JPH01234359A - Production of ceramic material containing lead - Google Patents

Production of ceramic material containing lead

Info

Publication number
JPH01234359A
JPH01234359A JP63061013A JP6101388A JPH01234359A JP H01234359 A JPH01234359 A JP H01234359A JP 63061013 A JP63061013 A JP 63061013A JP 6101388 A JP6101388 A JP 6101388A JP H01234359 A JPH01234359 A JP H01234359A
Authority
JP
Japan
Prior art keywords
calcined powder
calcined
mixed
pbo
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63061013A
Other languages
Japanese (ja)
Inventor
Masami Takagaki
高垣 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63061013A priority Critical patent/JPH01234359A/en
Publication of JPH01234359A publication Critical patent/JPH01234359A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the title material having a uniform compsn. and stable switching temp. characteristics and useful as the material of a thermistor having positive characteristics by adding Dy to a powdery PbO-TiO2 mixture, calcining them at a specified temp., mixing the resulting calcined powder with BaTiO3- based calcined powder and pulverizing the mixture. CONSTITUTION:Dy as a semiconductor forming element is added to a powdery PbO-TiO2 mixture by 0.1-0.4atomic%, e.g., in the form of Dy2O3 and they are mixed and calcined at 750-950 deg.C to obtain calcined powder. BaCO3 is mixed with TiO2 or further mixed with Dy2O3, MnO2 and SiO2 for improving various characteristics so as to provide a prescribed desired compsn. and the mixture is calcined at 1,000-1,200 deg.C to obtain BaTiO3-based calcined powder. This calcined powder is mixed with said calcined powder in a prescribed ratio and pulverized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、正特性サーミスタの材料として用いられる鉛
を含有したチタン酸バリウム系の鉛含有セラミック材料
の製造方法に関するものである0従来の技術 従来より、チタン酸バリウム(BaTiO,)を主体と
するセラミック材料は、チタニウムの原子半径に近い6
価の元素、あるいはバリウムの原子半径に近い3価の元
素をドープすることにより半導体化することが可能で、
そのキュリー点付近で抵抗値O異常増加が生じる正特性
サーミスタ半導体として知られている。この正特性サー
ミスタは、発熱体として用いる場合には、周知のように
正特性サーミスタ素子の有する自己温度制御機能により
、一定温度付近で動作するという特徴を有している。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a lead-containing barium titanate-based lead-containing ceramic material used as a material for a positive temperature coefficient thermistor. , a ceramic material mainly composed of barium titanate (BaTiO,) has a radius of 6 near the atomic radius of titanium.
It is possible to make it into a semiconductor by doping it with a valent element or a trivalent element close to the atomic radius of barium.
It is known as a positive temperature coefficient thermistor semiconductor in which an abnormal increase in resistance value O occurs near the Curie point. When used as a heat generating element, this PTC thermistor has the characteristic that it operates at a constant temperature due to the self-temperature control function of the PTC thermistor element, as is well known.

すなわち、正特性サーミスタは、温度が低い時は素子の
抵抗値が低く、そのため素子に流れる電流が増加し、こ
れにより素子はジュール発熱し高温になる。すると、そ
の後は素子が高抵抗となり、素子に流れる電流が減少し
、温度が低下する。以下、このような動作の繰り返しに
より、正特性サーミスタは一定温度付近で発熱する。近
年、仁のような特質を生かして正特性サーミスタ材料は
、ヒータ材料としても利用されてきている。
That is, in a positive temperature coefficient thermistor, when the temperature is low, the resistance value of the element is low, so the current flowing through the element increases, and as a result, the element generates Joule heat and becomes high temperature. Thereafter, the element becomes highly resistant, the current flowing through the element decreases, and the temperature drops. Thereafter, by repeating such operations, the PTC thermistor generates heat around a constant temperature. In recent years, positive temperature coefficient thermistor materials have been used as heater materials due to their properties such as heat resistance.

一方、この正特性サーミスタを高温で発熱させるために
は、キュリー点を高温側にシフトする必要がある。その
ためには、チタン酸バリウムのバリウムを鉛に置換し、
チタン酸バリウム鉛系材料を作製しなければならない。
On the other hand, in order to make this PTC thermistor generate heat at a high temperature, it is necessary to shift the Curie point to the high temperature side. To do this, we replaced barium in barium titanate with lead,
A barium lead titanate based material must be made.

一般にチタン酸バリウム鉛系材料の作製は、酸化チタン
と炭酸バリウムおよび酸化鉛を主原料として、これにY
 、 La。
Generally, barium lead titanate-based materials are manufactured using titanium oxide, barium carbonate, and lead oxide as the main raw materials, and Y
, La.

sbなどの半導体化元素を微量添加したものを、混合、
仮焼、粉砕、成形、焼成して得ていた。これが正特性サ
ーミスタの焼結体素子として用いられることになる。
Mixed with a trace amount of semiconducting elements such as sb,
It was obtained by calcining, crushing, molding, and firing. This will be used as a sintered element for a positive temperature coefficient thermistor.

発明が解決しようとする課題 しかしながら、このようにして作製して得られたものは
、1000’C以上の高温で仮焼、焼成されるため、約
950”Cを超えた温度で出発原料中の酸化鉛の蒸発が
顕著となり、意図している組成とは異なった焼結体が得
られるという問題があった。すなわち、組成がずれ、ス
イッチング温度特性、耐電圧特性などの特性において安
定した焼結体が得られないものであっ7’C。
Problems to be Solved by the Invention However, since the products produced in this way are calcined and fired at high temperatures of 1000'C or higher, the starting materials may be dissolved at temperatures exceeding approximately 950'C. There was a problem in that the evaporation of lead oxide became noticeable and a sintered body with a composition different from the intended one was obtained.In other words, the composition was shifted, and the sintered body was not stable in characteristics such as switching temperature characteristics and withstand voltage characteristics. It's something that the body can't get.7'C.

本発明はこのような問題点を解決するもので、仮焼工程
で酸化鉛の蒸発を抑制し、組成ずれがない安定した正特
性サーミスタ焼結体を得るための鉛含有セラミック材料
を提供することを目的とするものである。
The present invention solves these problems and provides a lead-containing ceramic material that suppresses evaporation of lead oxide during the calcination process and obtains a stable positive temperature coefficient thermistor sintered body without compositional deviation. The purpose is to

課題を解決するための手段 この問題点を解決するために本発明の鉛含有セラミック
材料の製造方法は、pbo・Tie2混合粉にディスプ
ロジウムを0.1〜0.4原子%添加し、760〜95
0″Cで仮焼した仮焼粉と、1000〜1200″Cで
仮焼したBaTi0.系仮焼粉を、混合粉砕して得るも
のである。
Means for Solving the Problem In order to solve this problem, the method for producing a lead-containing ceramic material of the present invention includes adding 0.1 to 0.4 atomic % of dysprosium to the pbo/Tie2 mixed powder, 95
Calcined powder calcined at 0''C and BaTi0. It is obtained by mixing and pulverizing calcined powder.

作用 この方法によれば、pboの蒸発が顕著となる950’
Cを超えない温度で仮焼することから、PbO蒸発によ
る組成ずれが避けられることとなる。
Effect: According to this method, the evaporation of pbo becomes noticeable at 950'.
Since the calcination is performed at a temperature not exceeding C, composition deviation due to PbO evaporation can be avoided.

また、半導体化元素としてのディスプロジウムを添加し
て仮焼しているため、結晶粒内にディスプロジウムが固
溶し、均質なセラミック半導体の焼結体が得られること
となる。
Further, since dysprosium as a semiconductor element is added and calcined, dysprosium is dissolved in the crystal grains, and a homogeneous ceramic semiconductor sintered body is obtained.

実施例 以下、本発明の一実施例について説明する。まず、第1
成分として、pboとTie2を1:1のモル比になる
ように秤量し、これに0.3wt%の半導体化元素とし
ての酸化ディスプロジウム(Dy2o5)を添加し、ボ
ールミルで湿式混合を行った後、乾燥して750〜96
0℃の温度で仮焼し、仮焼粉1を得た。
EXAMPLE An example of the present invention will be described below. First, the first
As components, pbo and Tie2 were weighed at a molar ratio of 1:1, 0.3 wt% of dysprosium oxide (Dy2o5) as a semiconductor element was added, and wet mixing was performed in a ball mill. , dried 750-96
Calcined powder 1 was obtained by calcining at a temperature of 0°C.

次に、第2成分として13aGO,、Tie2  およ
び半導体化元素としてのDy、O,と緒特性向上のため
の元素としてのMnO2’、 Sin□を、組成比Ba
TiOs 十〇、003 p72o5+o、o O4S
in□+O,oOo5MnO2になるように秤量し、仮
焼粉1と同様にボールミルで湿式混合し乾燥した後、1
000〜1200℃で仮焼し、仮焼粉2を得た。
Next, 13aGO,, Tie2 as the second component, Dy and O as semiconductor elements, and MnO2' and Sin□ as elements for improving the properties, with a composition ratio of Ba
TiOs 10,003 p72o5+o,o O4S
Weighed so that in
Calcined powder 2 was obtained by calcining at 000 to 1200°C.

次いで、上記仮焼粉1と仮焼粉2を、(Bao、4Pb
o6)Tie、 +O,OO3D720s+O,OO4
S:LO2+0.0005 MnO,になるように秤量
し、それをボールミル中に投入して混合粉砕を行った後
、乾燥した0この乾燥物にバインダーとして6%Pv人
(ポリビニルアルコール)水溶液を10wt%加え、メ
ノウ乳鉢で乾式混合し、造粒した後、1ton/adの
圧力で成形し、直径20 mm +厚み2.6間の円板
状とし、1260〜1360’C・空気中で1時間焼成
した。このようにして作製した焼結体の両面に銀電極を
つけ、その電気特性を測定した0また、組成ずれを調べ
るために、焼結体におけるpbとTie比(pl)/T
i)  を電子顕微鏡で分析した。この時、比較のため
に仮焼粉1を950℃を超える温度(1000℃,11
60℃)で仮焼したもの、および従来方法で作製したも
のについても、その他を同条件として特性を調べた。
Next, the above calcined powder 1 and calcined powder 2 were mixed with (Bao, 4Pb
o6) Tie, +O,OO3D720s+O,OO4
S: LO2 + 0.0005 MnO, weighed, put it into a ball mill, mixed and pulverized, and then added 10 wt% of a 6% Pv (polyvinyl alcohol) aqueous solution as a binder to the dried product. In addition, after dry mixing in an agate mortar and granulating, it was molded at a pressure of 1 ton/ad to form a disc with a diameter of 20 mm and a thickness of 2.6 mm, and baked at 1260 to 1360'C in air for 1 hour. did. Silver electrodes were attached to both sides of the sintered body thus prepared, and its electrical properties were measured.
i) was analyzed using an electron microscope. At this time, for comparison, calcined powder 1 was heated to temperatures exceeding 950°C (1000°C, 11°C).
The properties were also investigated for those calcined at 60° C.) and those produced by the conventional method under the same conditions.

これらの測定結果を下記の表に示す。また、本発明の実
施例(試料凪1)と従来例における抵抗温度曲線を第1
図に示した。
The results of these measurements are shown in the table below. In addition, the resistance temperature curves of the embodiment of the present invention (Sample Nagi 1) and the conventional example are
Shown in the figure.

(以下余 白) ここで、試料隘1,2が本発明の実施例であり、試料患
3,4は比較例、試料Ph5は従来例である0また、上
記において仮焼粉2の仮焼温度は1100℃2成形後の
焼成温度は1000℃で行った。
(Left below) Here, sample numbers 1 and 2 are examples of the present invention, sample cases 3 and 4 are comparative examples, and sample Ph5 is a conventional example. The temperature was 1100°C. The firing temperature after the second molding was 1000°C.

上記衣から解るように、PbO−TiO2仮焼温度が8
60℃,950℃では、pbo O組成ずれはほとんど
生じていないが、1000℃仮焼、 1150℃仮焼お
よび従来例では、pbとTiO比(Pb/Ti)が低下
し、明らかにpboが蒸発していると認められる。また
、その傾向が抵抗温度特性にも現われ、試料t’h3,
4.5では、スイッチング温度の低下が見られるが、試
料嵐1,2ではその低下が見られなかった。
As you can see from the above batter, the PbO-TiO2 calcination temperature is 8
At 60°C and 950°C, almost no pboO composition deviation occurred, but at 1000°C calcination, 1150°C calcination, and the conventional example, the pb to TiO ratio (Pb/Ti) decreased, and pbo clearly evaporated. be recognized as doing so. This tendency also appears in the resistance temperature characteristics, and samples t'h3 and
4.5, a decrease in the switching temperature was observed, but no such decrease was observed in sample Arashi 1 and 2.

なお、PbO、TiO2の仮焼温度が760℃未満では
、PbTi05の生成が不十分でbった。そして、pb
Ti、o 、にDy20.を添加することにより、結晶
粒内へのDy固溶が促進され、焼結体が均質化されて耐
電圧の向上が見られた。また、ディスプロジウムの添加
量が0.1原子%未満および0.4原子%を超えた場合
には、焼結体が絶縁化されることが確認された。
Note that when the calcination temperature of PbO and TiO2 was lower than 760°C, the formation of PbTi05 was insufficient. And pb
Ti, o, and Dy20. By adding , the solid solution of Dy into the crystal grains was promoted, the sintered body was homogenized, and the withstand voltage was improved. Furthermore, it was confirmed that when the amount of dysprosium added was less than 0.1 atomic % and more than 0.4 atomic %, the sintered body was insulated.

なお、上記実施例においては、ディスプロジウムを酸化
物の形として添加したが、これはその他に塩化物などの
形で添加してもよいものである。
In the above examples, dysprosium was added in the form of an oxide, but it may also be added in the form of a chloride or the like.

発明の効果 以上のように、本発明はPbO−TiO2混合粉を75
0〜960℃で仮焼した仮焼粉を用いることにより、仮
焼時におけるpboの蒸発を抑制し、化学量論比を保つ
ことが可能となり、またディスプロジウムの添加により
結晶粒内にディスプロジウム固溶が促進されることとな
り、これらのことから均質なチタン酸バリウム鉛系材料
を作製することができるという効果が得られる。
Effects of the Invention As described above, the present invention has a PbO-TiO2 mixed powder of 75%.
By using calcined powder calcined at 0 to 960°C, it is possible to suppress the evaporation of pbo during calcining and maintain the stoichiometric ratio, and by adding dysprosium, dysprosium is added to the crystal grains. Solid solution is promoted, and from these factors, it is possible to produce a homogeneous barium lead titanate-based material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例および従来例により得られた焼
結体の抵抗温度曲線を示す特性図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 100    υθ  3oo   匈θ  S0θ→
 温度じり
FIG. 1 is a characteristic diagram showing resistance temperature curves of sintered bodies obtained according to examples of the present invention and conventional examples. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 100 υθ 3oo 匈θ S0θ→
Temperature chill

Claims (1)

【特許請求の範囲】[Claims] PbO・TiO_2混合粉に、ディスプロジウムを0.
1〜0.4原子%添加し、750〜950℃で仮焼した
仮焼粉と、1000〜1200℃で仮焼したBaTiO
_3系仮焼粉を、混合粉砕して得ることを特徴とする鉛
含有セラミック材料の製造方法。
Add 0.0% of dysprosium to the PbO・TiO_2 mixed powder.
Calcined powder added with 1 to 0.4 at% and calcined at 750 to 950°C, and BaTiO calcined at 1000 to 1200°C
A method for producing a lead-containing ceramic material, characterized in that it is obtained by mixing and pulverizing _3 type calcined powder.
JP63061013A 1988-03-15 1988-03-15 Production of ceramic material containing lead Pending JPH01234359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63061013A JPH01234359A (en) 1988-03-15 1988-03-15 Production of ceramic material containing lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63061013A JPH01234359A (en) 1988-03-15 1988-03-15 Production of ceramic material containing lead

Publications (1)

Publication Number Publication Date
JPH01234359A true JPH01234359A (en) 1989-09-19

Family

ID=13159020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63061013A Pending JPH01234359A (en) 1988-03-15 1988-03-15 Production of ceramic material containing lead

Country Status (1)

Country Link
JP (1) JPH01234359A (en)

Similar Documents

Publication Publication Date Title
WO2008053813A1 (en) Semiconductor ceramic composition and process for producing the same
JPWO2008050876A1 (en) Semiconductor porcelain composition and method for producing the same
WO2008050877A1 (en) Semiconductor ceramic composition and method for producing the same
JPH11322415A (en) Barium titanate powder, semiconductor ceramic and semiconductor ceramic element
JPH01234359A (en) Production of ceramic material containing lead
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH01234360A (en) Production of ceramic material containing lead
JPS5910951B2 (en) Raw material composition for manufacturing high dielectric constant porcelain
JPH01143202A (en) Positive temperature coefficient(ptc) thermister for moderate high temperature
JPH01234361A (en) Production of ceramic material containing lead
JPH11292622A (en) Semiconductor ceramic and semiconductor ceramic element
JPH01234362A (en) Production of ceramic material containing lead
JPH02106903A (en) High-temperature ptc thermistor and manufacture thereof
JPH01234363A (en) Production of lead-containing ceramic material
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JP3555395B2 (en) Barium lead titanate based semiconductor porcelain composition
JPS5948521B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JPS6366401B2 (en)
JPS5867001A (en) Method of producing positive temperature coefficient semiconductor porcelain
JPH1112033A (en) Barium lead titanate-based semiconductor ceramic composition
JPH10212161A (en) Thermistor material having positive characteristic and its production
JPH0717443B2 (en) Method for manufacturing barium titanate-based semiconductor porcelain
JPH05291004A (en) Manufacture of ptc thermistor
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JPH07211511A (en) Positive temperature coefficient thermistor and its production