JPH0450257A - Epoxy resin composition for sealing semiconductor - Google Patents

Epoxy resin composition for sealing semiconductor

Info

Publication number
JPH0450257A
JPH0450257A JP15923490A JP15923490A JPH0450257A JP H0450257 A JPH0450257 A JP H0450257A JP 15923490 A JP15923490 A JP 15923490A JP 15923490 A JP15923490 A JP 15923490A JP H0450257 A JPH0450257 A JP H0450257A
Authority
JP
Japan
Prior art keywords
epoxy resin
fused silica
weight
compound
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15923490A
Other languages
Japanese (ja)
Other versions
JP2600450B2 (en
Inventor
Keiji Kayaba
啓司 萱場
Taiji Sawamura
泰司 澤村
Masayuki Tanaka
正幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15689275&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0450257(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2159234A priority Critical patent/JP2600450B2/en
Publication of JPH0450257A publication Critical patent/JPH0450257A/en
Application granted granted Critical
Publication of JP2600450B2 publication Critical patent/JP2600450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain an epoxy resin composition having excellent soldering heat-resistance, flame-retardancy and high-temperature reliability and useful for the sealing of semiconductor by compounding a specific epoxy resin, a curing agent, fused silica, a hydrotalcite compound, etc. CONSTITUTION:The objective composition is produced by compounding (A) 4-20wt.% of an epoxy resin having a skeleton expressed by formula (R<1> to R<8> are H, 1-4C lower alkyl or halogen), (B) 2-15wt.% of a curing agent (e.g. phenolic novolak resin), (C) 75-90wt.% of fused silica composed of 99-50wt.% of crushed fused silica having an average particle diameter of <=10mum and 1-50wt.% of spherical fused silica having an average particle diameter of <=40mum, (D) 0.01-10wt.% of a hydrotalcite compound, (E) 0.1-5wt.% of a bromine compound (e.g. brominated epoxy resin) and (F) 0.1-10wt.% of an antimony compound (e.g. antimony trioxide).

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、半田耐熱性、難燃性および高温信頼性に優れ
る半導体封止用エポキシ組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an epoxy composition for semiconductor encapsulation that has excellent solder heat resistance, flame retardance, and high temperature reliability.

〈従来の技術〉 エポキシ樹脂は耐熱性、耐湿性、電気特性および接着性
などに優れており、さらに配合処方により種々の特性が
付与できるため、塗料、接着剤および電気絶縁材料など
工業材料として利用されている。
<Conventional technology> Epoxy resins have excellent heat resistance, moisture resistance, electrical properties, and adhesive properties, and can be given various properties depending on the formulation, so they are used as industrial materials such as paints, adhesives, and electrical insulation materials. has been done.

たとえば、半導体装1などの電子回路部品の封止方法と
して従来から金属やセラミックスによるハーメチックシ
ールとフェノール樹脂、シリコーン樹脂、エポキシ樹脂
などによる樹脂封止が提案されている。しかし、経済性
、生産性、物性のバランスの点からエポキシ樹脂による
樹脂封止が中心になっている。
For example, as methods for sealing electronic circuit components such as the semiconductor device 1, hermetic seals using metals or ceramics, and resin sealing using phenol resins, silicone resins, epoxy resins, or the like have been proposed. However, from the viewpoint of economy, productivity, and balance of physical properties, resin sealing using epoxy resin has become the main method.

一方、最近はプリント基板への部品実装においても高密
度化、自動化が進められており、従来のリードビンを基
板の穴に挿入する゛′挿入実装方式″に代り、基板表面
に部品を半田付けする″表面実装方式″が盛んになって
きた。それに伴い、パッケージも従来のDIR(デュア
ル・インライン・パッケージ)から高密度実装、表面実
装に適した薄型のPPP (フラット・プラスチック・
パッケージ)に移行しつつある。
On the other hand, recently, the mounting density and automation of components on printed circuit boards has been increasing, and instead of the conventional "insertion mounting method" in which lead bins are inserted into holes in the board, components are soldered onto the surface of the board. ``Surface mounting method'' has become popular.As a result, packages have changed from conventional DIR (dual in-line package) to thin PPP (flat plastic package) suitable for high-density mounting and surface mounting.
packaging).

表面実装方式への移行に伴い、従来あまり問題にならな
かった半田付は工程が大きな問題になってきた。従来の
ピン挿入実装方式では半田付は工程はリード部が部分的
に加熱されるだけであったが、表面実装方式ではパッケ
ージ全体が熱媒に浸され加熱される0表面実装方式にお
ける半田付は方法としては半田浴浸漬、不活性ガスの飽
和蒸気による加熱(ペーパーフェイズ法)や赤外線リフ
ロー法などが用いられるが、いずれの方法でもパッケー
ジ全体が210〜270℃の高温に加熱されることにな
る。そのため従来の封止樹脂で封止したパッケージは、
半田付は時に樹脂部分にクラックが発生し、信頼性が低
下して製品として使用できないという問題がおきる。
With the shift to surface mount methods, the soldering process, which used to be a non-issue, has become a major issue. In the conventional pin insertion mounting method, the soldering process only partially heats the leads, but in the surface mount method, the entire package is immersed in a heating medium and heated. Methods used include immersion in a solder bath, heating with saturated steam of inert gas (paper phase method), and infrared reflow method, but in any of these methods the entire package is heated to a high temperature of 210 to 270 degrees Celsius. . Therefore, packages sealed with conventional sealing resin,
When soldering, cracks sometimes occur in the resin part, reducing reliability and making the product unusable.

半田付は工程におけるクラックの発生は、後硬化してか
ら実装工程の間までに吸湿した水分が半田付は加熱時に
爆発的に水蒸気化、膨張することに起因するといわれて
おり、その対策として後硬化したパッケージを完全に乾
燥し密封した容器に収納して出荷する方法が用いられて
いる。
It is said that the occurrence of cracks during the soldering process is due to moisture absorbed between the post-hardening and the mounting process, which explosively turns into water vapor and expands when soldering is heated. A method is used in which the cured package is completely dried, stored in a sealed container, and shipped.

封止用樹脂の改良も種々検討されている。たとえば、ビ
フェニル骨格を有するエポキシ樹脂とゴム成分を添加す
る方法(特開昭63−251419号公報)、ビフェニ
ル骨格を有するエポキシ樹脂と粒子径14μl以下の微
粉末粒子を添加する方法(特開平1−87616号公報
)などが挙げられる。
Various improvements to the sealing resin are also being considered. For example, a method of adding an epoxy resin having a biphenyl skeleton and a rubber component (Japanese Unexamined Patent Publication No. 63-251419), a method of adding an epoxy resin having a biphenyl skeleton and fine powder particles with a particle size of 14 μl or less (Japanese Unexamined Patent Application Publication No. 1983-1999), 87616).

また、封止用樹脂の耐湿性を改良するため、ハイドロタ
ルサイト系化合物の添加(特開昭61−19625号公
報)が提案されている。
Furthermore, in order to improve the moisture resistance of the sealing resin, the addition of a hydrotalcite compound (Japanese Patent Application Laid-open No. 19625/1983) has been proposed.

一方、半導体などの電子部品はUL規格により難燃性の
達成が義務づけられており、このため、封止用樹脂には
通常、臭素化合物およびアンチモン化合物などの難燃剤
が添加されている。
On the other hand, electronic components such as semiconductors are required to achieve flame retardancy according to UL standards, and for this reason, flame retardants such as bromine compounds and antimony compounds are usually added to sealing resins.

〈発明が解決しようとする課題〉 しかるに乾燥パッケージを容器に封入する方法は製造工
程および製品の取扱作業が繁雑になるうえ、製品価格が
高価になる欠点がある。
<Problems to be Solved by the Invention> However, the method of enclosing a dry package in a container has the disadvantage that the manufacturing process and handling of the product are complicated, and the product price is high.

また、種々の方法で改良された樹脂も、それぞれ少しづ
つ効果を上げてきているが、まだ十分ではない、ビフェ
ニル骨格を有するエポキシ樹脂とゴム成分を添加する方
法(特開昭63−251419号公報)およびビフェニ
ル骨格を有するエポキシ樹脂と粒子径14u*以下の微
粉末粒子を添加する方法(特開平1−87616号公報
)は半田付は時の樹脂部分のクラック防止に効果がある
ものの、高温での信頼性か低下する問題があった。
In addition, resins improved by various methods are gradually becoming more effective, but they are not yet fully effective. ) and the method of adding fine powder particles with a particle size of 14u* or less to an epoxy resin having a biphenyl skeleton (Japanese Patent Application Laid-Open No. 1-87616) is effective in preventing cracks in the resin part during soldering, but it is effective at high temperatures. There was a problem with the reliability of the system decreasing.

高温での信頼性は150〜200℃の高温環境下での半
導体の機能を保証するもので、発熱量の大きい半導体や
自動車のエンジンまわりで使用する半導体などでは必須
の性能である。
High-temperature reliability guarantees the functionality of semiconductors in high-temperature environments of 150 to 200°C, and is essential performance for semiconductors that generate a large amount of heat and semiconductors used around automobile engines.

ビフェニル骨格を有するエポキシ樹脂の高温信頼性の問
題は、難燃性を付与するために添加している臭素化合物
およびアンチモン化合物などの難燃剤が主原因であるこ
とがわかっている。
It is known that the problem of high temperature reliability of epoxy resins having a biphenyl skeleton is mainly caused by flame retardants such as bromine compounds and antimony compounds added to impart flame retardancy.

このため、半田耐熱性、難燃性および高温信頼性のすべ
てに優れる半導体封止用エポキシ樹脂は得られていなか
った。
For this reason, an epoxy resin for semiconductor encapsulation that is excellent in all of solder heat resistance, flame retardance, and high-temperature reliability has not been obtained.

本発明の目的は、かかる半田付は工程で生じるクラック
の問題を解消し、難燃剤の添加による高温での信頼性低
下のない、すなわち半田耐熱性、難燃性および高温信頼
性にともに優れる半導体封止用エポキシ組成物を提供す
ることにある。
The purpose of the present invention is to solve the problem of cracks that occur during the soldering process, and to avoid deterioration in reliability at high temperatures due to the addition of flame retardants. An object of the present invention is to provide an epoxy composition for sealing.

く課題を解決するための手段〉 本発明者らは、ビフェニル骨格を有するエポキシ樹脂に
、ハイドロタルサイト化合物を添加することにより、上
記の課題を達成し、目的に合致した半導体封止用エポキ
シ組成物が得られることを見出し、本発明に到達した。
Means for Solving the Problems> The present inventors have achieved the above problems by adding a hydrotalcite compound to an epoxy resin having a biphenyl skeleton, and have created an epoxy composition for semiconductor encapsulation that meets the purpose. The inventors have discovered that a product can be obtained, and have arrived at the present invention.

すなわち本発明は、エポキシ樹脂(A)、硬化剤(8)
、溶融シリカ(C)、ハイドロタルサイト系化合物(D
)、臭素化合物(E)およびアンチモン化合物(F)か
らなる樹脂組成物であって、前記エポキシ樹脂(A)が
下記式〇 Rj   R5R8R2 R3R6R7R4 (ただし、R1−R8は水素原子、01〜C4の低級ア
ルキル基またはハロゲン原子を示す。〉で表される骨格
を有するエポキシ樹脂(a)を必須成分として含有し、
前記溶融シリカ(C)の割合が全体の75〜90重量%
であ〜す、ハイドロタルサイト系化合物(D)の割合が
全体の0.01〜10重量%である半導体封止用エポキ
シ組成物を提供するものである。
That is, the present invention provides an epoxy resin (A), a curing agent (8)
, fused silica (C), hydrotalcite compound (D
), a bromine compound (E) and an antimony compound (F), wherein the epoxy resin (A) has the following formula 〇Rj R5R8R2 R3R6R7R4 (wherein R1-R8 are hydrogen atoms, lower Indicates an alkyl group or a halogen atom. Contains as an essential component an epoxy resin (a) having a skeleton represented by
The proportion of the fused silica (C) is 75 to 90% by weight of the whole
The present invention provides an epoxy composition for encapsulating a semiconductor in which the proportion of a hydrotalcite compound (D) is 0.01 to 10% by weight.

以下、本発明の構成を詳述する。Hereinafter, the configuration of the present invention will be explained in detail.

本発明におけるエポキシ樹脂(A)は、下記式%式% (ただし、R1−R8は水素原子、01〜C4の低級ア
ルキル基またはハロゲン原子を示す、)で表される骨格
を有するエポキシ樹脂(a)を必須成分として含有する
ことが重要である。
The epoxy resin (A) in the present invention is an epoxy resin (a ) is important to contain as an essential component.

エポキシ樹脂(a)を含有しない場合は半田付は工程に
おけるクラックの発生防止効果は発揮されない。
If the epoxy resin (a) is not contained, the effect of preventing cracks in the soldering process will not be exhibited.

下記式〇において、R1−R8の好ましい具体的として
は、水素原子、メチル基、エチル基、プロピル基、i−
プロピル基、n−ブチル基、5ec−ブチル基、ter
t−ブチル基、塩素原子、臭素原子などが挙げられる。
In the following formula 〇, preferred specific examples of R1-R8 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an i-
propyl group, n-butyl group, 5ec-butyl group, ter
Examples include t-butyl group, chlorine atom, and bromine atom.

本発明におけるエポキシ樹脂(a)の好ましい具体例と
しては、4,4′−ビス(2,3−エポキシプロポキシ
)ビフェニル、4,4′−ビス(2゜3−エポキシプロ
ピキシ)−3,3′、5.5′テトラメチルビフエニル
、4.4′−ビス(2,3エボキシプロビキシ) −3
,3’ 、 5.5 ′−テトラメチルー2−クロロビ
フェニル、4.4′ビス(2,3−エポキシプロポキシ
)−3,3′5.5′−テトラメチル−2−ブロモビフ
ェニル、4.4′−ビス〈2,3−エポキシ10ボキシ
)−3,3′、5.5’−テトラエチルビフェニル、4
゜4′−ビス(2,3−エポキシプロポキシ)−3゜3
′、−5,5′−テトラブチルビフェニルなどが挙げら
れる。
Preferred specific examples of the epoxy resin (a) in the present invention include 4,4'-bis(2,3-epoxypropoxy)biphenyl, 4,4'-bis(2°3-epoxypropoxy)-3,3 ', 5.5'tetramethylbiphenyl, 4.4'-bis(2,3 eboxyproboxy) -3
,3', 5.5'-tetramethyl-2-chlorobiphenyl, 4.4'bis(2,3-epoxypropoxy)-3,3'5.5'-tetramethyl-2-bromobiphenyl, 4.4'-bis(2,3-epoxy-10boxy)-3,3',5,5'-tetraethylbiphenyl,4
゜4'-bis(2,3-epoxypropoxy)-3゜3
',-5,5'-tetrabutylbiphenyl and the like.

本発明におけるエポキシ樹脂(A)は上記のエポキシ樹
脂(a)とともに該エポキシ樹脂(a)以外の他のエポ
キシ樹脂をも併用して含有することができる。併用でき
る他のエポキシ樹脂としては、たとえば、クレゾールノ
ボラック型エポキシ樹脂、フェノールノボラック型エポ
キシ樹脂、ビスフェノールAやレゾルシンなどから合成
される各種ノボラック型エポキシ樹脂、ビスフェノール
A型エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エ
ポキシ樹脂、複素環式エポキシ樹脂、ハロゲン化エポキ
シ樹脂などが挙げられる。
The epoxy resin (A) in the present invention may contain, together with the above-mentioned epoxy resin (a), another epoxy resin other than the epoxy resin (a). Other epoxy resins that can be used in combination include, for example, cresol novolak epoxy resins, phenol novolak epoxy resins, various novolac epoxy resins synthesized from bisphenol A and resorcinol, bisphenol A epoxy resins, and linear aliphatic epoxy resins. , alicyclic epoxy resin, heterocyclic epoxy resin, halogenated epoxy resin, and the like.

エポキシ樹脂(A)中に含有されるエポキシ樹脂(a>
の割合に関しては特に制限がなく必須成分としてエポキ
シ樹脂(a)が含有されれば本発明の効果は発揮される
が、より十分な効果を発揮させるためには、エポキシ樹
脂(a)をエポキシ樹脂(A)中に通常50重量%以上
、好ましくは70重量%以上含有せしめる必要がある。
Epoxy resin (a>
There is no particular restriction on the ratio of (A) usually needs to contain 50% by weight or more, preferably 70% by weight or more.

本発明において、エポキシ樹脂(A)の配合量は通常4
〜20重量%、好ましくは6〜18重量%である。
In the present invention, the blending amount of the epoxy resin (A) is usually 4
-20% by weight, preferably 6-18% by weight.

本発明における硬化剤(B)は、エポキシ樹脂(^)と
反応して硬化させるものであれば特に制限されず、それ
らの具体例としては、たとえば、フェノールノボラック
樹脂、クレゾールノボラック樹脂、ビスフェノールAや
レゾルシンから合成される各種ノボラック樹脂、各種多
価フェノール化合物、無水マレイン酸、無水フタル酸、
無水ピロメリット酸などの酸無水物およびメタフェニレ
ンジアミン、ジアミノジフェニルメタン、ジアミノジフ
ェニルスルホンなどの芳香族アミンなどが挙げられる。
The curing agent (B) in the present invention is not particularly limited as long as it can be cured by reacting with the epoxy resin (^), and specific examples thereof include phenol novolac resin, cresol novolak resin, bisphenol A, etc. Various novolak resins synthesized from resorcinol, various polyhydric phenol compounds, maleic anhydride, phthalic anhydride,
Examples include acid anhydrides such as pyromellitic anhydride, and aromatic amines such as metaphenylene diamine, diaminodiphenylmethane, and diaminodiphenylsulfone.

半導体装置封止用としては、耐熱性、耐湿性および保存
性の点から、フェノール系硬化剤が好ましく用いられ、
用途によっては2種以上の硬化剤を併用してもよい。
For semiconductor device encapsulation, phenolic curing agents are preferably used in terms of heat resistance, moisture resistance, and storage stability.
Depending on the application, two or more types of curing agents may be used together.

本発明において、硬化剤(B)の配合量は通常2〜15
重量%、好ましくは3〜10重量%である。さらには、
エポキシ樹脂(A)と硬化剤(B)の配合比は、機械的
性質および耐湿性の点から、(^)に対する(B)の化
学当量比が0.7〜1.3、特に0.8〜1.2の範囲
にあることが好ましい。
In the present invention, the blending amount of the curing agent (B) is usually 2 to 15
% by weight, preferably 3-10% by weight. Furthermore,
From the viewpoint of mechanical properties and moisture resistance, the compounding ratio of the epoxy resin (A) and the curing agent (B) is such that the chemical equivalent ratio of (B) to (^) is 0.7 to 1.3, particularly 0.8. It is preferably in the range of 1.2 to 1.2.

また、本発明においてエポキシ樹脂(A)と硬化剤(B
)の硬化反応を促進するなめ硬化触媒を用いてもよい、
硬化触媒は硬化反応を促進するものならば特に限定され
ず、たとえば、2−メチルイミダゾール、2,4−ジメ
チルイミダゾール、2−エチル−4−メチルイミダゾー
ル、2フエニルイミダゾール、2−フェニル−4−メチ
ルイミダゾール、2−ヘプタデシルイミダゾールなどの
イミダゾール化合物、トリエチルアミン、ベンジルジメ
チルアミン、α−メチルベンジルジメチルアミン、2−
(ジメチルアミノメチル)フェノール、2,4.6−ト
リス(ジメチルアミノメチル)フェノール、1.8−ジ
アザビシクロ(5,4,0)ウンデセン−7などの3級
アミン化合物、ジルコニウムテトラメトキシド、ジルコ
ニウムテトラプロポキシド、テトラキス(アセチルアセ
トナト)ジルコニウム、トリ(アセチルアセトナト)ア
ルミニウムなどの有機金属化合物およびトリフェニルホ
スフィン、トリメチルホスフィン、トリエチルホスフィ
ン、トリブチルホスフィン、トリ(p−メチルフェニル
)ホスフィン、トリ(ノニルフェニル)ホスフィンなど
の有機ホスフィン化合物が挙げられる。なかでも耐湿性
の点から、有機ホスフィン化合物が好ましく、トリフェ
ニルホスフィンが特に好ましく用いられる。
In addition, in the present invention, epoxy resin (A) and curing agent (B
) may be used as a slick curing catalyst to promote the curing reaction of
The curing catalyst is not particularly limited as long as it promotes the curing reaction, and examples thereof include 2-methylimidazole, 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2phenylimidazole, 2-phenyl-4- Imidazole compounds such as methylimidazole and 2-heptadecylimidazole, triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, 2-
(dimethylaminomethyl)phenol, 2,4.6-tris(dimethylaminomethyl)phenol, tertiary amine compounds such as 1,8-diazabicyclo(5,4,0)undecene-7, zirconium tetramethoxide, zirconium tetra Organometallic compounds such as propoxide, tetrakis(acetylacetonato)zirconium, tri(acetylacetonato)aluminum and triphenylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri(p-methylphenyl)phosphine, tri(nonylphenyl) ) Organic phosphine compounds such as phosphine can be mentioned. Among them, organic phosphine compounds are preferred from the viewpoint of moisture resistance, and triphenylphosphine is particularly preferably used.

これらの硬化触媒は、用途によっては2N!以上を併用
してもよく、その添加量はエポキシ樹脂(A)100重
量部に対して0.5〜5重量部の範囲が好ましい。
Depending on the application, these curing catalysts may be 2N! The above may be used in combination, and the amount added is preferably in the range of 0.5 to 5 parts by weight per 100 parts by weight of the epoxy resin (A).

本発明における溶融シリカ(C)は真比重2.3以下の
非品性シリカを意味する。その製造は必ずしも溶融状態
を経る必要はなく、任意の製造法を用いることができる
。たとえば結晶性シリカを溶融する方法、各種原料から
合成する方法などが挙げられる。
Fused silica (C) in the present invention means non-quality silica having a true specific gravity of 2.3 or less. Its production does not necessarily have to go through a molten state, and any production method can be used. Examples include a method of melting crystalline silica and a method of synthesizing it from various raw materials.

溶融シリカ(C)の形状および粒径は特に限定されない
が、平均粒径10−以下の破砕溶融シリカ99〜50重
量%と平均粒径4〇四以下の球状溶融シリカ1〜50重
量%からなる溶融シリカ(C)が半田耐熱性の向上効果
が大きく、流動性が良好なため好ましく用いられる。な
かでも、平均粒径1〇−以下、特に3四以上10n以下
の破砕溶融シリカ99〜50重量%、特に99〜70重
量%と平均粒径4IJ11以下、特にOl uwr以上
4−以下の球状溶融シリカ1〜50重量%、特に1〜3
0重量%からなり、球状溶融シリカの平均粒径が破砕溶
融シリカの平均粒径より小さく、特に前者が後者の1/
2以下の溶融シリカ(C)が最も好ましく用いられる。
The shape and particle size of the fused silica (C) are not particularly limited, but it consists of 99-50% by weight of crushed fused silica with an average particle size of 10-4 or less and 1-50% by weight of spherical fused silica with an average particle size of 40-4 or less. Fused silica (C) is preferably used because it has a large effect of improving soldering heat resistance and has good fluidity. Among them, 99 to 50% by weight, especially 99 to 70% by weight of crushed fused silica with an average particle size of 10- or less, especially 34 to 10N, and spherical fused silica with an average particle size of 4IJ11 or less, especially Ol uwr or more and 4- or less. Silica 1-50% by weight, especially 1-3
0% by weight, and the average particle size of the spherical fused silica is smaller than the average particle size of the crushed fused silica, especially when the former is 1/1/2 of the latter.
Fused silica (C) of 2 or less is most preferably used.

ここで、平均粒径は、累計重量50%になる粒径(メジ
アン径)を意味し、平均粒径が異なる2種類以上の破砕
または球状溶融シリカを併用し7た場合は、その混合物
の破砕または球状溶融シリカの平均粒径を意味する。
Here, the average particle size means the particle size (median diameter) that accounts for 50% of the cumulative weight, and when two or more types of crushed silica with different average particle sizes or spherical fused silica are used together, the mixture is crushed. Or mean the average particle size of spherical fused silica.

本発明において、溶融シリカ(C)の割合は全体の75
〜90重量%であり、さらに好ましくは75〜88重量
%である。溶融シリカ(C)が全体の75重量%未満で
は半田耐熱性が不十分であり、90重量%を越えると流
動性が不十分である。
In the present invention, the proportion of fused silica (C) is 75% of the total
90% by weight, more preferably 75 to 88% by weight. If the amount of fused silica (C) is less than 75% by weight of the total, the soldering heat resistance will be insufficient, and if it exceeds 90% by weight, the fluidity will be insufficient.

本発明におけるハイドロタルサト系化合物fD)は、下
記式■または■で示される複合金属化合物である。
The hydrotalsate compound fD) in the present invention is a composite metal compound represented by the following formula (1) or (2).

M g z Aj! F (OH) 2x+3y−、z
A z ・mW 20  ・=・・・0MgえA1ア0
,2工+31+/□        10110.@(
たたし、Aはn価の陰イオンA1−を生成しうる官能基
、nは1〜3の整数、x、yおよびZはO< y / 
x≦1.0≦z/y<1.5の関係にある0まなは正の
数、mは0または正の数を示す、) 上記式■において、官能基Aから生成しうるn価の陰イ
オンA″−の好ましい具体的としては、F 、CI/、
 、Br 、■ 、0)I 、HCO3、CH3COO
、HCOO、CO32−5SO42−(COO)2、酒
石酸イオン(CH(OH)Coo  )2 、クエン酸
イオン(:C(OH)Coo  )(CH2COO)2
、サリチル酸イオンC6H4(OH)Co。
M g z Aj! F (OH) 2x+3y-,z
A z ・mW 20 ・=...0MgeA1A0
, 2 engineering + 31 + / □ 10110. @(
Where, A is a functional group capable of generating an n-valent anion A1-, n is an integer of 1 to 3, and x, y, and Z are O< y /
In the above formula Preferred examples of the anion A″- include F, CI/,
,Br,■,0)I,HCO3,CH3COO
, HCOO, CO32-5SO42-(COO)2, tartrate ion (CH(OH)Coo)2, citrate ion (:C(OH)Coo)(CH2COO)2
, salicylate ion C6H4(OH)Co.

−などが挙げられる。なかでも、CO32−が特に好ま
しい。
- etc. Among them, CO32- is particularly preferred.

上記式■で表されるハイドロタルサイト系化合物(D)
はたとえは、上記式■で表されるハイドロタルサイト系
化合物(D)を400〜900℃で焼成処理することに
より製造される。
Hydrotalcite compound (D) represented by the above formula (■)
For example, it is produced by firing the hydrotalcite compound (D) represented by the above formula (1) at 400 to 900°C.

ハイドロタルサイト系化合物(0)の好ましい具体例と
して、MgcsA12 (OH)+3CO3・3.5 
H20、Mgc、A12 (OH)t3cO3、M g
 s A 1 ts (OH) +3 CO3・3.5
 H20、Mg5Aj!ti(OH)13CO3、Mg
aAj! 2(OH)16CO3・4H20、MgaA
j!2(OH)16CO3、Mgo、5bAflo3s
Or、+7s、M g 0.7A fl o、io 1
. l S、Mgo、tsAl。2501.+25、M
 g o、sA 1゜201.1などが挙げられる。
As a preferable specific example of the hydrotalcite compound (0), MgcsA12 (OH)+3CO3・3.5
H20, Mgc, A12 (OH)t3cO3, Mg
s A 1 ts (OH) +3 CO3・3.5
H20, Mg5Aj! ti(OH)13CO3, Mg
aAj! 2(OH)16CO3・4H20, MgaA
j! 2(OH)16CO3, Mgo, 5bAflo3s
Or, +7s, M g 0.7A fl o, io 1
.. l S, Mgo, tsAl. 2501. +25,M
go, sA 1°201.1, etc.

本発明においてハイドロタルサイト系化合物(D)の添
加量は全体の0.01〜10重量%、好ましくは0.0
2〜5重量%、特に好ましくは0゜05〜2重量%であ
る。添加量が0.01重量%未満では高温信頼性の向上
効果が不十分であり、10重量%を越えると半田耐熱性
が低下する。
In the present invention, the amount of hydrotalcite compound (D) added is 0.01 to 10% by weight, preferably 0.0% by weight of the total.
2 to 5% by weight, particularly preferably 0.05 to 2% by weight. If the amount added is less than 0.01% by weight, the effect of improving high temperature reliability will be insufficient, and if it exceeds 10% by weight, the soldering heat resistance will decrease.

本発明における臭素化合物fE)およびアンチモン化合
物(F)は通常、半導体封止用エポキシ組成物に離燃剤
として添加されるもので、特に限定されず、公知のもの
が使用できる。
The bromine compound fE) and antimony compound (F) in the present invention are usually added to the epoxy composition for semiconductor encapsulation as a flame retardant, and are not particularly limited, and known compounds can be used.

臭素化合物(E)の好ましい具体例としては、臭素化ビ
スフェノールA型エポキシ樹脂、臭素化フェノールノボ
ラック型エポキシ樹脂などの臭素化エポキシ樹脂、臭素
化ポリカーボネート樹脂、臭素化ポリスチレン樹脂、臭
素化ポリフェニレンオキサイド樹脂、テトラブロモビス
フェノールA、デカブロモジフェニルエーテルなどが挙
げられ、なかでも、臭素化ビスフェノールA型エポキシ
樹脂、臭素化フェノールノボラック型エポキシ樹脂など
の臭素化エポキシ樹脂が特に好ましく用いられる。
Preferred specific examples of the bromine compound (E) include brominated epoxy resins such as brominated bisphenol A epoxy resins and brominated phenol novolak epoxy resins, brominated polycarbonate resins, brominated polystyrene resins, brominated polyphenylene oxide resins, Examples include tetrabromobisphenol A, decabromodiphenyl ether, etc. Among them, brominated epoxy resins such as brominated bisphenol A type epoxy resin and brominated phenol novolac type epoxy resin are particularly preferably used.

臭素化合物(E)の添加量は、臭素原子に換算して全体
の0.1〜5重量%が難燃性および高温信頼性の点で好
ましい、特に好ましくは0.2〜2重量%である。
The amount of the bromine compound (E) added is preferably 0.1 to 5% by weight of the total in terms of bromine atoms, particularly preferably 0.2 to 2% by weight in terms of flame retardancy and high temperature reliability. .

また、アンチモン化合物(F)の好ましい具体例として
は、三酸化アンチモンが挙げられる。
Further, a preferable specific example of the antimony compound (F) is antimony trioxide.

アンチモン化合物(F)の添加量は、全体の0.1〜1
0重量%が難燃性および高温信頼性の点で好ましい、特
に好ましくは02〜4重量%である。
The amount of antimony compound (F) added is 0.1 to 1 of the total amount.
0% by weight is preferred in terms of flame retardancy and high temperature reliability, particularly preferably 02 to 4% by weight.

本発明の半導体封止用エポキシ組成物には充填剤として
溶融シリカ(C)以外に結晶性シリカ、炭酸カルシウム
、炭酸マグネシウム、アルミナ、マグネシア、クレー、
タルク、ケイ酸カルシウム、酸化チタン、酸化アンチモ
ン、アスベスト、ガラス繊維などを添加することができ
る。
In addition to fused silica (C), the epoxy composition for semiconductor encapsulation of the present invention includes crystalline silica, calcium carbonate, magnesium carbonate, alumina, magnesia, clay,
Talc, calcium silicate, titanium oxide, antimony oxide, asbestos, glass fiber, etc. can be added.

本発明において、溶融シソ力(C)などの充填剤をシラ
ンカップリング剤、チタネートカップリング剤などのカ
ップリング剤であらかじめ表面処理することが、信頼性
の点で好ましい、カップリング剤としてエポキシシラン
、アミノシラン、メルカプトシランなどのシランカップ
リング剤が好ましく用いられる。
In the present invention, it is preferable to surface-treat the filler such as molten perilla (C) with a coupling agent such as a silane coupling agent or a titanate coupling agent in advance from the viewpoint of reliability.Epoxy silane is used as the coupling agent. Silane coupling agents such as , aminosilane, and mercaptosilane are preferably used.

本発明の半導体封止用エポキシ組成物にはカボンブラッ
ク、酸化鉄などの着色剤、シリコーンゴム、変性ニトリ
ルゴム、変性ポリブタジェンゴム スチレン系ブロック
共重合体などのエラストマー、ポリエチレンなどの熱可
塑性樹脂、長鎖脂肪酸、長鎖脂肪酸の金属塩、長鎖脂肪
酸のエステル、長鎖脂肪酸のアミド、パラフィンワック
スなどの離型剤および有機過酸化物などの架橋剤を任意
に添加することができる。
The epoxy composition for semiconductor encapsulation of the present invention includes colorants such as carbon black and iron oxide, elastomers such as silicone rubber, modified nitrile rubber, and modified polybutadiene rubber, and thermoplastic resins such as polyethylene. , a long chain fatty acid, a metal salt of a long chain fatty acid, an ester of a long chain fatty acid, an amide of a long chain fatty acid, a mold release agent such as paraffin wax, and a crosslinking agent such as an organic peroxide can be optionally added.

本発明の半導体封止用エポキシ組成物は溶融混練するこ
とが好ましく、たとえばバンバリーミキサ−、ニーダ−
、ロール、単軸もしくは二軸の押出機およびコニーダー
などの公知の混練方法を用いて溶融混練することにより
製造される。
The epoxy composition for semiconductor encapsulation of the present invention is preferably melt-kneaded, for example in a Banbury mixer or kneader.
It is produced by melt-kneading using a known kneading method such as a roll, single-screw or twin-screw extruder, or co-kneader.

〈実施例〉 以下、実施例により本発明を具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1〜9、比較例1〜7 表1に示した溶融シリカ(C)および表2に示しなハイ
ドロタルサイト系化合物(0)を、各々表2に示した組
成物比で試薬をミキサーによりトライブレンドした。こ
れを、バレル設定温度90℃の二軸の押出機を用いて溶
融混練後、冷却、粉砕して半導体封止用エポキシ組成物
を製造した。
Examples 1 to 9, Comparative Examples 1 to 7 The fused silica (C) shown in Table 1 and the hydrotalcite compound (0) shown in Table 2 were mixed in a reagent mixer at the composition ratio shown in Table 2. It was triblended. This was melt-kneaded using a twin-screw extruder with a barrel set temperature of 90° C., then cooled and pulverized to produce an epoxy composition for semiconductor encapsulation.

この組成物を用い、低圧トランスファー成形法により1
75℃×2分の条件で成形し、175°CX8時間の条
件でポストキュアして次の物性測定法により各組成物の
物性および成形性を測定した。
Using this composition, 1
The compositions were molded at 75° C. for 2 minutes, post-cured at 175° C. for 8 hours, and the physical properties and moldability of each composition were measured using the following physical property measuring method.

半田耐熱性二表面にA1蒸着しfS′#1.擬素子を搭
載した28pin  5OP20個 を成形、ポストキュアし、85℃ /85%RHで50時間加湿後、 260℃に加熱した半田浴に10 秒間浸漬してクラックの発生した sopを不良としな。
A1 is deposited on the solder heat resistant two surfaces and fS'#1. Twenty 28-pin 5OPs equipped with pseudo-elements were molded and post-cured, and after humidifying at 85°C/85%RH for 50 hours, they were immersed in a solder bath heated to 260°C for 10 seconds, and sops with cracks were rejected.

難 燃 性:5″×1/2″XI/16″の燃焼試験片
を成形、ポストキュアし、 UL94規格に従い難燃性を評価 した。
Flame retardancy: A 5'' x 1/2''XI/16'' flame test piece was molded and post-cured, and its flame retardance was evaluated according to the UL94 standard.

高温信頼性二半田耐熱性評価後の28p i n5op
を用い、200℃で高温信 頼性を評価し、累積故障率50% になる時間を求め、高温寿命とし な。
28pin5op after high temperature reliability and soldering heat resistance evaluation
Evaluate the high temperature reliability at 200℃ using

表 表3にみられるように、本発明の半導体封止用エポキシ
組成物(実施例1〜9)は半田耐熱性、難燃性および高
温信頼性に優れている。
As shown in Table 3, the epoxy compositions for semiconductor encapsulation of the present invention (Examples 1 to 9) are excellent in solder heat resistance, flame retardancy, and high temperature reliability.

これに対してエポキシ樹脂(a)を含有しない比較例1
では半田耐熱性に劣り、臭素化合物(E)および/また
はアンチモン化合物([)を含有しない比較例2〜4で
は難燃性に劣っている。
On the other hand, Comparative Example 1 which does not contain epoxy resin (a)
In Comparative Examples 2 to 4, which do not contain the bromine compound (E) and/or the antimony compound ([), the flame retardance is poor.

また、ハイドロタルサイト系化合物CD)を含有しない
比較例5では高温信頼性に劣っている。
Furthermore, Comparative Example 5, which does not contain the hydrotalcite compound CD), has poor high temperature reliability.

さらに、溶融シリカ(0)の含有量か本発明の範囲外の
比較例6および7では半田耐熱性が劣っているか、ある
いは混線時に負荷がかかり組成物が得られなかった。
Furthermore, in Comparative Examples 6 and 7, in which the content of fused silica (0) was outside the range of the present invention, the soldering heat resistance was poor, or the composition was not obtained due to the load upon cross-wiring.

〈発明の効果〉 本発明の半導体封止用エポキシ組成物は、特定のエポキ
シ樹脂、硬化剤、溶融シリカ、ハイドロタルサイト系化
合物、臭素化合物およびアンチモン化合物を配合したた
めに、半田耐熱性、難燃性および高温信頼性に優れてい
る。
<Effects of the Invention> The epoxy composition for semiconductor encapsulation of the present invention contains a specific epoxy resin, a curing agent, fused silica, a hydrotalcite compound, a bromine compound, and an antimony compound, so it has excellent soldering heat resistance and flame retardancy. Excellent performance and high temperature reliability.

Claims (2)

【特許請求の範囲】[Claims] (1)エポキシ樹脂(A)、硬化剤(B)、溶融シリカ
(C)、ハイドロタルサイト系化合物(D)、臭素化合
物(E)およびアンチモン化合物(F)からなる樹脂組
成物であって、前記エポキシ樹脂(A)が下記式( I
) ▲数式、化学式、表等があります▼…( I ) (ただし、R^1〜R^8は水素原子、C_1〜C_4
の低級アルキル基またはハロゲン原子を示す。) で表される骨格を有するエポキシ樹脂(a)を必須成分
として含有し、前記溶融シリカ(C)の割合が全体の7
5〜90重量%であり、ハイドロタルサイト系化合物(
D)の割合が全体の0.01〜10重量%である半導体
封止用エポキシ組成物。
(1) A resin composition comprising an epoxy resin (A), a curing agent (B), fused silica (C), a hydrotalcite compound (D), a bromine compound (E), and an antimony compound (F), The epoxy resin (A) has the following formula (I
) ▲There are mathematical formulas, chemical formulas, tables, etc.▼…(I) (However, R^1 to R^8 are hydrogen atoms, C_1 to C_4
represents a lower alkyl group or a halogen atom. ) Contains an epoxy resin (a) having a skeleton represented by
5 to 90% by weight, and contains hydrotalcite compounds (
An epoxy composition for semiconductor encapsulation, in which the proportion of D) is 0.01 to 10% by weight.
(2)溶融シリカ(C)が平均粒径10μm以下の破砕
溶融シリカ99〜50重量%と平均粒径40um以下の
球状溶融シリカ1〜50重量%からなる請求項(1)に
記載の半導体封止用エポキシ組成物。
(2) The semiconductor encapsulation according to claim 1, wherein the fused silica (C) consists of 99 to 50% by weight of crushed fused silica with an average particle size of 10 μm or less and 1 to 50% by weight of spherical fused silica with an average particle size of 40 μm or less. Epoxy composition for stopping.
JP2159234A 1990-06-18 1990-06-18 Epoxy composition for semiconductor encapsulation Expired - Lifetime JP2600450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2159234A JP2600450B2 (en) 1990-06-18 1990-06-18 Epoxy composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2159234A JP2600450B2 (en) 1990-06-18 1990-06-18 Epoxy composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH0450257A true JPH0450257A (en) 1992-02-19
JP2600450B2 JP2600450B2 (en) 1997-04-16

Family

ID=15689275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2159234A Expired - Lifetime JP2600450B2 (en) 1990-06-18 1990-06-18 Epoxy composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP2600450B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040124A (en) * 1983-08-13 1985-03-02 Toshiba Chem Corp Resin composition for sealing
JPS6119625A (en) * 1984-07-05 1986-01-28 Toshiba Corp Epoxy resin composition for sealing semiconductor
JPS6465116A (en) * 1987-09-04 1989-03-10 Toray Industries Resin composition for semiconductor sealing
JPH01206656A (en) * 1988-02-15 1989-08-18 Nitto Denko Corp Semiconductor device
JPH0299551A (en) * 1988-10-06 1990-04-11 Toray Ind Inc Epoxy-based resin composition
JPH0299514A (en) * 1988-10-06 1990-04-11 Toray Ind Inc Epoxy based composition having heat resistance to solder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040124A (en) * 1983-08-13 1985-03-02 Toshiba Chem Corp Resin composition for sealing
JPS6119625A (en) * 1984-07-05 1986-01-28 Toshiba Corp Epoxy resin composition for sealing semiconductor
JPS6465116A (en) * 1987-09-04 1989-03-10 Toray Industries Resin composition for semiconductor sealing
JPH01206656A (en) * 1988-02-15 1989-08-18 Nitto Denko Corp Semiconductor device
JPH0299551A (en) * 1988-10-06 1990-04-11 Toray Ind Inc Epoxy-based resin composition
JPH0299514A (en) * 1988-10-06 1990-04-11 Toray Ind Inc Epoxy based composition having heat resistance to solder

Also Published As

Publication number Publication date
JP2600450B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
WO2001010955A1 (en) Epoxy resin composition and semiconductor device
JP3649535B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2697510B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2955013B2 (en) Epoxy resin composition
JPH09255812A (en) Resin composition
JP2001114994A (en) Epoxy resin composition and semiconductor device
JPH04218523A (en) Epoxy resin composition
JP2600450B2 (en) Epoxy composition for semiconductor encapsulation
JPH0299514A (en) Epoxy based composition having heat resistance to solder
JP3632936B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3451666B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH04264155A (en) Epoxy resin composition for semiconductor sealing
JPH0668010B2 (en) Resin composition for semiconductor encapsulation
JP2964634B2 (en) Epoxy composition
JP2964559B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH04325517A (en) Epoxy resin composition for semiconductor sealing
JPH04325516A (en) Epoxy resin composition for semiconductor sealing
JP2501140B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3413923B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JPH03119052A (en) Epoxy resin composition
JP3092176B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2823569B2 (en) Epoxy composition
JPH0676539B2 (en) Epoxy-containing composition for semiconductor encapsulation
JPH10279665A (en) Epoxy resin composition for semiconductor sealing
JPH04236218A (en) Epoxy resin composition for sealing semiconductor