JPS61193419A - Reduction/reoxidation type semiconductor capacitor ceramic composition - Google Patents

Reduction/reoxidation type semiconductor capacitor ceramic composition

Info

Publication number
JPS61193419A
JPS61193419A JP3357585A JP3357585A JPS61193419A JP S61193419 A JPS61193419 A JP S61193419A JP 3357585 A JP3357585 A JP 3357585A JP 3357585 A JP3357585 A JP 3357585A JP S61193419 A JPS61193419 A JP S61193419A
Authority
JP
Japan
Prior art keywords
weight
ceramic composition
reduction
semiconductor capacitor
capacitor ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3357585A
Other languages
Japanese (ja)
Inventor
敏晃 加地
治文 万代
康信 米田
西岡 吾朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3357585A priority Critical patent/JPS61193419A/en
Publication of JPS61193419A publication Critical patent/JPS61193419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はチタン酸バリウム系の還元再酸化型半導体コ
ンデンサ磁器組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) This invention relates to a barium titanate-based reduced and reoxidized semiconductor capacitor ceramic composition.

(従来技術) 従来半導体コンデンサとして、粒界絶縁型5表面堰層型
および還元再酸化型のコンデンサが知られている。
(Prior Art) As conventional semiconductor capacitors, grain boundary insulation type five-surface weir layer type and reduction/reoxidation type capacitors are known.

この発明が向けられる還元再酸化型半導体コンデンサは
、誘電体磁器を還元雰囲気中で熱処理して半導体化し、
次いで酸化性雰囲気で熱処理を行なって表面に誘電体層
を形成し、さらに電極を付与することによって得られる
。したがって、この種のコンデンサの容量、絶縁抵抗、
破壊電圧あるいは容量温度特性などの各電気的特性は、
誘電体層の生成状態に大きく左右されるという特徴かあ
る。
The reduction and reoxidation type semiconductor capacitor to which this invention is directed is made by heat-treating dielectric ceramic in a reducing atmosphere to convert it into a semiconductor.
Next, heat treatment is performed in an oxidizing atmosphere to form a dielectric layer on the surface, and electrodes are further provided. Therefore, the capacitance, insulation resistance,
Each electrical characteristic such as breakdown voltage or capacitance temperature characteristic is
It has the characteristic that it is greatly influenced by the state of formation of the dielectric layer.

(発明が解決しようとする問題点)         
    ′従来の還元再酸化型半導体コンデンサは、面
積容量は比較的大きなものが得られる反面、温度特性の
点からみると、未だ満足すべきものは得られていない。
(Problem to be solved by the invention)
'While conventional reduction and reoxidation type semiconductor capacitors have relatively large areal capacitances, they have not yet achieved satisfactory temperature characteristics.

僅かに、ヒスマス(Ri)を添加した場合に、温度特性
か改善されるということが知られている。し力・しなが
ら、ヒスマスをl括力■し人二磁器紺成物では、焼成時
にビスマスが飛11にして表面層が訂1くなり磁器組成
が不均一となる。このため、再酸化層すなわち誘電体層
を薄くして小型人容頃化を図る場合、絶縁抵抗や破壊電
圧が著しく低下してしまい、実用に供し得ない。すなわ
ち、従来のチタン酸バリウム系の還元再酸化型半導体J
Jコンデンサ磁器組成物しては、温度特性やその他の電
気的特性が良好で、しかも小型犬容量化の可能なものは
実現されていなかった。
It is known that temperature characteristics are improved by adding a small amount of hismuth (Ri). In the case of dark blue porcelain products in which the hismuth is compressed while heating, the bismuth evaporates during firing and the surface layer becomes uneven, resulting in a non-uniform porcelain composition. For this reason, if the re-oxidation layer, that is, the dielectric layer, is made thinner to make it more compact and more convenient for people to carry, the insulation resistance and breakdown voltage will drop significantly, making it impractical. In other words, the conventional barium titanate-based reduced and reoxidized semiconductor J
As for the J capacitor ceramic composition, one which has good temperature characteristics and other electrical characteristics and which can be made into a small capacitor has not been realized.

それゆえに、この発明の主たる目的は、面積容量が比較
的大きく、しかも温度特性などが良好なコンデンサを得
ることができる、還元再酸化型半導体コンデンサ磁器組
成物を提供することである。
Therefore, the main object of the present invention is to provide a reduction and reoxidation type semiconductor capacitor ceramic composition that can provide a capacitor having a relatively large areal capacitance and good temperature characteristics.

(問題点を解決するための手段) この発明は、チタン酸バリウム(BaTiO3)を基体
として、酸化コハル1−(Co。03)を0.05〜0
゜7重量%、酸化ニオブ(Nb2O5)を0.2〜4.
0重量%添加した、還元再酸化型半導体コンデンサ磁器
組成物である。
(Means for Solving the Problems) This invention uses barium titanate (BaTiO3) as a base and 0.05 to 0.00 cohal 1-(Co.03) oxide.
7% by weight, and 0.2 to 4% niobium oxide (Nb2O5).
This is a reduced and reoxidized semiconductor capacitor ceramic composition containing 0% by weight.

(発明の効果) この発明によれば、温度特性が良好でしかも面積容量の
コンデンサを得ることができる。さらに、従来のビスマ
スなどのように、焼成時に飛散する物質(組成)がない
ので、量産での変動が少なく歩留りかよいだけでなく、
表面層を緻密にすることができ、絶縁抵抗や破壊電圧の
水準が高く、高信頼性のコンデンサが得られる。
(Effects of the Invention) According to the present invention, it is possible to obtain a capacitor having good temperature characteristics and a large area capacitance. Furthermore, unlike conventional bismuth, there is no substance (composition) that scatters during firing, so not only is there less variation in mass production, but the yield is also higher.
The surface layer can be made dense, and a highly reliable capacitor with high insulation resistance and breakdown voltage can be obtained.

(実施例) この発明の還元再酸化型半導体コンデンサ磁器組成物を
用いるコンデンサは次のようにして作成される。すなわ
ち、原料組成を調合混合し、この混合物を成形して酸化
性雰囲気で焼成し、次いで酸化性雰囲気で熱処理を行な
って半導体磁器とした後、酸化性雰囲気で熱処理を行な
って半導体磁器表面に薄い誘電体層を形成し、さらに表
面に電極をイ」す、シて半導体コンデンサが構成される
(Example) A capacitor using the reduced and reoxidized semiconductor capacitor ceramic composition of the present invention is produced as follows. That is, the raw material composition is prepared and mixed, this mixture is molded and fired in an oxidizing atmosphere, and then heat treated in an oxidizing atmosphere to make semiconductor porcelain. A semiconductor capacitor is constructed by forming a dielectric layer and further arranging electrodes on the surface.

実J1!!利1− 試料は次のようにして作成した。BaTiO3、CO2
O3(X重量%)およびNb2O,、(Y重量%)を別
表1の組成となるように秤量し、各秤量原料をポリボッ
トに投入して酢酸ヒニルなどの有機バインダとともに1
6時時間式混合した。
Real J1! ! Benefit 1- The sample was prepared as follows. BaTiO3, CO2
Weigh O3 (X weight %) and Nb2O, (Y weight %) so that they have the composition shown in Attached Table 1, and put each weighed raw material into a polybot and mix it with an organic binder such as hinyl acetate.
Mixed for 6 hours.

混合した後、脱水乾燥し、50メソシユの篩に通して整
粒した。次いで、2 、 500kg/cm2の片方で
直径10mm、厚み0.5mmの円板に成形した。
After mixing, the mixture was dehydrated and dried, and passed through a 50-mesh sieve for sieving. Next, it was molded into a disk with a diameter of 10 mm and a thickness of 0.5 mm with one side weighing 2,500 kg/cm2.

成形した円板を、1300〜1,400°Cて2時間焼
成して誘電体磁器を得た。このようにして得られた誘電
体磁器を800〜900℃の還元雰囲気で1時間熱処理
して半導体磁器とした。この半導体磁器表面に電極用の
銀ペーストを塗布し、650〜800°Cで30分間酸
化雰囲気中で焼きイ」げて、その磁器表面に誘電体層を
形成するとともに電極を形成し、還元再酸化型半導体コ
ンデンサを得た。
The molded disk was fired at 1300 to 1400°C for 2 hours to obtain dielectric porcelain. The dielectric porcelain thus obtained was heat treated in a reducing atmosphere at 800 to 900° C. for 1 hour to obtain semiconductor porcelain. A silver paste for electrodes is applied to the surface of this semiconductor porcelain and baked in an oxidizing atmosphere at 650 to 800°C for 30 minutes to form a dielectric layer and an electrode on the surface of the porcelain. An oxidized semiconductor capacitor was obtained.

このようにして作成したコンデンサについて、品温にお
ける誘電率(εa t 2O°C)、誘電体損(DF)
、絶縁抵抗(TR)、キューリ点(CI))および温度
特性(TC)を次の測定条件で測定し、別表1を得た。
Regarding the capacitors created in this way, the dielectric constant (εa t 2O°C) and dielectric loss (DF) at product temperature
, insulation resistance (TR), Curie point (CI)) and temperature characteristics (TC) were measured under the following measurement conditions, and Table 1 was obtained.

ただし、他の特性との比較を簡単にするために、各試料
とも、電極焼き付は条件を調整することにより、面積容
量を350μF/cm2とした。
However, in order to simplify the comparison with other characteristics, the electrode burning conditions for each sample were adjusted so that the areal capacitance was 350 μF/cm 2 .

なお、容量、誘電損失は0.IVr、m、s、 I K
tlzで測定した値である。容量については還元温度、
再酸化温度によって変化するため、還元後の磁器比抵抗
が一定となるように還元温度を設定するとともに、再酸
化温度を設定して面積容量を350μF/cm2とした
。絶縁抵抗は12VD、Cを1分間印加して測定し、た
。破壊電圧はり、C昇圧破壊方式を用いた。誘電率は1
.OVr、m、s、 I KHzで測定し、測定温度は
2O°Cを基準とした。
Note that the capacitance and dielectric loss are 0. IVr, m, s, I K
This is a value measured at tlz. Regarding capacity, reduction temperature,
Since it changes depending on the reoxidation temperature, the reduction temperature was set so that the porcelain specific resistance after reduction was constant, and the reoxidation temperature was also set to give an areal capacitance of 350 μF/cm 2 . Insulation resistance was measured by applying 12 VD, C for 1 minute. A C boost breakdown method was used. The dielectric constant is 1
.. It was measured at OVr, m, s, I KHz, and the measurement temperature was based on 2O°C.

なお、別表1中*を付したものはこの発明範囲外のもの
であり、それ以外はこの発明範囲内のものである。
In addition, those marked with * in Attached Table 1 are outside the scope of this invention, and the others are within the scope of this invention.

災ル例1 別表2のように、BaTiO3、Co2O3  (X重
量%)、Nb2O5(Yfi量%)および希土類酸化物
としての1.、a2O3またはY2O3(7重量%)を
秤量し、実施例1と同様にして、試料を作成した。
Disaster Example 1 As shown in Attached Table 2, BaTiO3, Co2O3 (X weight %), Nb2O5 (Yfi amount %) and 1. , a2O3 or Y2O3 (7% by weight) were weighed, and samples were prepared in the same manner as in Example 1.

作成された試料の各特性を実施例1と同様に測定して別
表2を得た。
Each characteristic of the prepared sample was measured in the same manner as in Example 1 to obtain Attached Table 2.

実施例−1 別表3のように、BaTiO3,Co2O3(X重量%
)、Nb2O5(Y重量%)、La2O3(7重量%)
およびM n C03をMnO2に換算してα重量%に
なるように、各原料を秤量し、実施例1と同様にして、
試料を作成した。
Example-1 As shown in Attached Table 3, BaTiO3, Co2O3 (X weight%
), Nb2O5 (Y wt%), La2O3 (7 wt%)
Each raw material was weighed in the same manner as in Example 1, so that M n C03 was converted to MnO2 and became α weight %.
A sample was prepared.

作成した試料の各特性を実施例1と同様に測定して別表
3を得た。
Each characteristic of the prepared sample was measured in the same manner as in Example 1 to obtain Attached Table 3.

この別表1〜別表3から明らかなように、この発明の還
元再酸化型半導体磁器組成物における組成の限定の理由
は次のとおりである。
As is clear from Appended Tables 1 to 3, the reasons for the compositional limitations in the reduced and reoxidized semiconductor ceramic composition of the present invention are as follows.

(1)CO2O3が0.05重量%未満ではキューリ点
が低くなり、常温での誘電率が小さくなる。このため面
積容量を350μF/cm2にすると、表面の再酸化層
が非常に薄くなり、破壊電圧や絶縁抵抗か小さくなる。
(1) If CO2O3 is less than 0.05% by weight, the Curie point will be low and the dielectric constant at room temperature will be low. Therefore, when the areal capacitance is set to 350 μF/cm 2 , the reoxidized layer on the surface becomes very thin, and the breakdown voltage and insulation resistance become small.

それとともに、温度特性もまた悪化する。一方、Co2
Q3が0.9重量%を超えると、キューリ点が高くなり
、常温での誘電率が小さくなる。このため、面積容量を
350μF/cm2としたときに表面の再酸化層が非常
に薄くなり、破壊電圧や絶縁抵抗が小さくなる。
At the same time, the temperature characteristics also deteriorate. On the other hand, Co2
When Q3 exceeds 0.9% by weight, the Curie point becomes high and the dielectric constant at room temperature becomes low. Therefore, when the areal capacitance is set to 350 μF/cm 2 , the reoxidized layer on the surface becomes very thin, and the breakdown voltage and insulation resistance become small.

(2)Nb2O5が0.2重量%未満ではキューリ点が
高くなり、常温での誘電率が小さくなる。
(2) If Nb2O5 is less than 0.2% by weight, the Curie point becomes high and the dielectric constant at room temperature becomes low.

このため、面積容量を350μF/cm2としたとき、
表面の再酸化層が薄くなり、破壊電圧や絶縁抵抗が小さ
くなる。一方、Nb2o5が4.0重量%を超えると、
キューり点が高くなり、常温での誘電率が小さくなり、
かつ表面に角状の結晶が増大する。このため、面積容量
を350 !I F 7cm2にしたとき、表面の再酸
化層が非常に薄くなり、破壊電圧や絶縁抵抗が小さくな
り、温度特性もまた悪化する。
Therefore, when the areal capacitance is 350μF/cm2,
The reoxidation layer on the surface becomes thinner, reducing breakdown voltage and insulation resistance. On the other hand, when Nb2o5 exceeds 4.0% by weight,
The cue point becomes higher and the dielectric constant at room temperature becomes smaller.
In addition, angular crystals increase on the surface. Therefore, the areal capacity is 350! When I F is set to 7 cm2, the reoxidation layer on the surface becomes very thin, the breakdown voltage and insulation resistance become small, and the temperature characteristics also deteriorate.

(3)La2O3.、Y2O3などの希土類酸化物の添
加は、還元再酸化速度を大きくし、かつ均一な磁器組成
になるという効果を有し破壊電圧が改善される。しかし
、それら希土類酸化物のBaTiO3に対する総重量%
が3.0を超えると、常温での誘電率が大きくなりすぎ
て温度特性の悪化が生した。なお、これは、Ce、Nd
など他の希土類酸化物を添加しても同じ結果であった。
(3) La2O3. The addition of rare earth oxides such as Y2O3 has the effect of increasing the rate of reduction and reoxidation and providing a uniform porcelain composition, thereby improving the breakdown voltage. However, the total weight percent of these rare earth oxides relative to BaTiO3
When it exceeds 3.0, the dielectric constant at room temperature becomes too large, resulting in deterioration of temperature characteristics. Note that this is Ce, Nd
The same results were obtained even when other rare earth oxides were added.

(4)MnCO3は、絶縁抵抗を向上させる効果がある
。しかしながら、M n CO3が、M n 02に換
算して0.5重量%を超えると、常温での誘電率が小さ
くなり、面積容量を350μF/cm2にしたとき、表
面の再酸化層が非常に薄くなり、破壊電圧や絶縁抵抗が
小さくなる。なお、Mnの添加のためにM n C03
を用いたが、他のマンガン化合物を添加しても同様の結
果であり、いずれもMnO2に換算して0.5重量%を
超えなければよい。
(4) MnCO3 has the effect of improving insulation resistance. However, when M n CO3 exceeds 0.5% by weight in terms of M n 02, the dielectric constant at room temperature becomes small, and when the areal capacitance is set to 350 μF/cm2, the reoxidation layer on the surface becomes very large. It becomes thinner, resulting in lower breakdown voltage and insulation resistance. In addition, due to the addition of Mn, M n C03
However, similar results were obtained even if other manganese compounds were added, and it is sufficient that the amount of any of them does not exceed 0.5% by weight in terms of MnO2.

このように、上述の実施例によれば、別表4に示すよう
に、従来に比べて電気特性が向上した還元再酸化型半導
体コンデンサを得ることができる。
As described above, according to the above embodiment, as shown in Appendix 4, it is possible to obtain a reduction and reoxidation type semiconductor capacitor with improved electrical characteristics compared to the conventional one.

Claims (1)

【特許請求の範囲】 1 チタン酸バリウム(BaTiO_3)を基体として
、 酸化コバルト(Co_2O_3)を0.05〜0.7重
量%、および 酸化ニオブ(Nb_2O_5)を0.2〜4.0重量%
添加した、還元再酸化型半導体コンデンサ磁器組成物。 2 さらに、少なくとも1種以上の希土類酸化物を0〜
3.0重量%添加した、特許請求の範囲第1項記載の還
元再酸化型半導体コンデンサ磁器組成物。 3 さらに、マンガン(Mn)を酸化マンガン(MnO
_2)に換算して0〜0.5重量%添加した、特許請求
の範囲第2項記載の還元再酸化型半導体コンデンサ磁器
組成物。
[Claims] 1 Barium titanate (BaTiO_3) as a base, 0.05 to 0.7% by weight of cobalt oxide (Co_2O_3) and 0.2 to 4.0% by weight of niobium oxide (Nb_2O_5).
A reduced and reoxidized semiconductor capacitor ceramic composition. 2 Furthermore, at least one kind of rare earth oxide is added to
The reduced and reoxidized semiconductor capacitor ceramic composition according to claim 1, wherein 3.0% by weight is added. 3 Furthermore, manganese (Mn) is converted into manganese oxide (MnO
_2) The reduced and reoxidized semiconductor capacitor ceramic composition according to claim 2, wherein 0 to 0.5% by weight is added in terms of _2).
JP3357585A 1985-02-20 1985-02-20 Reduction/reoxidation type semiconductor capacitor ceramic composition Pending JPS61193419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3357585A JPS61193419A (en) 1985-02-20 1985-02-20 Reduction/reoxidation type semiconductor capacitor ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3357585A JPS61193419A (en) 1985-02-20 1985-02-20 Reduction/reoxidation type semiconductor capacitor ceramic composition

Publications (1)

Publication Number Publication Date
JPS61193419A true JPS61193419A (en) 1986-08-27

Family

ID=12390328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3357585A Pending JPS61193419A (en) 1985-02-20 1985-02-20 Reduction/reoxidation type semiconductor capacitor ceramic composition

Country Status (1)

Country Link
JP (1) JPS61193419A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211511A (en) * 1987-02-25 1988-09-02 ティーディーケイ株式会社 Semiconductor ceramic composition
JPS63211509A (en) * 1987-02-25 1988-09-02 ティーディーケイ株式会社 Semiconductor ceramic composition
EP0315324A2 (en) * 1987-11-03 1989-05-10 Tam Ceramics Inc. Dielectric ceramic with high k, low df and flat tc
JPH04334807A (en) * 1991-05-13 1992-11-20 Murata Mfg Co Ltd Dielectric porcelain composite
JPH04334809A (en) * 1991-05-13 1992-11-20 Murata Mfg Co Ltd Dielectric porcelain composite
JPH04334808A (en) * 1991-05-13 1992-11-20 Murata Mfg Co Ltd Dielectric porcelain composite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211511A (en) * 1987-02-25 1988-09-02 ティーディーケイ株式会社 Semiconductor ceramic composition
JPS63211509A (en) * 1987-02-25 1988-09-02 ティーディーケイ株式会社 Semiconductor ceramic composition
EP0315324A2 (en) * 1987-11-03 1989-05-10 Tam Ceramics Inc. Dielectric ceramic with high k, low df and flat tc
JPH04334807A (en) * 1991-05-13 1992-11-20 Murata Mfg Co Ltd Dielectric porcelain composite
JPH04334809A (en) * 1991-05-13 1992-11-20 Murata Mfg Co Ltd Dielectric porcelain composite
JPH04334808A (en) * 1991-05-13 1992-11-20 Murata Mfg Co Ltd Dielectric porcelain composite

Similar Documents

Publication Publication Date Title
JPS61193419A (en) Reduction/reoxidation type semiconductor capacitor ceramic composition
JPH1036172A (en) Ceramic dielectric substance composition
JPS597665B2 (en) High dielectric constant porcelain composition
JPH0442501A (en) Electronic device using barium titanate based semiconductor porcelain
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JPS606535B2 (en) porcelain composition
JPS6046811B2 (en) Composition for semiconductor ceramic capacitors
JP3385631B2 (en) Non-reducing dielectric porcelain composition
JPS61191009A (en) Reduction/reoxidation type semiconductor capacitor ceramic composition
JP2540048B2 (en) Voltage nonlinear resistor porcelain composition
JPH06102573B2 (en) Composition for reduction / reoxidation type semiconductor ceramic capacitor
JPS61240622A (en) Semiconductor ceramic composition and semiconductor ceramicsand capacitor using the same
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPS6048897B2 (en) Composition for semiconductor ceramic capacitors
JPS62229602A (en) Reduction reoxidation type semiconductor capacitor porcelaincompound
KR0165557B1 (en) Ceramic composition
JPS5957415A (en) Composition for reduced reoxidized semiconductor porcelain condenser
JPS5936365B2 (en) semiconductor porcelain materials
JPH01239704A (en) Ceramic component with high dielectric constant
JPS63121209A (en) Non-reducing dielectric ceramic composition
JPH0660057B2 (en) Pyroelectric porcelain material
JPS6133251B2 (en)
JPS6230482B2 (en)
JPS62262304A (en) High dielectric constant porcelain compound
JPS6046813B2 (en) Composition for semiconductor ceramic capacitors