JPH0299514A - Epoxy based composition having heat resistance to solder - Google Patents

Epoxy based composition having heat resistance to solder

Info

Publication number
JPH0299514A
JPH0299514A JP25358388A JP25358388A JPH0299514A JP H0299514 A JPH0299514 A JP H0299514A JP 25358388 A JP25358388 A JP 25358388A JP 25358388 A JP25358388 A JP 25358388A JP H0299514 A JPH0299514 A JP H0299514A
Authority
JP
Japan
Prior art keywords
epoxy resin
fused silica
particle size
weight
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25358388A
Other languages
Japanese (ja)
Other versions
JPH0791364B2 (en
Inventor
Keiji Kayaba
啓司 萱場
Shiro Takuwa
多久和 志郎
Masayuki Tanaka
正幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63253583A priority Critical patent/JPH0791364B2/en
Publication of JPH0299514A publication Critical patent/JPH0299514A/en
Publication of JPH0791364B2 publication Critical patent/JPH0791364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the title composition containing an epoxy resin having a specific structure, curing agent and fused silica having a specific composition and having excellent heat resistance to solder, reliability and fluidity and useful as a coating, etc. CONSTITUTION:The aimed composition containing (A) an epoxy resin having skeleton expressed by the formula (R<1>-R<8> are H, 1-4C alkyl or halogen), (B) curing agent and (C) fused silica having <=20mum average particle size and consisting of (i) >=40wt.% crushed fused silica having <=12mum average particle size and (ii) <=60-wt.% globular fused silica having <=40mum average particle size.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半田耐熱性、信頼性および流動性に優れた半田
耐熱性エポキシ樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a soldering heat resistant epoxy resin composition having excellent soldering heat resistance, reliability and fluidity.

〈従来の技術〉 エポキシ樹脂は耐熱性、耐湿性、電気特性、接着性など
に優れており、さらに配合処方により種々の特性が付与
できるため、塗料、接着剤、電気絶縁材料など工業材料
として利用されている。
<Conventional technology> Epoxy resins have excellent heat resistance, moisture resistance, electrical properties, adhesive properties, etc., and can be given various properties depending on the formulation, so they are used as industrial materials such as paints, adhesives, and electrical insulation materials. has been done.

たとえば、半導体装置などの電子回路部品の封止方法と
して従来より金属やセラミックスによるハーメチゾクシ
ールやフェノール樹脂、シリコーン樹脂、エポキシ樹脂
などによる樹脂封止が提案されているが、経済性、生産
性、物性のバランスの点からクレゾールノボラック型エ
ポキシ樹脂による樹脂封止が中心になっている。
For example, as methods for encapsulating electronic circuit components such as semiconductor devices, hermetically sealed seals using metals or ceramics, and resin encapsulation using phenolic resin, silicone resin, epoxy resin, etc., have been proposed, but they are not economical or productive. In view of the balance of physical properties, resin sealing using cresol novolac type epoxy resin has become the main method.

一方、最近は、プリント基板への部品実装においても高
密度化、自動化が進められており、従来のリードビンを
基板の穴に挿入する゛1挿入実装方弐″に代わり、基板
表面に部品を半田付けする″表面実装方式″がさかんに
なってきている。それに伴い、パッケージも従来のDI
R(デュアル・インライン・パッケージ)型から高密度
実装、表面実装に適した薄型のPPP(フラット・プラ
スチック・パッケージ)型に移行しつつある。
On the other hand, recently, higher density and automation have been promoted in the mounting of components on printed circuit boards, and instead of the conventional "1 insertion mounting method 2" in which lead bins are inserted into holes in the board, components are soldered onto the surface of the board. "Surface mount method" is becoming popular.As a result, packaging is also changing from conventional DI.
There is a shift from the R (dual in-line package) type to the thin PPP (flat plastic package) type, which is suitable for high-density mounting and surface mounting.

表面実装方式への移行に伴い、従来あまり問題とならな
かった半田付は工程が大きな問題となってきている。従
来のピン挿入実装方式では半田付は工程はリード部が部
分的に加熱されるだけであったが、表面実装方式ではパ
ッケージ全体が熱媒に浸され加熱される0表面実装方式
における半田付は方法としては半田浴浸漬、不活性ガス
の飽和蒸気による加熱(ベーパフェイズ法)や赤外線リ
フロー法などが用いられるが、いずれの方法でもパッケ
ージ全体が210〜270℃の高温に加熱されることに
なる。そのため従来の封止用樹脂で封止したパッケージ
は半田付は時に樹脂部分にクラックが発生し、信頼性が
低下して製品として使用できないという問題がおきる。
With the shift to surface mounting methods, the soldering process, which used to be less of a problem, has become a major issue. In the conventional pin insertion mounting method, the soldering process only partially heats the leads, but in the surface mount method, the entire package is immersed in a heating medium and heated. Methods used include immersion in a solder bath, heating with saturated steam of inert gas (vapor phase method), and infrared reflow method, but in any of these methods, the entire package is heated to a high temperature of 210 to 270 degrees Celsius. . For this reason, when soldering a package sealed with a conventional sealing resin, cracks sometimes occur in the resin part, resulting in a problem that the reliability deteriorates and the package cannot be used as a product.

半田付は工程におけるクラックの発生は、後硬化してか
ら実装工程の間までに吸湿された水分が半田付は加熱時
に爆発的に水蒸気化、膨張することに起因するといわれ
ており、その対策として後硬化したパッケージを完全に
乾燥し密封した容器に収納して出荷する方法が用いられ
ている。
It is said that the occurrence of cracks in the soldering process is due to moisture absorbed between the post-curing process and the mounting process explosively turning into water vapor and expanding when soldering is heated. A method is used in which the post-cured package is completely dried, stored in a sealed container, and shipped.

封止用樹脂の改良も種々検討されている。たとえば、封
止用樹脂にゴム成分を配合し内部応力を低下させる方法
(特開昭58−219218号公報、特開昭59−96
122号公報)、無機充填剤の品種を選択する方法(特
開昭58−19136号公報、特開昭60−20214
5号公報)、無機充填剤の形状を球形化したり粒子径を
コントロールすることにより応力、ひずみを均一化させ
る方法(特開昭60−171750号公報、特開昭60
−17937号公報、特開昭62−74924号公報、
特開昭62124143号公報、特開昭62−2091
28号公報、特公昭63−26128号公報)、碗水性
の添加剤やワックスにより吸水性を低下させ、半田浴で
の水分による応力発生を下げる方法(特開昭60 65
023M公報)などがある。
Various improvements to the sealing resin are also being studied. For example, a method of blending a rubber component into a sealing resin to reduce internal stress (JP-A-58-219218, JP-A-59-96)
122 Publication), method for selecting the type of inorganic filler (Japanese Patent Application Laid-Open No. 19136-1982, Japanese Patent Application Laid-Open No. 60-20214)
5), a method of making the stress and strain uniform by making the shape of the inorganic filler spherical or controlling the particle size (JP-A-60-171750, JP-A-60
-17937 publication, JP-A-62-74924 publication,
JP-A-62124143, JP-A-62-2091
28, Japanese Patent Publication No. 63-26128), a method of reducing stress generation due to moisture in a soldering bath by reducing water absorption with water-based additives and waxes (Japanese Patent Application Laid-open No. 60-65
023M Publication).

〈発明が解決しようとする課題〉 しかるに乾燥パッケージを容器に封入する方法は製造工
程および製品の取扱作業が煩雑になるうえ、製品価格が
きわめて高価になる欠点がある。
<Problems to be Solved by the Invention> However, the method of enclosing a dry package in a container has the disadvantage that the manufacturing process and handling of the product are complicated, and the product price is extremely high.

また、種々の方法で改良された樹脂も、それぞれ少しづ
つ効果をあげてきているが、実装技術の進歩に伴うより
過酷な要請に答えるには十分でない、具体的にはこれら
従来方法で得られた樹脂により封止された半導体装置を
加湿処理後、たとえば、85℃/85%RH処理72時
間、または121℃/2気圧PCT (プレッシャー・
クツカー・テスト)処理72時間後に半田浴に浸すと樹
脂部分にはことごとく膨れまたはクラックが発生し、信
頼性が低下する。すなわち、まだ半田付は加熱時のクラ
ック発生を防止し、信頼性の高い封止用樹脂は得られて
おらず、表面実装化技術の進展に対応した半田耐熱性が
優れた封止用樹脂の開発が望まれているのが現状である
In addition, resins improved by various methods are gradually becoming more effective, but they are not sufficient to meet the more severe demands that come with advances in packaging technology. After humidifying a semiconductor device sealed with resin, for example, 85°C/85% RH treatment for 72 hours, or 121°C/2 atm PCT (pressure
(Kutsker test) When immersed in a solder bath after 72 hours of treatment, all resin parts will swell or crack, reducing reliability. In other words, a highly reliable sealing resin that prevents cracks during heating during soldering has not yet been obtained, and there is still a need for a sealing resin that has excellent soldering heat resistance in response to advances in surface mounting technology. The current situation is that development is desired.

さらに、従来より半導体封止用途に使用されていたダレ
ゾールノボラック型エポキシ樹脂は、比較的粘度が高く
、小粒径のシリカを添加したり、シリカの添加量を増や
すと流動性が低下して成形が困難になるという問題があ
った。
Furthermore, Darezol novolak-type epoxy resin, which has traditionally been used for semiconductor encapsulation, has a relatively high viscosity, and its fluidity decreases when small particle size silica is added or when the amount of silica added is increased. There was a problem that molding became difficult.

本発明の目的は、かかる半田付は工程で生じるクラック
の問題を解消し、信頼性が高く、半田耐熱性および流動
性に優れた半田耐熱性エポキシ樹脂組成物を提供するこ
とにあり、表面実装ができる樹脂封止半導体装置を可能
にすることにある。
An object of the present invention is to provide a soldering heat-resistant epoxy resin composition that eliminates the problem of cracks that occur during the soldering process, has high reliability, and has excellent soldering heat resistance and fluidity. The objective is to enable a resin-sealed semiconductor device that can be

く課題を解決するための手段〉 すなわち、本発明は、エポキシ樹脂(^)、硬化剤fB
)および平均粒径20IJt1以下の溶融シリカ(C)
70〜85重量%からなる半田耐熱性樹脂組成物におい
て、前記エポキシ樹脂(A)が、下記式■ (ただし、R1−R8は水素原子、01〜C4の低級ア
ルキル基またはハロゲン原子を示す。)で表わされる骨
格を有するエポキシ樹脂(A′)を必須成分として含有
し、前記溶融シリカ(C)が平均粒径12u+n以下の
破砕溶融シリカ(C′)40重量%以上と平均粒径40
μm以下の球状溶融シリカ(C″)60重量%以下から
なる半田耐熱性エポキシ樹脂組成物である。
Means for Solving the Problems〉 That is, the present invention provides an epoxy resin (^), a hardening agent fB
) and fused silica (C) with an average particle size of 20 IJt1 or less
In the solder heat-resistant resin composition consisting of 70 to 85% by weight, the epoxy resin (A) has the following formula (1) (wherein R1 to R8 represent a hydrogen atom, a lower alkyl group of 01 to C4, or a halogen atom). The fused silica (C) contains 40% by weight or more of crushed fused silica (C') having an average particle size of 12u+n or less and an average particle size of 40
This is a soldering heat-resistant epoxy resin composition consisting of 60% by weight or less of spherical fused silica (C'') having a particle size of .mu.m or less.

以下、本発明の構成を詳述する。Hereinafter, the configuration of the present invention will be explained in detail.

本発明において、エポキシ樹脂(^)は下記式%式% (ただし、R1,R8は水素原子、c1〜c4の低級ア
ルキル基またはハロゲン原子を示す。)で表わされる骨
格を有するエポキシ樹脂(八′)を必須成分として含有
することが重要である。
In the present invention, the epoxy resin (^) is an epoxy resin (8' ) is important to contain as an essential component.

エポキシ樹脂(八′)を含有しない場合は半田付は工程
におけるクラックの発生防止効果は発揮されない。
If the epoxy resin (8') is not contained, the effect of preventing cracks in the soldering process will not be exhibited.

下記式〇において、R1−R8の好ましい具体例として
は、水素原子、メチル基、エチル基、5ec−ブチル基
、tert−ブチル基、塩素原子、臭素原子などが挙げ
られる。
In the following formula (0), preferred specific examples of R1-R8 include a hydrogen atom, a methyl group, an ethyl group, a 5ec-butyl group, a tert-butyl group, a chlorine atom, a bromine atom, and the like.

本発明におけるエポキシ樹脂(A′)の好ましい具体例
としては、4,4′−ビス(2,3−エポキシプロポキ
シ)ビフェニル、44′−ビス(2,3−エポキシプロ
ポキシ)−3,3′、 5.5−テトラメチルビフェニ
ル、4.4′−ビス(2,3−エポキシプロポキシ) 
−3,3′、 5.5−テトラメチル−2−タロロビフ
ェニル、4゜4′−ビス(2,3−エポキシプロポキシ
)−33′、5.5′−テトラメチル−2−ブロモビフ
ェニル、4,4′−ビス(2,3−エポキシ10ボキシ
)−3,3′、5.5′−テトラエチルビフェニル、4
.4′−ビス(2,3−エポキシ10ボキシ)  3,
3′、5.5′−テトラブチルビフェニルなどが挙げら
れる。
Preferred specific examples of the epoxy resin (A') in the present invention include 4,4'-bis(2,3-epoxypropoxy)biphenyl, 44'-bis(2,3-epoxypropoxy)-3,3', 5.5-tetramethylbiphenyl, 4.4'-bis(2,3-epoxypropoxy)
-3,3', 5.5-tetramethyl-2-talolobiphenyl, 4°4'-bis(2,3-epoxypropoxy)-33', 5.5'-tetramethyl-2-bromobiphenyl, 4,4'-bis(2,3-epoxy-10boxy)-3,3',5.5'-tetraethylbiphenyl, 4
.. 4'-bis(2,3-epoxy 10boxy) 3,
Examples include 3', 5,5'-tetrabutylbiphenyl.

本発明において、エポキシ樹脂(A)は上記のエポキシ
樹脂(A′)とともに該エポキシ樹脂(八′)以外の他
のエポキシ樹脂をも併用して含有することができる。併
用できる他のエポキシ樹脂としては、たとえば、クレゾ
ールノボラック型エポキシ樹脂、フェノールノボラッタ
型エポキシ樹脂、下記式■で表わされるノボラック型エ
ポキシ樹脂 (ただし、nは0以上の整数を示す、)ビスフェノール
Aやレゾルシンなどから合成される各種ノボラック型エ
ポキシ樹脂、ビスフェノールA型エポキシ樹脂、線状脂
肪族エポキシ樹脂、脂環式エポキシ樹脂、複索環式エポ
キシ樹脂などが挙げられる。
In the present invention, the epoxy resin (A) may contain an epoxy resin other than the epoxy resin (8') in combination with the above-mentioned epoxy resin (A'). Other epoxy resins that can be used in combination include, for example, cresol novolac type epoxy resin, phenol novolata type epoxy resin, novolac type epoxy resin represented by the following formula (where n is an integer of 0 or more), bisphenol A, Examples include various novolac type epoxy resins synthesized from resorcinol and the like, bisphenol A type epoxy resins, linear aliphatic epoxy resins, alicyclic epoxy resins, and polycyclic epoxy resins.

エポキシ樹脂(A)中に含有されるエポキシ樹脂(A′
)の割合に関しては特に制限がなく、必須成分としてエ
ポキシ樹脂(A′)が含有されれば本発明の効果は発揮
されるが、より十分な効果を発揮させるためには、エポ
キシ樹脂(八”)がエポキシ樹脂(A)中に通常20重
量%以上、好ましくは40重量%以上、特に好ましくは
60重量%以上含有せしめる必要がある。
Epoxy resin (A′) contained in epoxy resin (A)
) There is no particular restriction on the ratio of the epoxy resin (A'), and the effect of the present invention can be exhibited as long as the epoxy resin (A') is contained as an essential component. ) is usually contained in the epoxy resin (A) in an amount of 20% by weight or more, preferably 40% by weight or more, particularly preferably 60% by weight or more.

・・・・・佃 本発明の樹脂組成物においてエポキシ樹脂(A)の配合
量は通常3〜30重量%、好ましくは5〜25重厘%で
ある。
...Tsukuda In the resin composition of the present invention, the amount of epoxy resin (A) blended is usually 3 to 30% by weight, preferably 5 to 25% by weight.

本発明における硬化剤(B)としてはエポキシ樹脂(A
)と反応して硬化させるものであれば特に限定されない
The curing agent (B) in the present invention is an epoxy resin (A
) is not particularly limited as long as it is cured by reacting with the material.

たとえば、フェノールノボラック、クレゾールノボラッ
クなどのノボラック樹脂、テトラブロムビスフェノール
Aなどのビスフェノール化合物、無水マレイン酸、無水
フタル酸、無水ピロメリット酸なとの酸無水物、メタフ
ェニレンジアミン、ジアミノジフェニルメタン、ジアミ
ノジフェニルスルホンなどの芳香族アミンなどが挙げら
れる。半導体装置封止用としては耐熱性、保存性の点か
らフェノールノボラック、クレゾールノボラックが好ま
しく用いられる。用途によっては二種以上の硬化剤を併
用してらよい 本発明において硬化剤(B)の配合量は通常、2〜15
重量%である。
For example, novolac resins such as phenol novolac and cresol novolac, bisphenol compounds such as tetrabromobisphenol A, acid anhydrides such as maleic anhydride, phthalic anhydride, and pyromellitic anhydride, metaphenylene diamine, diaminodiphenylmethane, and diaminodiphenylsulfone. Examples include aromatic amines such as. For encapsulating semiconductor devices, phenol novolak and cresol novolak are preferably used from the viewpoint of heat resistance and storage stability. Depending on the application, two or more types of curing agents may be used together. In the present invention, the amount of curing agent (B) blended is usually 2 to 15
Weight%.

さらには、エポキシ樹脂(八)と硬化剤(B)の配合比
は、機械的性質、耐湿性の点から(A)に対する(B)
の化学当量比が0,5〜1.6、特に0゜8〜1.3の
範囲にあることが好ましい、また、本発明においてエポ
キシ樹脂(^)と硬化剤(B)の硬化反応を促進するな
め硬化触媒を用いてもよい。硬化触媒は硬化反応を促進
させるしのならば特に限定されない。たとえば、2−メ
チルイミダゾール、2.4−ジメチルイミダゾール、2
−エチル−4−メチルイミダゾール、2−フェニルイミ
ダゾール、2−フェニル−4−メチルイミダゾール、2
−ヘプタデシルイミダゾールなどのイミダゾール類、ト
リエチルアミン、ベンジルジメチルアミン、α−メチル
ベンジルジメチルアミン、2−(ジメチルアミノメチル
)フェノール、2.4.、6− トリス(ジメチルアミ
ノメチル)フェノール、1.8−ジアザビシクロ(5,
4,0)ウンデセン−7などの3級アミン類、ジルコニ
ウムテトラメトキシド、ジルコニウムテトラプロポキシ
ド、テトラキス(アセチルアセ1〜ナト)ジルコニウム
、トリ(アセチルアセトナl−)アルミニウムなどの有
機金属類、l〜リフェニルホスフィン、トリエチルボス
フィン、トリブチルホスフィン、トリメチルホスフィン
、トリ(ρ−メチルフェニル)ボスフィン、トリ(ノニ
ルフェニル)ホスフィンなどの有機ホスフィン類などが
挙げられる。用途によっては二種以上の硬化触媒を併用
して6よい。硬化触媒の添加量はエポキシ樹脂(A)1
00重量部に対して0.1〜10重量部が好t、 Lい
Furthermore, the blending ratio of the epoxy resin (8) and the curing agent (B) should be (B) to (A) from the viewpoint of mechanical properties and moisture resistance.
It is preferable that the chemical equivalent ratio of A diagonal curing catalyst may also be used. The curing catalyst is not particularly limited as long as it promotes the curing reaction. For example, 2-methylimidazole, 2,4-dimethylimidazole, 2
-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2
- Imidazoles such as heptadecylimidazole, triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, 2-(dimethylaminomethyl)phenol, 2.4. , 6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo(5,
4,0) Tertiary amines such as undecene-7, organic metals such as zirconium tetramethoxide, zirconium tetrapropoxide, tetrakis(acetylacetonal-nato)zirconium, tri(acetylacetonal-)aluminum, l- Examples include organic phosphine such as liphenylphosphine, triethylbosphine, tributylphosphine, trimethylphosphine, tri(ρ-methylphenyl)bosphine, and tri(nonylphenyl)phosphine. Depending on the application, two or more types of curing catalysts may be used in combination. The amount of curing catalyst added is epoxy resin (A) 1
It is preferably 0.1 to 10 parts by weight per 00 parts by weight.

本発明における溶融シリカFC)は、平均粒径201J
1以下であり、平均粒径12μm以下の破砕溶融シリカ
(C′>40重量%以上と平均粒径40μm以下の球状
溶融シリカfc” ) 60重量%以下からなるもので
ある。溶融シリカ(C)の平均粒径が20μmを越えた
り、破砕溶融シリカ(C′)の平均粒径が12μ罰を越
えたり、球状溶融シリカの平均粒径が40μmを越える
と、半田耐熱性が低下する。好ましい平均粒径は溶融シ
リカ(C)は15μm以下、破砕溶融シリカ(C′)は
10u+n以下、球状溶融シリカ(C′)は30μm以
下である。ここで平均粒径は累積重量が50%になる粒
径(メジアン径)を意味する。
The fused silica FC) in the present invention has an average particle size of 201J
Fused silica (C) If the average particle size of the crushed fused silica (C') exceeds 20 μm, the average particle size of the crushed fused silica (C') exceeds 12 μm, or the average particle size of the spherical fused silica exceeds 40 μm, the soldering heat resistance will decrease. Preferred average The particle size is 15μm or less for fused silica (C), 10u+n or less for crushed fused silica (C'), and 30μm or less for spherical fused silica (C').Here, the average particle size is the particle whose cumulative weight is 50%. Means the diameter (median diameter).

さらに、溶融シリカ(C)の組成で、破砕溶融シリカ(
C′)が40重量%未満で球状溶融シリカ(C′)が6
0重量%を越えると半田耐熱性が低下する。好ましくは
、破砕溶融シリカ(C′)が60重量%以上、球状溶融
シリカ(C” )が40重量%以下である。
Furthermore, in the composition of fused silica (C), crushed fused silica (
C') is less than 40% by weight and spherical fused silica (C') is 6
If it exceeds 0% by weight, soldering heat resistance will decrease. Preferably, the amount of crushed fused silica (C') is 60% by weight or more, and the amount of spherical fused silica (C'') is 40% by weight or less.

本発明において溶融シリカ(C)の配合量は70〜85
重量%、好ましくは73〜833〜83重量。70重量
%未満では半田耐熱性が不十分であり、85重量%を越
えると流動性が低下し、成形が困難になる。
In the present invention, the blending amount of fused silica (C) is 70 to 85
% by weight, preferably 73-833-83 weight. If it is less than 70% by weight, soldering heat resistance will be insufficient, and if it exceeds 85% by weight, fluidity will decrease and molding will become difficult.

本発明において、溶融シリカ(C)は、シランカップリ
ング剤、チタネートカップリング剤などのカップリング
剤で予め表面処理することが、耐湿性および機械的性質
の点で好ましい。
In the present invention, it is preferable to surface-treat the fused silica (C) with a coupling agent such as a silane coupling agent or a titanate coupling agent in advance in terms of moisture resistance and mechanical properties.

本発明のエポキシ樹脂組成物には結晶性シリカ、炭酸カ
ルシウム、炭酸マグネシウム、アルミナ、マグネシア、
クレー、タルク、ケイ酸カルシウム、酸化チタン、アス
ベスト、ガラス繊維などの充填剤、ハロゲン化エポキシ
樹脂などのハロゲン化合物、リン化合物などの難燃剤、
三酸化アンチモンなどの難燃助剤、カーボンブラック、
酸化鉄などの着色剤、シリコーンオイル、変成ニトリル
ゴム、変成ポリブタジェンゴム、オレフィン系ゴム、ス
チレン系ゴムなどのエラストマー、シランカップリング
剤、チタネートカップリング刑などのカップリング剤、
長鎖脂肪酸、長鎖脂肪酸の金属塩、長鎖脂肪酸のエステ
ル、長鎖脂肪酸のアミド、パラフィンワックスなどの離
型剤、有機過酸化物などの架橋剤を任意に添加すること
ができる。
The epoxy resin composition of the present invention includes crystalline silica, calcium carbonate, magnesium carbonate, alumina, magnesia,
Fillers such as clay, talc, calcium silicate, titanium oxide, asbestos, and glass fiber, halogen compounds such as halogenated epoxy resin, flame retardants such as phosphorus compounds,
Flame retardant aids such as antimony trioxide, carbon black,
Coloring agents such as iron oxide, silicone oil, elastomers such as modified nitrile rubber, modified polybutadiene rubber, olefin rubber, styrene rubber, silane coupling agents, coupling agents such as titanate coupling agents,
Long chain fatty acids, metal salts of long chain fatty acids, esters of long chain fatty acids, amides of long chain fatty acids, mold release agents such as paraffin wax, and crosslinking agents such as organic peroxides can be optionally added.

本発明のエポキシ樹脂組成物は溶融混練することが好ま
しく、溶融混練は公知の方法を用いることができる。た
とえば、バンバリーミキサ−、ニーグー、ロール、−軸
もしくは二軸の押出機、コニーグーなどを用い、通常5
0〜150℃の温度で樹脂組成物とすることができる。
The epoxy resin composition of the present invention is preferably melt-kneaded, and a known method can be used for the melt-kneading. For example, using a Banbury mixer, Nigoo, roll, -screw or twin-screw extruder, Coneygoo, etc.,
The resin composition can be prepared at a temperature of 0 to 150°C.

〈実施例〉 以下、実施例により本発明を具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例中の部数は重量部を意味する。The numbers in the examples mean parts by weight.

実施例1〜9、比較例1〜7 表1、表2、表3に示す配合処方の組成比で試薬をミキ
サーによりトライブレンドした。これを、ロール表面温
度90℃のミキシングロールを用いて5分間加熱混練後
、冷却、粉砕して半田耐熱性エポキシ樹脂組成物を製造
した。
Examples 1 to 9, Comparative Examples 1 to 7 Reagents were triblended using a mixer at the composition ratios shown in Tables 1, 2, and 3. This was heated and kneaded for 5 minutes using a mixing roll with a roll surface temperature of 90° C., then cooled and pulverized to produce a solder heat-resistant epoxy resin composition.

この組成物を用い、低圧トランスファー成形法により、
スパイラルフローを測定しな。また、175℃×4分の
条件で成形して、模擬素子を封止した44pinQFP
を得た後、175℃で5時間ポストキュアした。ボスト
キュア後、次の物性測定法により、各組成物の物性を測
定した。
Using this composition, by low pressure transfer molding method,
Don't measure spiral flow. In addition, a 44-pin QFP was molded under the conditions of 175°C x 4 minutes and the simulated element was sealed.
After that, it was post-cured at 175°C for 5 hours. After post-curing, the physical properties of each composition were measured using the following physical property measuring method.

半田耐熱性: 44pin QFP24個を85℃、8
5%RHで72時間加湿処理後、 250℃の半田浴に10秒間漫潰し、 クラックの発生しないQFPの個数 の割合を求めた。
Soldering heat resistance: 24 44-pin QFPs at 85℃, 8
After humidifying at 5% RH for 72 hours, the QFPs were crushed in a solder bath at 250°C for 10 seconds, and the percentage of QFPs without cracks was determined.

信 頼 性:前記の半田耐熱性試験を行なった44pi
nQFPを用い、121’C1100%RHで加湿処理
し、ビン不 良発生率50%になる時間を求めた。
Reliability: 44pi subjected to the soldering heat resistance test mentioned above.
Using nQFP, humidification was performed at 121'C1100% RH, and the time required for the bottle failure rate to reach 50% was determined.

これらの結果を合せて表3に示す。These results are shown in Table 3.

表3にみられるように、実施例1〜9の本発明の半田耐
熱性エポキシ樹脂組成物は、半田耐熱性、信頼性の値が
高く、スパイラルフローが長い。
As seen in Table 3, the solder heat resistant epoxy resin compositions of the present invention of Examples 1 to 9 have high values of solder heat resistance and reliability, and have a long spiral flow.

これに対して、比較例1〜3にみられるように、エポキ
シ樹脂(A′)であるエポキシ樹脂■を添加しないとス
パイラルフローが短くなり、成形時に未充填が発生した
り、成形可能な場合も半田耐熱性と信頼性が低くなる。
On the other hand, as seen in Comparative Examples 1 to 3, if epoxy resin (A'), epoxy resin ■, is not added, the spiral flow becomes short, resulting in unfilling during molding, or when molding is possible. Also, soldering heat resistance and reliability will decrease.

また、比較例4〜7にみちれるように、平均粒径121
J11以下の破砕溶融シリカ(C′)を40重1%以上
添加しないと、半田耐熱性、信頼性が低下する。
In addition, as seen in Comparative Examples 4 to 7, the average particle size was 121
If crushed fused silica (C') of J11 or less is not added in an amount of 40% by weight or more, the soldering heat resistance and reliability will deteriorate.

〈発明の効果〉 本発明によれば、特定構造のエポキシ樹脂、硬化剤およ
び特定組成の溶融シリカを添加することにより、半田耐
熱性、信頼性および流動性に優れた半田耐熱性エポキシ
樹脂組成物が得られる。
<Effects of the Invention> According to the present invention, by adding an epoxy resin with a specific structure, a curing agent, and fused silica with a specific composition, a soldering heat-resistant epoxy resin composition with excellent soldering heat resistance, reliability, and fluidity can be obtained. is obtained.

特許出願大東し株式会社Patent application Daitoshi Co., Ltd.

Claims (1)

【特許請求の範囲】 エポキシ樹脂(A)、硬化剤(B)および平均粒径20
μm以下の溶融シリカ(C)70〜85重量%からなる
半田耐熱性樹脂組成物において、前記エポキシ樹脂(A
)が、下記式( I ) ▲数式、化学式、表等があります▼……( I ) (ただし、R^1〜R^8は水素原子、C_1〜C_4
の低級アルキル基またはハロゲン原子を示す。) で表わされる骨格を有するエポキシ樹脂(A′)を必須
成分として含有し、前記溶融シリカ(C)が平均粒径1
2μm以下の破砕溶融シリカ(C′)40重量%以上と
平均粒径40μm以下の球状溶融シリカ(C″)60重
量%以下からなる半田耐熱性エポキシ樹脂組成物。
[Claims] Epoxy resin (A), curing agent (B) and average particle size 20
In a solder heat-resistant resin composition comprising 70 to 85% by weight of fused silica (C) of µm or less, the epoxy resin (A
) is the following formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼……(I) (However, R^1 to R^8 are hydrogen atoms, C_1 to C_4
represents a lower alkyl group or a halogen atom. ) contains as an essential component an epoxy resin (A') having a skeleton represented by
A soldering heat-resistant epoxy resin composition comprising 40% by weight or more of crushed fused silica (C') having a particle size of 2 μm or less and 60% by weight or less of spherical fused silica (C″) having an average particle size of 40 μm or less.
JP63253583A 1988-10-06 1988-10-06 Solder heat resistant epoxy resin composition for semiconductor encapsulation Expired - Fee Related JPH0791364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63253583A JPH0791364B2 (en) 1988-10-06 1988-10-06 Solder heat resistant epoxy resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63253583A JPH0791364B2 (en) 1988-10-06 1988-10-06 Solder heat resistant epoxy resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH0299514A true JPH0299514A (en) 1990-04-11
JPH0791364B2 JPH0791364B2 (en) 1995-10-04

Family

ID=17253395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63253583A Expired - Fee Related JPH0791364B2 (en) 1988-10-06 1988-10-06 Solder heat resistant epoxy resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JPH0791364B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158637A (en) * 1988-12-09 1990-06-19 Nippon Chem Ind Co Ltd Silica filler and sealing resin composition using the same
JPH0450257A (en) * 1990-06-18 1992-02-19 Toray Ind Inc Epoxy resin composition for sealing semiconductor
US5298548A (en) * 1991-05-21 1994-03-29 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition and semiconductor devices encapsulated therewith
US5418266A (en) * 1991-03-29 1995-05-23 Shin-Etsu Chemical Co., Ltd. Epoxy resin compositions and semiconductor devices encapsulated therewith
JP2003012895A (en) * 2001-06-27 2003-01-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147725A (en) * 1984-08-16 1986-03-08 Yuka Shell Epoxy Kk Epoxy resin composition for sealing semiconductor
JPS6198726A (en) * 1984-10-19 1986-05-17 Mitsubishi Petrochem Co Ltd Epoxy resin composition for sealing electronic parts
JPS61259552A (en) * 1985-05-14 1986-11-17 Nitto Electric Ind Co Ltd Semiconductor sealing device
JPS61268750A (en) * 1985-05-22 1986-11-28 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing use
JPS6274924A (en) * 1985-09-30 1987-04-06 Toshiba Corp Epoxy resin composition for sealing semiconductor device
JPS62209128A (en) * 1986-03-11 1987-09-14 Toshiba Corp Epoxy resin composition for sealing semiconductor device
JPS6341527A (en) * 1986-08-07 1988-02-22 Mitsubishi Petrochem Co Ltd Epoxy resin composition for sealing semiconductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147725A (en) * 1984-08-16 1986-03-08 Yuka Shell Epoxy Kk Epoxy resin composition for sealing semiconductor
JPS6198726A (en) * 1984-10-19 1986-05-17 Mitsubishi Petrochem Co Ltd Epoxy resin composition for sealing electronic parts
JPS61259552A (en) * 1985-05-14 1986-11-17 Nitto Electric Ind Co Ltd Semiconductor sealing device
JPS61268750A (en) * 1985-05-22 1986-11-28 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing use
JPS6274924A (en) * 1985-09-30 1987-04-06 Toshiba Corp Epoxy resin composition for sealing semiconductor device
JPS62209128A (en) * 1986-03-11 1987-09-14 Toshiba Corp Epoxy resin composition for sealing semiconductor device
JPS6341527A (en) * 1986-08-07 1988-02-22 Mitsubishi Petrochem Co Ltd Epoxy resin composition for sealing semiconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158637A (en) * 1988-12-09 1990-06-19 Nippon Chem Ind Co Ltd Silica filler and sealing resin composition using the same
JPH0450257A (en) * 1990-06-18 1992-02-19 Toray Ind Inc Epoxy resin composition for sealing semiconductor
US5418266A (en) * 1991-03-29 1995-05-23 Shin-Etsu Chemical Co., Ltd. Epoxy resin compositions and semiconductor devices encapsulated therewith
US5298548A (en) * 1991-05-21 1994-03-29 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition and semiconductor devices encapsulated therewith
JP2003012895A (en) * 2001-06-27 2003-01-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JPH0791364B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
WO2001010955A1 (en) Epoxy resin composition and semiconductor device
JPH0299514A (en) Epoxy based composition having heat resistance to solder
JP3649535B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2955013B2 (en) Epoxy resin composition
JPH04218523A (en) Epoxy resin composition
JP2697510B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH04325517A (en) Epoxy resin composition for semiconductor sealing
JPH0668010B2 (en) Resin composition for semiconductor encapsulation
JPH04325516A (en) Epoxy resin composition for semiconductor sealing
JP3451666B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2964559B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3413923B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP3632936B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3451710B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JPH03119052A (en) Epoxy resin composition
JPH0676539B2 (en) Epoxy-containing composition for semiconductor encapsulation
JPH0299552A (en) Epoxy resin composition
JP2964634B2 (en) Epoxy composition
JP2501140B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0299551A (en) Epoxy-based resin composition
JP2955012B2 (en) Epoxy resin composition
JP2823569B2 (en) Epoxy composition
JP2600450B2 (en) Epoxy composition for semiconductor encapsulation
JP2961889B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH04264155A (en) Epoxy resin composition for semiconductor sealing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees