JPH0442501A - Electronic device using barium titanate based semiconductor porcelain - Google Patents

Electronic device using barium titanate based semiconductor porcelain

Info

Publication number
JPH0442501A
JPH0442501A JP2150517A JP15051790A JPH0442501A JP H0442501 A JPH0442501 A JP H0442501A JP 2150517 A JP2150517 A JP 2150517A JP 15051790 A JP15051790 A JP 15051790A JP H0442501 A JPH0442501 A JP H0442501A
Authority
JP
Japan
Prior art keywords
mol
electrode
barium titanate
based semiconductor
semiconductor porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2150517A
Other languages
Japanese (ja)
Other versions
JP2541344B2 (en
Inventor
Makoto Sano
誠 佐野
Norimitsu Kito
鬼頭 範光
Hiroto Fujiwara
藤原 博人
Takahiko Kawahara
河原 隆彦
Atsushi Kojima
淳 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2150517A priority Critical patent/JP2541344B2/en
Publication of JPH0442501A publication Critical patent/JPH0442501A/en
Application granted granted Critical
Publication of JP2541344B2 publication Critical patent/JP2541344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain an electronic device of a low resistance and a little processing change which shows superior characteristics in a resistance to breakdown voltage and a loading life test by providing the device with a barium- titanate-based semiconductor porcelain of a specified composition, a first electrode and a second electrode. CONSTITUTION:This device is composed of a composition including BaTiO3 of 30 - 95 mol% as a main component, CaTiO3 of 3 - 25 mol%, SrTiO3 of 1 - 30 mol%, and PbTiO3 of 1 - 5 mol%. Also, a rare earth element as a semiconducting property imparting agent or at least one of Nb, Ta, V, Sb, Bi,W, Th, Mo or Cr of 0.001 - 0.4 mol% is included. Mn of 0.001 - 0.100 mol% and SiO2 of 0.01 - 5 mol% are included. As a first electrode, Cr, Ti or Al or an alloy of these is formed by sputtering and on said first electrode, a metal or an alloy whose thermal expansion coefficient is larger than that of the first electrode and is smaller than that of a solder is applied to form a second elec trode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、正の抵抗温度特性を示すチタン酸バリウム系
半導体磁器を用いた電子部品に関し、特に、半導体磁器
上に形成される電極が改良された電子部品に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to electronic components using barium titanate-based semiconductor porcelain that exhibits positive resistance-temperature characteristics, and in particular, to an electronic component using barium titanate-based semiconductor porcelain that exhibits positive resistance-temperature characteristics. related to electronic components.

〔従来の技術〕[Conventional technology]

チタン酸バリウム系半導体磁器はチタン酸バリウムを主
成分とし、これに半導体化剤としてY、La、Cu等の
希土類元素、Nb、B i、Sb。
Barium titanate-based semiconductor porcelain has barium titanate as its main component, and rare earth elements such as Y, La, and Cu, Nb, Bi, and Sb as semiconducting agents.

Ta、■、WまたはTh等のうち少なくとも1種以上を
0.03〜1.0モル%含有させた組成を有し、抵抗急
変点(キュリー点)を超えると著しい正の抵抗温度変化
を示すという特徴を有する。
It has a composition containing 0.03 to 1.0 mol% of at least one of Ta, ■, W, Th, etc., and exhibits a significant positive resistance temperature change when the resistance abrupt change point (Curie point) is exceeded. It has the following characteristics.

通常、主成分であるチタン酸バリウムの影響により、チ
タン酸バリウム系半導体磁器のヰユリ−点は、はぼ12
0℃付近にある。
Normally, due to the influence of barium titanate, which is the main component, the Uri point of barium titanate semiconductor porcelain is around 12
It is around 0℃.

チタン酸バリウム系半導体磁器のキュリー点を高温側に
移行させるために、Baの一部をpbで置換することが
知られている。他方、キュリー点を低温側へ移行させる
ために、Baの一部をSrで置換したり、Tiの一部を
ZrまたはSn等で置換したりすることも知られている
In order to shift the Curie point of barium titanate-based semiconductor ceramics to a high temperature side, it is known to replace a portion of Ba with Pb. On the other hand, in order to shift the Curie point to a lower temperature side, it is also known to replace a portion of Ba with Sr, or replace a portion of Ti with Zr, Sn, or the like.

さらに、チタン酸バリウム系半導体磁器に、マンガンを
MnO,に換算して0.05〜0.10モル%添加する
ことにより、キュリー点を超えた温度域における抵抗温
度変化率を著しく大きくし得ることも知られている。ま
た、Sin、を0゜02〜5モル%添加することにより
、常温における比抵抗を低くすると共に、安定したもの
とし得ることも知られている。
Furthermore, by adding 0.05 to 0.10 mol% of manganese (converted to MnO) to barium titanate-based semiconductor porcelain, the rate of change in resistance with temperature in the temperature range exceeding the Curie point can be significantly increased. is also known. It is also known that by adding 0.02 to 5 mol% of Sin, the resistivity at room temperature can be lowered and stabilized.

〔発明が解決しようとする技術的課題〕しかしながら、
上述したようなチタン酸バリウム系半導体磁器において
、10Ω・口取下の低比抵抗の磁器を得ようとした場合
、耐破壊電圧が著しく低下するという問題があった。ま
た、素子の厚みを薄くした場合には、素子の両生面にA
gを主体とする電極を形成すると、Agのマイグレーシ
ョン等により特性が劣化するという問題があった。他方
、マイグレーションを防止するために、Ni −Agの
二層構造の電極を形成した場合には、加工変化が太き(
なるという問題もある。
[Technical problem to be solved by the invention] However,
In the barium titanate-based semiconductor porcelain as described above, when attempting to obtain a porcelain with a low specific resistance of 10 Ω/cut, there was a problem in that the breakdown voltage was significantly lowered. In addition, when the thickness of the element is made thinner, A
When an electrode mainly composed of Ag is formed, there is a problem that the characteristics deteriorate due to migration of Ag and the like. On the other hand, when forming an electrode with a Ni-Ag double-layer structure to prevent migration, processing changes are large (
There is also the issue of becoming.

よって、本発明の目的は、より低抵抗であり、かつ優れ
た耐破壊電圧特性を示し、また加工変化が小さく、負荷
寿命試験に対しても優れた特性を示す、チタン酸バリウ
ム系半導体磁器を用いた電子部品を提供することにある
Therefore, the object of the present invention is to provide barium titanate-based semiconductor porcelain that has lower resistance, exhibits excellent breakdown voltage characteristics, has small processing changes, and exhibits excellent characteristics in load life tests. The objective is to provide electronic components using

〔技術的課題を解決するための手段及び作用〕本発明の
チタン酸バリウム系半導体磁器を用いた電子部品は、主
成分がBaTi0.を30〜95モル%、CaTiO3
を3〜25モル%、SrT i Oxを1〜30モル%
及びP b T i Osを1〜50モル%含む組成か
らなり、半導体化剤として希土類元素またはNb、Ta
、V、Sb、Bi、W、Th、MoもしくはCrのうち
少なくとも1種を0.001〜0.4モル%含み、さら
にMnを0.001〜0.100モル%、SiO□を0
゜01〜5.0モル%含有する組成のチタン酸バリウム
系半導体磁器と、この半導体磁器の表面にスパッタリン
グにより形成されており、かつCr、Tiもしくは、l
またはこれらの合金からなる第1電極と、第1電極上に
スパッタリングにより付与されており、かつ第1電極を
構成する材料よりも熱膨張係数が高く、はんだよりも熱
膨張係数の小さい金属または合金よりなる第2電極とを
備えることを特徴とする。
[Means and effects for solving the technical problems] The electronic component using the barium titanate semiconductor ceramic of the present invention has BaTi0. 30-95 mol%, CaTiO3
3 to 25 mol%, and 1 to 30 mol% of SrT i Ox
and P b TiOs in an amount of 1 to 50 mol %, and a rare earth element or Nb, Ta as a semiconducting agent.
, V, Sb, Bi, W, Th, Mo or Cr at 0.001 to 0.4 mol %, further contains Mn 0.001 to 0.100 mol %, and SiO
It is formed by sputtering on the surface of barium titanate based semiconductor porcelain having a composition of 01 to 5.0 mol% and containing Cr, Ti or l.
or a first electrode made of an alloy thereof, and a metal or alloy that is applied on the first electrode by sputtering and has a coefficient of thermal expansion higher than that of the material constituting the first electrode and a coefficient of thermal expansion lower than that of solder. It is characterized by comprising a second electrode consisting of.

本発明においてチタン酸バリウム主成分中のBaTio
s含有率を30〜95モル%の範囲としたのは、30モ
ル%未満では半導体化が困難となり、かつ比抵抗が高く
なるからであり、他方、95モル%を超えると電気的特
性が著しく低下するからである。
In the present invention, BaTio in the main component of barium titanate
The reason why the s content is set in the range of 30 to 95 mol% is that if it is less than 30 mol%, it will be difficult to convert it into a semiconductor and the specific resistance will become high.On the other hand, if it exceeds 95 mol%, the electrical properties will be significantly deteriorated. This is because it decreases.

同様に、CaTiOs含有率を3〜25モル%の範囲と
したのは、3モル%未満ではその含有効果が現われず、
25モル%を超えると、耐電圧特性及び耐突入電流特性
の低下をもたらすからであ5rTiO*含有率を1〜3
0モル%としたのは、1モル%未満では、特性改善効果
が少なく、30モル%を超えると電気的特性が劣化する
からである。
Similarly, the reason why the CaTiOs content is set in the range of 3 to 25 mol% is that the effect of its inclusion is not manifested below 3 mol%.
If it exceeds 25 mol%, the withstand voltage characteristics and inrush current characteristics will deteriorate.
The reason for setting it to 0 mol % is because if it is less than 1 mol %, the effect of improving the characteristics is small, and if it exceeds 30 mol %, the electrical characteristics will deteriorate.

P b T i Os含有率を1〜50モル%の範囲と
したのは、1モル%未満では特性改善効果が顕著に現れ
ず実用に適さないからであり、50モル%を超えると半
導体化が困難となるからである。
The reason why the P b TiOs content is set in the range of 1 to 50 mol % is that if it is less than 1 mol %, the property improvement effect will not be noticeable and it is not suitable for practical use, and if it exceeds 50 mol %, semiconductor formation This is because it becomes difficult.

なお、主成分を(Ba、Ca、Sr、Pb)T10、と
して表したとき、(Ba、Ca、Sr、Pb)/Tiの
モル比を0.99〜1.03の範囲でずらしても、本発
明の目的を達成し得ることを指摘しておく。
In addition, when the main components are expressed as (Ba, Ca, Sr, Pb) T10, even if the molar ratio of (Ba, Ca, Sr, Pb)/Ti is shifted in the range of 0.99 to 1.03, It is pointed out that the objectives of the invention can be achieved.

半導体化剤として希土類元素またはNb、Ta、■、S
 b、 B i、 W、 Th、 MoもしくはCrの
うち少なくとも1種を0.001〜0.4モル%含有さ
せることとしたのは、0.001モル%以下では磁器が
半導体化せず、逆に0.4モル%を超えて含有させると
比抵抗が高くなり、本発明の目的を達成できないからで
ある。
Rare earth elements or Nb, Ta, ■, S as a semiconducting agent
The reason why it was decided to contain 0.001 to 0.4 mol% of at least one of B, Bi, W, Th, Mo, or Cr is that if it is less than 0.001 mol%, the porcelain will not become a semiconductor, and vice versa. This is because if the content exceeds 0.4 mol %, the specific resistance becomes high and the object of the present invention cannot be achieved.

また、Mnの量を0.001〜0.100モル%とした
のは、Q、001モル%未満では抵抗温度特性が劣化し
、0.100モル%よりも多く含有させると比抵抗が大
きくなるからである。さらに、S10w含有量について
0.01〜5モル%の範囲としたのは、0.01モル%
未満では焼結し難(,5モル%を超えて含有させた場合
には高抵抗化してしまうからである。
In addition, the reason for setting the amount of Mn to 0.001 to 0.100 mol% is that Q: If it is less than 0.001 mol%, the resistance temperature characteristics will deteriorate, and if it is contained more than 0.100 mol%, the specific resistance will increase. It is from. Furthermore, the range of 0.01 to 5 mol% for S10w content is 0.01 mol%.
If the content is less than 5 mol %, sintering is difficult (and if the content exceeds 5 mol %, the resistance becomes high.

上記の組成を有するチタン酸バリウム系半導体磁器以外
では本発明の目的を達成することはできない、しかしな
がら、上記の組成を有する半導体磁器にNiをめっきし
、その上にAgペーストを焼き付けて電極を形成した場
合には、加工変化が大きくなる。また、素子の厚みを薄
くするとAgのマイグレーラン等により特性が劣化する
The purpose of the present invention cannot be achieved with anything other than barium titanate-based semiconductor porcelain having the above composition. However, electrodes are formed by plating the semiconductor porcelain having the above composition with Ni and baking Ag paste thereon. In this case, processing changes will be large. Furthermore, when the thickness of the element is reduced, the characteristics deteriorate due to migration of Ag and the like.

そこで、本発明では、上記のような問題を解決するため
に、第1電極として、Cr、TiもしくはAlまたはこ
れらの合金をスパッタリングにより付与して第1電極が
形成されており、該第11!1極上に、スパッタリング
により熱膨張係数が第1電極材料よりも大きく、はんだ
よりも小さい金属または合金を付与することにより第2
電極が形成されている。
Therefore, in the present invention, in order to solve the above problems, the first electrode is formed by applying Cr, Ti, Al, or an alloy thereof by sputtering, and the 11th! By sputtering a metal or alloy whose coefficient of thermal expansion is larger than that of the first electrode material and smaller than that of the solder, the second electrode material is formed by sputtering.
Electrodes are formed.

第21極を構成する材料としては、例えばNiまたはC
u等のはんだ付は性の良好な金属またはこれらの合金が
好適に用いられる。
The material constituting the 21st pole is, for example, Ni or C.
For soldering such as u, metals with good properties or alloys thereof are preferably used.

本発明では、上記した組成のチタン酸バリウム系半導体
磁器に、上述のような第1電極及び第2電極が形成され
ているため、従来の半導体磁器を用いた電子部品に比べ
て素子の抵抗が低く、優れた耐破壊電圧特性を示し、さ
らに加工変化が小さく、負荷寿命に対して優れた特性を
有する電子部品を構成することができる。
In the present invention, since the first electrode and the second electrode as described above are formed on the barium titanate-based semiconductor porcelain having the above-mentioned composition, the resistance of the element is lower than that of electronic components using conventional semiconductor porcelain. It is possible to construct an electronic component that exhibits low and excellent breakdown voltage characteristics, has small processing changes, and has excellent characteristics with respect to load life.

〔実施例の説明〕[Explanation of Examples]

以下、本発明を実施例に従って詳細に説明する。 Hereinafter, the present invention will be explained in detail according to examples.

主成分原料としてBaCO3、CaC0,,5rcOs
 、Pbs Oa及びTie、を、半導体化剤原料とし
てYt Os 、Lag Os 、Ce0z、Ndg 
Ox 、Sbt Ox 、B it 03及びW2O3
、添加物原料としてMnC0,、SiO□等を準備した
。これら各原料を第1表に示す比率で含有する半導体磁
器組成物が得られるように、各原料を配合し、さらに湿
式混合した。
BaCO3, CaC0,,5rcOs as main component raw materials
, Pbs Oa and Tie, and Yt Os , Lag Os , CeOz, Ndg as semiconductor forming agent raw materials.
Ox , Sbt Ox , B it 03 and W2O3
, MnC0, SiO□, etc. were prepared as additive raw materials. Each raw material was blended and further wet-mixed so as to obtain a semiconductor ceramic composition containing each of these raw materials in the ratios shown in Table 1.

得られた混合原料を脱水乾燥し、1150℃で1時間仮
焼した。次に、仮焼原料を粉砕し、さらにバインダを加
えて造粒し、成形圧力1000kg/cIiで円板状に
成形した。成形された円板を1320℃〜1400℃で
焼成し、直径17.5m。
The obtained mixed raw material was dehydrated and dried, and calcined at 1150° C. for 1 hour. Next, the calcined raw material was pulverized, a binder was added thereto, granulated, and molded into a disk shape at a molding pressure of 1000 kg/cIi. The formed disc was fired at 1320°C to 1400°C and had a diameter of 17.5 m.

厚み0.6mの円板状の半導体磁器を得た。A disk-shaped semiconductor porcelain with a thickness of 0.6 m was obtained.

得られた半導体磁器の両生表面にIn−Ga合金からな
る電極材をこすり付け、試料とした。これらの試料につ
いて常温(25℃)における比抵抗、キュリー点、耐電
圧特性を測定した。測定結果を第2表に示す、上述の各
特性のうち、耐電圧特性は試料に印加する電圧を徐々に
上昇させてゆき、試料の破壊が生じる直前の最高印加電
圧値を示したものである。
An electrode material made of an In-Ga alloy was rubbed on the amphiboid surface of the obtained semiconductor porcelain to prepare a sample. The specific resistance, Curie point, and withstand voltage characteristics of these samples at room temperature (25° C.) were measured. The measurement results are shown in Table 2. Among the above-mentioned characteristics, the withstand voltage characteristic shows the maximum applied voltage value immediately before the sample breaks down by gradually increasing the voltage applied to the sample. .

なお、第1表及び第2表において*を付した試料は本発
明の範囲外の組成の半導体磁器であり、それ以外は、半
導体磁器の組成についてはすべて本発明の範囲内のもの
である。
Note that the samples marked with * in Tables 1 and 2 are semiconductor porcelains whose compositions are outside the scope of the present invention, and all other compositions of the semiconductor porcelains are within the scope of the present invention.

第2表より、実施例の試料は、低比抵抗かつ高耐電圧特
性を有することがわかる。
From Table 2, it can be seen that the samples of Examples have low resistivity and high withstand voltage characteristics.

(以下、余白) 第 表 (その1) 第 表 (その3) 第 表 (その2) 第 表 (その4) (以下、 余白) (その1) (その3) 第 表 (その2) 第 表 (その4) 次に、試料番号2,3,7.39及び44の磁器に無電
解めっき法によりニッケル電極を施し、さらに、この上
に銀ペーストを塗布した後、600℃の温度で熱処理し
てN i  A g 1i極を形成した素子を得た。
(Hereafter, margin) Table (Part 1) Table (Part 3) Table (Part 2) Table (Part 4) (Hereafter, margin) (Part 1) (Part 3) Table (Part 2) Table (Part 4) Next, nickel electrodes were applied to the porcelains of sample numbers 2, 3, 7.39, and 44 by electroless plating, and then silver paste was applied on top of the nickel electrodes, followed by heat treatment at a temperature of 600°C. An element in which a N i A g 1i pole was formed was obtained.

同様に、試料番号2,3,7.39及び44の磁器に第
1t8iとしてCr、第2電極としてNiをスパッタリ
ングにより付与した素子を作製した。
Similarly, elements were fabricated in which Cr was applied as the first t8i and Ni was applied as the second electrode to ceramic samples Nos. 2, 3, 7, 39, and 44 by sputtering.

上記のようにして用意した素子試料について、湯中負荷
寿命試験を行った。
A hot water load life test was conducted on the element samples prepared as described above.

また、In−GaTl極が付与されていた試料との比抵
抗の差(加工変化)を、次式に従って求めた。
Further, the difference in resistivity (processing change) with respect to the sample provided with the In-GaTl electrode was determined according to the following formula.

但し、ΔP:比抵抗の変化率(%) PL =計算上束めた比抵抗(Ω・cll)Pt :電
極形成後の比抵抗(Ω・cm)P、:In−Ga@極で
の比抵抗(Ω・cm)湯中負荷寿命試験及び加工変化の
結果を下記の第3表に示す。
However, ΔP: Rate of change in specific resistance (%) PL = Calculated specific resistance (Ω・cll) Pt: Specific resistance after electrode formation (Ω・cm) P,: Ratio at In-Ga@pole Resistance (Ω cm) The results of the hot water load life test and processing changes are shown in Table 3 below.

第3表 第3表から明らかなように、N i −A g電極ヲ形
成した素子試料では、NiとAgとの界面に抵抗層が存
在するため、比抵抗を低下させ難いだけでなく、湯中負
荷寿命試験での抵抗値変化率が著しく劣化した。また加
工変化も大きく、実際に使用するのには問題がある。さ
らに、低比抵抗化を図るためには、素子の厚みを薄くす
る必要があるが、このときAgのマイグレーション等が
起こる可能性もあり、特性劣化を引き起こす可能性があ
る。
Table 3 As is clear from Table 3, in the device sample in which the Ni-Ag electrode was formed, there is a resistance layer at the interface between Ni and Ag, so it is not only difficult to reduce the specific resistance, but also The rate of change in resistance value in the medium load life test deteriorated significantly. Furthermore, the processing changes are large, which poses a problem in actual use. Furthermore, in order to lower the specific resistance, it is necessary to reduce the thickness of the element, but at this time, migration of Ag may occur, which may cause deterioration of characteristics.

これに対して、Cr−Niスパッタリングによる電極が
形成された素子試料では、比抵抗値が低く、負荷による
変化も少ない。また、この組成系とのマツチングが良い
ため、加工変化も少ない。
On the other hand, an element sample in which electrodes were formed by Cr--Ni sputtering had a low specific resistance value and little change due to load. In addition, since it matches well with this composition system, there are few processing changes.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、特定組成の主成分に特
定割合で半導体化剤及び添加物を含有させた組成を有す
るチタン酸バリウム系半導体磁器にCr、Tiもしくは
Afまたはこれらの合金によりなる第1電極、並びに熱
膨張係数が第1電極材料より大きく、はんだより小さい
材料よりなる第2電極がスパッタリングにより形成され
ているので、従来に比べて比抵抗が低く、耐電圧特性に
優れ、さらに負荷寿命試験にも優れ、加工変化が小さい
電子部品を提供することが可能となる。
As described above, according to the present invention, barium titanate-based semiconductor porcelain having a composition in which a main component of a specific composition contains a semiconducting agent and an additive in a specific proportion is coated with Cr, Ti, Af, or an alloy thereof. The first electrode is formed by sputtering, and the second electrode is made of a material whose coefficient of thermal expansion is larger than that of the first electrode material and smaller than that of the solder. Furthermore, it is possible to provide electronic components that are excellent in load life tests and have small processing changes.

Claims (1)

【特許請求の範囲】[Claims] (1)主成分が、BaTiO_3を30〜95モル%、
CaTiO_3を3〜25モル%、SrTiO_3が1
〜30モル%及びPbTiO_3を1〜50モル%含む
組成であり、 半導体化剤として、希土類元素またはNb、Ta、V、
Sb、Bi、W、Th、MoもしくはCrのうち少なく
とも1種を0.001〜0.4モル%含み、 Mnを0.001〜0.100モル%並びにSiO_2
を0.01〜5モル%含む組成からなるチタン酸バリウ
ム系半導体磁器と、 前記半導体磁器の表面にスパッタリングにより形成され
ており、かつCr、TiもしくはAlまたはこれらの合
金からなる第1電極と、 前記第1電極上にスパッタリングにより形成されており
、かつ熱膨張係数が第1電極を構成する材料よりも大き
く、はんだよりも小さい金属または合金からなる第2電
極とを備えるチタン酸バリウム系半導体磁器を用いた電
子部品。
(1) The main component is 30 to 95 mol% BaTiO_3,
3 to 25 mol% of CaTiO_3, 1 of SrTiO_3
~30 mol% and 1~50 mol% of PbTiO_3, and as a semiconductor agent, rare earth elements or Nb, Ta, V,
Contains 0.001 to 0.4 mol% of at least one of Sb, Bi, W, Th, Mo, or Cr, 0.001 to 0.100 mol% of Mn, and SiO_2
a barium titanate-based semiconductor ceramic having a composition containing 0.01 to 5 mol% of the semiconductor ceramic; a first electrode formed on the surface of the semiconductor ceramic by sputtering and made of Cr, Ti, Al, or an alloy thereof; a barium titanate-based semiconductor porcelain comprising a second electrode formed on the first electrode by sputtering and made of a metal or alloy whose coefficient of thermal expansion is larger than that of the material constituting the first electrode and smaller than that of the solder; Electronic components using
JP2150517A 1990-06-08 1990-06-08 Electronic parts using barium titanate based semiconductor porcelain Expired - Lifetime JP2541344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2150517A JP2541344B2 (en) 1990-06-08 1990-06-08 Electronic parts using barium titanate based semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2150517A JP2541344B2 (en) 1990-06-08 1990-06-08 Electronic parts using barium titanate based semiconductor porcelain

Publications (2)

Publication Number Publication Date
JPH0442501A true JPH0442501A (en) 1992-02-13
JP2541344B2 JP2541344B2 (en) 1996-10-09

Family

ID=15498591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150517A Expired - Lifetime JP2541344B2 (en) 1990-06-08 1990-06-08 Electronic parts using barium titanate based semiconductor porcelain

Country Status (1)

Country Link
JP (1) JP2541344B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022411A1 (en) * 1996-11-20 1998-05-28 Murata Manufacturing Co., Ltd. Barium titanate-base semiconducting ceramic composition
KR20030092720A (en) * 2002-05-31 2003-12-06 현대자동차주식회사 PTC ceramic compound having low electric resistivity
JP2008193042A (en) * 2006-07-28 2008-08-21 Tdk Corp Laminated thermistor and its manufacturing method
JP2014205585A (en) * 2013-04-11 2014-10-30 ニチコン株式会社 Semiconductor ceramic composition and method of producing the same
JPWO2013065441A1 (en) * 2011-11-01 2015-04-02 株式会社村田製作所 PTC thermistor and method for manufacturing PTC thermistor
US9321689B2 (en) 2008-08-07 2016-04-26 Epcos Ag Molded object, heating device and method for producing a molded object
US9363851B2 (en) 2008-08-07 2016-06-07 Epcos Ag Heating device and method for manufacturing the heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410996A (en) * 1977-06-27 1979-01-26 Mitsubishi Electric Corp Manufacture of titanium oxide electrode
JPS57157502A (en) * 1981-03-24 1982-09-29 Murata Manufacturing Co Barium titanate series porcelain composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410996A (en) * 1977-06-27 1979-01-26 Mitsubishi Electric Corp Manufacture of titanium oxide electrode
JPS57157502A (en) * 1981-03-24 1982-09-29 Murata Manufacturing Co Barium titanate series porcelain composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022411A1 (en) * 1996-11-20 1998-05-28 Murata Manufacturing Co., Ltd. Barium titanate-base semiconducting ceramic composition
US6187707B1 (en) 1996-11-20 2001-02-13 Murata Manufacturing Co., Ltd. Barium titanate-based semiconductive ceramic composition
KR20030092720A (en) * 2002-05-31 2003-12-06 현대자동차주식회사 PTC ceramic compound having low electric resistivity
JP2008193042A (en) * 2006-07-28 2008-08-21 Tdk Corp Laminated thermistor and its manufacturing method
US9321689B2 (en) 2008-08-07 2016-04-26 Epcos Ag Molded object, heating device and method for producing a molded object
US9363851B2 (en) 2008-08-07 2016-06-07 Epcos Ag Heating device and method for manufacturing the heating device
JPWO2013065441A1 (en) * 2011-11-01 2015-04-02 株式会社村田製作所 PTC thermistor and method for manufacturing PTC thermistor
JP2014205585A (en) * 2013-04-11 2014-10-30 ニチコン株式会社 Semiconductor ceramic composition and method of producing the same

Also Published As

Publication number Publication date
JP2541344B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
JP3319314B2 (en) Barium titanate-based semiconductor porcelain composition
JPS6328324B2 (en)
JPH0442501A (en) Electronic device using barium titanate based semiconductor porcelain
JPH0283256A (en) Dielectric material porcelain composition
JP2727626B2 (en) Ceramic capacitor and method of manufacturing the same
JPH04115409A (en) Non-reducing dielectric ceramic composite
JPS5920905A (en) High dielectric contact porcelain composition
JP2697095B2 (en) Ceramic capacitor and method of manufacturing the same
JPS6121183B2 (en)
JPS6116131B2 (en)
JPS6117087B2 (en)
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
JPH03215354A (en) Barium titanate-based semiconductor ceramic composition
JP2707706B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JP2850355B2 (en) Ceramic capacitor and method of manufacturing the same
JPS6046811B2 (en) Composition for semiconductor ceramic capacitors
JPH04170361A (en) Barium titanate-based semiconductor porcelain composition
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same
JP3036051B2 (en) Barium titanate-based semiconductor porcelain composition
JP2707707B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JPS59162172A (en) High permittivity ceramic composition
JPH03215353A (en) Barium titanate-based semiconductor ceramic composition
JP2661246B2 (en) Ceramic capacitor and method of manufacturing the same
JPH0249307A (en) Dielectric porcelain compound
JPS6230151B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

EXPY Cancellation because of completion of term