試料番号1,9,10,19は本発明の
範囲外のもので、比誘電率が小さいもの、誘電正接が高
いもの、また絶縁抵抗が極めて低いものである。
Note that sample numbers 2 to 8, 11 to 18, and 20 are related to the present invention, and sample numbers 1, 9, 10, and 19 are outside the scope of the present invention, and have small dielectric constants and dielectric loss tangents. and extremely low insulation resistance.

したがつて本発明の半導体磁器材料は上記結果から、x
が84.60モル%未満では絶縁抵抗が109Ω儂未満
と低く誘電体として不適であり、また97.54モル%
を越えると絶縁抵抗は高い値を示すが比誘電率が低下し
、誘電正接が高くなり目的にあわない。
Therefore, from the above results, the semiconductor ceramic material of the present invention has x
If it is less than 84.60 mol%, the insulation resistance will be lower than 109Ω, making it unsuitable as a dielectric material, and 97.54 mol%.
If it exceeds this value, the insulation resistance will show a high value, but the dielectric constant will decrease and the dielectric loss tangent will increase, which is not suitable for the purpose.

yが0.26モル%未満または1.47モル%を越える
ところではいずれも比誘電率が小さすぎる。zが2.2
モル%未満では比誘電率が極めて低く、誘電正接も高い
。またzが14.10モル%を越えると絶縁抵抗が極め
て悪く、焼成において磁器が融着するので製造上好まし
くない。以上説明したように、本発明による半導体磁器
材料は従来品に比較して誘電正接が低く、容量温度特性
が良好で、直流バイアス電圧や信号電圧による容量変化
が小さく、比誘電率が大きく、従来から提案されてきた
材料では得られなかつた特徴をもつもので、工業的価値
の高いものである。
Where y is less than 0.26 mol% or more than 1.47 mol%, the dielectric constant is too small. z is 2.2
If it is less than mol%, the dielectric constant is extremely low and the dielectric loss tangent is high. Furthermore, if z exceeds 14.10 mol%, the insulation resistance will be extremely poor and the porcelain will fuse during firing, which is unfavorable in terms of manufacturing. As explained above, the semiconductor ceramic material according to the present invention has a lower dielectric loss tangent, better capacitance-temperature characteristics, smaller capacitance change due to DC bias voltage or signal voltage, and higher dielectric constant than conventional products. It has characteristics that could not be obtained with the materials proposed by the authors, and is of high industrial value.

図画の簡単な説明 第1図は本発明と従来例の容量変化率−温度特性比較図
、第2図は本発明と従来例の容量変化率−直流バイアス
電圧特性比較図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a comparison diagram of capacitance change rate-temperature characteristics of the present invention and a conventional example, and FIG. 2 is a comparison diagram of capacitance change rate-DC bias voltage characteristics of the present invention and a conventional example.

Claims (1)

【特許請求の範囲】 1 XSrTiO_3+y/2Me_2O_3・2Ti
O_2+zZnO(Me=Y、DyまたはLa)ただし x+y+z=100 において x=84.60〜97.54モル% y=0.26〜1.47モル% z=2.20〜14.10モル% からなる組成物を焼結し、強制還元を施こす事を特徴と
する半導体磁器材料。
[Claims] 1 XSrTiO_3+y/2Me_2O_3・2Ti
O_2 + zZnO (Me = Y, Dy or La) where x + y + z = 100, consisting of x = 84.60 to 97.54 mol% y = 0.26 to 1.47 mol% z = 2.20 to 14.10 mol% A semiconductor ceramic material characterized by sintering a composition and subjecting it to forced reduction.
JP52019835A 1977-02-24 1977-02-24 semiconductor porcelain materials Expired JPS5936365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52019835A JPS5936365B2 (en) 1977-02-24 1977-02-24 semiconductor porcelain materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52019835A JPS5936365B2 (en) 1977-02-24 1977-02-24 semiconductor porcelain materials

Publications (2)

Publication Number Publication Date
JPS53104898A JPS53104898A (en) 1978-09-12
JPS5936365B2 true JPS5936365B2 (en) 1984-09-03

Family

ID=12010325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52019835A Expired JPS5936365B2 (en) 1977-02-24 1977-02-24 semiconductor porcelain materials

Country Status (1)

Country Link
JP (1) JPS5936365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227771A (en) * 1988-03-04 1989-09-11 Tokuzo Hirose Golf club

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482387B1 (en) 1996-04-22 2002-11-19 Waltraud M. Kriven Processes for preparing mixed metal oxide powders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227771A (en) * 1988-03-04 1989-09-11 Tokuzo Hirose Golf club

Also Published As

Publication number Publication date
JPS53104898A (en) 1978-09-12

Similar Documents

Publication Publication Date Title
JPS597665B2 (en) High dielectric constant porcelain composition
JPS5936365B2 (en) semiconductor porcelain materials
JPS6053408B2 (en) Reduced semiconductor ceramic composition
JPS61193419A (en) Reduction/reoxidation type semiconductor capacitor ceramic composition
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JPH01100051A (en) Dielectric porcelain composition
JPS5910004B2 (en) Yudentaijikino Seizouhouhou
JP2505030B2 (en) High-permittivity porcelain composition for temperature compensation and method for producing the same
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JPS6053451B2 (en) Manufacturing method of dielectric porcelain
JPS6128209B2 (en)
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JPS6230482B2 (en)
JP2621478B2 (en) High dielectric constant porcelain composition
JPS6217806B2 (en)
JPS6217368B2 (en)
JPS6230483B2 (en)
JP3336194B2 (en) Dielectric porcelain
JPS6053407B2 (en) Reduced semiconductor ceramic composition
JPH04237902A (en) Dielectric porcelain compound
JPS597664B2 (en) High dielectric constant porcelain composition
JPS61191009A (en) Reduction/reoxidation type semiconductor capacitor ceramic composition
JPS6120504B2 (en)
JPH03285870A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPS62132755A (en) Ceramic composition