JPH01234360A - Production of ceramic material containing lead - Google Patents

Production of ceramic material containing lead

Info

Publication number
JPH01234360A
JPH01234360A JP63061023A JP6102388A JPH01234360A JP H01234360 A JPH01234360 A JP H01234360A JP 63061023 A JP63061023 A JP 63061023A JP 6102388 A JP6102388 A JP 6102388A JP H01234360 A JPH01234360 A JP H01234360A
Authority
JP
Japan
Prior art keywords
calcined
calcined powder
mixed
pbo
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63061023A
Other languages
Japanese (ja)
Inventor
Masami Takagaki
高垣 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63061023A priority Critical patent/JPH01234360A/en
Publication of JPH01234360A publication Critical patent/JPH01234360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain the title material having a uniform compsn. and stable switching temp. characteristics and useful as the material of a thermistor having positive characteristics by adding Ta2O5 to a powdery PbO-TiO2 mixture, calcining them at a specified temp., mixing the resulting calcined powder with BaTiO3-based calcined powder and pulverizing the mixture. CONSTITUTION:Ta2O5 contg. Ta as a semiconductor forming element is added to a powdery PbO-TiO2 mixture by 0.1-0.4atomic% and they are mixed and calcined at 750-950 deg.C to obtain calcined powder. BaCO3 is mixed with TiO2 or further mixed with Ta2O5, MnO2 and SiO2 for improving various characteristics so as to provide a prescribed desired compsn. and the mixture is calcined at 1,000-1,200 deg.C to obtain BaTiO3-based calcined powder. This calcined powder is mixed with said calcined powder in a prescribed ratio and pulverized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、正特性サーミスタの材料として用いられる鉛
を含有したチタン酸バリウム系の鉛含有セラミック材料
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a barium titanate-based lead-containing ceramic material used as a material for a positive temperature coefficient thermistor.

従来の技術 従来より、チタン酸バリウム(BaTiO4)’ を主
体とするセラミック材料は、チタニウムの原子半径に近
い5価の元素、あるいはバリウムの原子半径に近い3価
の元素をドープすることにより半導体化することが可能
で、そのキュリー点付近で抵抗値の異常増加が生じる正
特性サーミスタ半導体として知られている。この正特性
サーミスタは、発熱体として用いる場合には、周知のよ
うに正特性サーミスタ素子の有する自己温度制御機能に
より、一定温度付近で動作するという特徴を有している
。すなわち、正特性サーミスタは、温度が低い時は素子
の抵抗値が低く、そのため素子に流れる電流が増加し、
これにより素子はジュール発熱し高温になる。すると、
その後は素子が高抵抗となり、素子に流れる電流が減少
し、温度が低下する。以下、このような動作の繰シ返し
により、正特性サーミスタは一定温度付近で発熱する。
Conventional technology Traditionally, ceramic materials mainly composed of barium titanate (BaTiO4) have been made into semiconductors by doping them with a pentavalent element close to the atomic radius of titanium or a trivalent element close to the atomic radius of barium. It is known as a positive temperature coefficient thermistor semiconductor in which an abnormal increase in resistance occurs near its Curie point. When used as a heat generating element, this PTC thermistor has the characteristic that it operates at a constant temperature due to the self-temperature control function of the PTC thermistor element, as is well known. In other words, in a positive temperature coefficient thermistor, the resistance value of the element is low when the temperature is low, so the current flowing through the element increases,
This causes the element to generate Joule heat and reach a high temperature. Then,
After that, the element becomes highly resistive, the current flowing through the element decreases, and the temperature drops. Thereafter, by repeating such an operation, the positive temperature coefficient thermistor generates heat around a constant temperature.

近年、このような特質を生かして正特性サーミスタは。In recent years, positive temperature coefficient thermistors have been developed by taking advantage of these characteristics.

ヒータ材料としても利用されてきている。It has also been used as a heater material.

一方、この正特性サーミスタを高温で発熱させるために
は、キュリー点を高温側にシフトする必要がある。その
ためには、チタン酸バリウムのバリウムを鉛に置換し、
チタン酸バリウム鉛系材料を作製しなければならない。
On the other hand, in order to make this PTC thermistor generate heat at a high temperature, it is necessary to shift the Curie point to the high temperature side. To do this, we replaced barium in barium titanate with lead,
A barium lead titanate based material must be made.

一般にチタン酸バリウム鉛系材料の作製は、酸化チタン
と炭酸バリウムおよび酸化鉛を主原料として、これにY
、La。
Generally, barium lead titanate-based materials are manufactured using titanium oxide, barium carbonate, and lead oxide as the main raw materials, and Y
, La.

sbなどの半導体化元素を微量添加したものを、混合、
仮焼、粉砕、成形、焼成して得ていた。これが正特性サ
ーミスタの焼結体素子として用いられることになる。
Mixed with a trace amount of semiconducting elements such as sb,
It was obtained by calcining, crushing, molding, and firing. This will be used as a sintered element for a positive temperature coefficient thermistor.

発明が解決しようとする課題 しかしながら、このようにして作製して得られたものは
一1ooo”0以上の高温で仮焼、焼成されるため、約
960”Cを超えた温度で出発原料中の酸[ヒ鉛の蒸発
が顕著となり、意図している組成とは異なった焼結体が
得られるという問題があった。すなわち、組成がずれ、
スイッチング温度特性、耐電圧特性などの特性において
安定した焼結体が得られないものであった。
Problems to be Solved by the Invention However, since the product produced in this way is calcined and fired at a high temperature of 11ooo"0 or more, the starting materials may be dissolved at temperatures exceeding about 960"C. There was a problem in that the evaporation of acid [arsenic] became noticeable and a sintered body with a composition different from the intended one was obtained. In other words, the composition shifts,
It was not possible to obtain a sintered body with stable characteristics such as switching temperature characteristics and withstand voltage characteristics.

本発明はこのような問題点を解決するもので、仮焼工程
で酸化鉛の蒸発を抑制し、組合ずれかない安定した正特
性サーミスタ焼結体を得るための鉛含有セラミック材料
を提供することを目的とするものである。
The present invention solves these problems, and aims to provide a lead-containing ceramic material for suppressing the evaporation of lead oxide during the calcination process and for obtaining a stable positive temperature coefficient thermistor sintered body with no misalignment. This is the purpose.

課題を解決するための手段 この問題点を解決するために本発明の鉛含有セラミック
材料の製造方法は、pbo・TiO2a 金粉にT&2
05を0.1〜0.4原子チ添加し、750〜960℃
で仮焼した仮焼粉と、1ooO〜12oO℃で仮焼した
BaTiO,系仮焼粉を、混合粉砕して得るものである
Means for Solving the Problem In order to solve this problem, the method for producing a lead-containing ceramic material of the present invention is to add T&2 to pbo/TiO2a gold powder.
Added 0.1 to 0.4 atoms of 05, 750 to 960℃
It is obtained by mixing and pulverizing a calcined powder calcined at 100° C. and a BaTiO type calcined powder calcined at 100° C. to 1200° C.

作用 この方法によれば、PbOの蒸発が顕著となる950’
Cを超えない温度で仮焼することから、pbo蒸発によ
る組成ずれが避けられることとなる。また、半導体化元
素としてのタンタルを添加して仮焼しているため、結晶
粒内にタンタルが固溶し、均質なセラミック半導体の焼
結体が得られることとなる。
Effect: According to this method, the evaporation of PbO becomes significant at 950'
Since the calcination is performed at a temperature not exceeding C, composition deviation due to pbo evaporation can be avoided. Further, since tantalum is added as a semiconductor element and calcined, tantalum is dissolved in the crystal grains, and a homogeneous ceramic semiconductor sintered body is obtained.

実施例 以下、本発明の一実施例について説明する。捷ず、第1
成分として、pboとTie2を1〜10モル比になる
ように秤量し、これに0.3 wt%の半導体化元素と
しての“f?L205を添加し、ボールミルで湿式混合
を行った後、乾燥して750〜950℃の温度で仮焼し
、仮焼粉1を得た。
EXAMPLE An example of the present invention will be described below. No selection, 1st
As components, pbo and Tie2 were weighed to have a molar ratio of 1 to 10, and 0.3 wt% of "f?L205" as a semiconductor element was added to this, wet mixed in a ball mill, and then dried. The powder was then calcined at a temperature of 750 to 950°C to obtain calcined powder 1.

次に、第2成分として、BaC0,、Tie2および半
導体化元素としてのTIL205  と緒特性向上のだ
めの元素としてのMnO2,SiO□を、組成比BaT
iO3+ o、ooa 丁a205 + o、004S
iO2+ 0.0005 MnO□になるように秤量し
、仮焼粉1と同様にボールミルで湿式混合し乾燥した後
、1000〜12oo℃で仮焼し、仮焼粉2を得だ。
Next, as the second component, BaC0, Tie2 and TIL205 as a semiconductor element, MnO2, SiO□ as elements for improving the joint characteristics, and a composition ratio of BaT
iO3+ o, ooa Ding a205 + o, 004S
They were weighed so that iO2+ was 0.0005 MnO□, mixed wet in a ball mill in the same manner as calcined powder 1, dried, and then calcined at 1000 to 12 oo C to obtain calcined powder 2.

次いで、上記仮焼粉1と仮焼粉2を、 (B&aAPb、6)Tie、 + 0.003 Ta
205+0.0048in、、 + 0.0005 M
nO2になるように秤量し、それをボールミル中に投入
して混合粉砕を行った後、乾燥した。この乾燥物にバイ
ンダーとして5%Pvム(ポリビニルアルコール)水溶
液をI Qwt%加え、メノウ乳鉢で乾式混合し、造粒
した後、1 ton/c、jの圧力で成形し、直径20
rran、厚み2.6rIrInの円板状とし、126
0〜1350’(、、空気中で1時間焼成した。このよ
うにして作製した焼結体の両面に銀電極をつけ、その電
気特性を測定した。また、組成ずれを調べるために、焼
結体におけるpbとTie比(Pb/Ti)を電子顕微
鏡で分析した。この時、比較のために仮焼粉1を950
℃を超える温度(1oOO℃。
Next, the above calcined powder 1 and calcined powder 2 were combined into (B&aAPb, 6) Tie, + 0.003 Ta
205+0.0048in, +0.0005M
It was weighed so that the amount of nO2 would be nO2, put into a ball mill, mixed and pulverized, and then dried. IQwt% of 5% Pvm (polyvinyl alcohol) aqueous solution was added as a binder to this dried material, and the mixture was dry mixed in an agate mortar, granulated, and molded at a pressure of 1 ton/c, j, to a diameter of 20 mm.
rran, disk shape with thickness 2.6rIrIn, 126
0 to 1350' (,, fired in air for 1 hour. Silver electrodes were attached to both sides of the sintered body thus produced, and its electrical properties were measured. The Pb and Tie ratio (Pb/Ti) in the body was analyzed using an electron microscope.At this time, for comparison, calcined powder 1 was
Temperatures exceeding ℃ (1oOO℃).

1160℃)で仮焼したもの、および従来方法で作製し
たものについても、その他を同条件として特性を調べた
The properties were also investigated for those calcined at 1160° C.) and those produced by the conventional method under the same conditions.

これらの測定結果を下記の表に示す。また、本発明の実
施例(試料AI)と従来例における抵抗温度曲線を第1
図に示した。
The results of these measurements are shown in the table below. In addition, the resistance temperature curves of the embodiment of the present invention (sample AI) and the conventional example are
Shown in the figure.

ここで、試料iFi 1 、2が本発明の実施例であり
、試料A3,4は比較例、試料jK 5は従来例である
Here, samples iFi 1 and 2 are examples of the present invention, samples A3 and 4 are comparative examples, and sample jK 5 is a conventional example.

また、上記において仮焼粉2の仮焼温度は1000℃、
成形後の焼成温度は1000℃で行った。
In addition, in the above, the calcination temperature of the calcination powder 2 is 1000°C,
The firing temperature after molding was 1000°C.

上記表から解るように、PbO−Tie2仮焼温度が8
60℃、960℃では、pboの組成ずれはほとんど生
じていないが、1000℃仮焼、1160℃仮焼および
従来例では、pbとTiO比(Pb/Ti )が低下し
、明らかにpboが蒸発していると認められる。また、
その傾向が抵抗温度特性にも現われ、試料& 3 、4
 、5では、スイッチング温度の低下が見られるが、試
料&1,2ではその低下が見られなかった。
As can be seen from the above table, the PbO-Tie2 calcination temperature is 8
At 60°C and 960°C, there is almost no deviation in the composition of pbo, but at 1000°C calcination, 1160°C calcination, and the conventional example, the pb to TiO ratio (Pb/Ti) decreases, and pbo clearly evaporates. be recognized as doing so. Also,
This tendency also appears in the resistance temperature characteristics, and samples &3 and 4
, 5, a decrease in switching temperature was observed, but no such decrease was observed in samples &1 and 2.

なお、PbO−TiO2の仮焼温度が760℃未満では
、PbTiO3の生成が不十分であった。そして、pb
Tio、にTa2O5を添加することによシ、結晶粒内
へのTa固溶が促進され、焼結体が均質化されて耐電圧
の向上が見られた。また、Ta205の添加量が0.1
原子チ未満および0.4原子チを超えた場合には、焼結
体が絶縁化されることが確認された。
Note that when the calcination temperature of PbO-TiO2 was lower than 760°C, the generation of PbTiO3 was insufficient. And pb
By adding Ta2O5 to Tio, the solid solution of Ta into the crystal grains was promoted, the sintered body was homogenized, and the withstand voltage was improved. In addition, the amount of Ta205 added is 0.1
It was confirmed that the sintered body was insulated when the amount was less than 0.4 atoms and more than 0.4 atoms.

発明の効果 以上のように、本発明はpbo・Tie2混合粉を76
0〜960℃で仮焼した仮焼粉を用いることにより、仮
焼時におけるpboの蒸発を抑制し、化学量論比を保つ
ことが可能となり、ま7’(Ta205の添加によシ結
晶粒内にタンタル固溶が促進されることとなり、これら
のことから均質なチタン酸バリウム鉛系材料を作製する
ことができるという効果が得られる。
Effects of the invention As described above, the present invention uses pbo/Tie2 mixed powder at 76%.
By using calcined powder calcined at 0 to 960°C, it is possible to suppress the evaporation of pbo during calcining and maintain the stoichiometric ratio. Solid solution of tantalum is promoted within the material, and from these factors, it is possible to produce a homogeneous barium lead titanate-based material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例および従来例により得られた焼
結体の抵抗温度曲線を示す特性図である。
FIG. 1 is a characteristic diagram showing resistance temperature curves of sintered bodies obtained according to examples of the present invention and conventional examples.

Claims (1)

【特許請求の範囲】[Claims] PbO・TiO_2混合粉にTa_2O_5を0.1〜
0.4原子%添加し、750〜950℃で仮焼した仮焼
粉と、1000〜1200℃で仮焼したBaTiO_3
系仮焼粉を、混合粉砕して得ることを特徴とする鉛含有
セラミック材料の製造方法。
Add Ta_2O_5 to PbO・TiO_2 mixed powder from 0.1 to
Calcined powder added with 0.4 at% and calcined at 750 to 950°C, and BaTiO_3 calcined at 1000 to 1200°C
A method for producing a lead-containing ceramic material, characterized in that it is obtained by mixing and pulverizing calcined powder.
JP63061023A 1988-03-15 1988-03-15 Production of ceramic material containing lead Pending JPH01234360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63061023A JPH01234360A (en) 1988-03-15 1988-03-15 Production of ceramic material containing lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63061023A JPH01234360A (en) 1988-03-15 1988-03-15 Production of ceramic material containing lead

Publications (1)

Publication Number Publication Date
JPH01234360A true JPH01234360A (en) 1989-09-19

Family

ID=13159295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63061023A Pending JPH01234360A (en) 1988-03-15 1988-03-15 Production of ceramic material containing lead

Country Status (1)

Country Link
JP (1) JPH01234360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939597A (en) * 2021-04-06 2021-06-11 上海大学 PTCR thermal sensitive ceramic material and preparation method thereof
CN114031394A (en) * 2021-10-22 2022-02-11 江苏钧瓷科技有限公司 Method for improving reduction resistance of PTCR (thermal sensitive ceramic)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939597A (en) * 2021-04-06 2021-06-11 上海大学 PTCR thermal sensitive ceramic material and preparation method thereof
CN114031394A (en) * 2021-10-22 2022-02-11 江苏钧瓷科技有限公司 Method for improving reduction resistance of PTCR (thermal sensitive ceramic)

Similar Documents

Publication Publication Date Title
WO2008053813A1 (en) Semiconductor ceramic composition and process for producing the same
US3637532A (en) Sintered cold-conductor resistor body and method for its production
US3044968A (en) Positive temperature coefficient thermistor materials
US2981699A (en) Positive temperature coefficient thermistor materials
JPH01234360A (en) Production of ceramic material containing lead
JPS6051664A (en) Manufacture of lead zirconate titanate ceramic
JPS5910951B2 (en) Raw material composition for manufacturing high dielectric constant porcelain
JPH01234359A (en) Production of ceramic material containing lead
JPH01234361A (en) Production of ceramic material containing lead
JPH01234363A (en) Production of lead-containing ceramic material
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH01234362A (en) Production of ceramic material containing lead
JPH02106903A (en) High-temperature ptc thermistor and manufacture thereof
JP2000086336A (en) Production of positive temperature coefficient thermistor
JP3555395B2 (en) Barium lead titanate based semiconductor porcelain composition
JPS5948521B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JPS6366401B2 (en)
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH07211511A (en) Positive temperature coefficient thermistor and its production
JPH0369175A (en) Piezoelectric ceramic composition
JPS5867001A (en) Method of producing positive temperature coefficient semiconductor porcelain
JPS59202603A (en) Semiconductor porcelain composition
JPH1112033A (en) Barium lead titanate-based semiconductor ceramic composition
JPS63280401A (en) Semiconductor porcelain composition
JPS6328323B2 (en)