JPH04325516A - Epoxy resin composition for semiconductor sealing - Google Patents

Epoxy resin composition for semiconductor sealing

Info

Publication number
JPH04325516A
JPH04325516A JP9751991A JP9751991A JPH04325516A JP H04325516 A JPH04325516 A JP H04325516A JP 9751991 A JP9751991 A JP 9751991A JP 9751991 A JP9751991 A JP 9751991A JP H04325516 A JPH04325516 A JP H04325516A
Authority
JP
Japan
Prior art keywords
fused silica
epoxy resin
average particle
particle size
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9751991A
Other languages
Japanese (ja)
Inventor
Shiro Honda
史郎 本田
Shuichi Shintani
修一 新谷
Tadahide Sato
佐藤 忠秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9751991A priority Critical patent/JPH04325516A/en
Publication of JPH04325516A publication Critical patent/JPH04325516A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition excellent in soldering-heat resistance, etc., by mixing an epoxy resin with a specified phenolic curing agent and a specified amount of fused silica of a specified composition. CONSTITUTION:A phenolic curing agent containing at least 50 wt.% phenolic compound of the formula (wherein R<1> to R<4> are H or 1-4C lower alkyl) (e.g. tetramethylbisphenol F) is prepared. Fused silica which comprises 97-60wt.% broken fused silica of a mean particle size of 10mum or below and 3-40wt.% spherical fused silica of a mean particle size of 4mum or below and in which the mean particle size of the spherical fused silica is smaller than that of the broken fused silica is prepared. The title composition is produced by mixing an epoxy resin with the above fused silica and the above phenolic curing agent in such amounts that the inorganic filler containing the fused silica is used in an amount of 75-90wt.% based on the total composition.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半田付け工程で生じる
パッケージクラックの問題を解消する、すなわち半田耐
熱性に優れるエポキシ樹脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition that eliminates the problem of package cracks occurring during the soldering process, that is, has excellent soldering heat resistance.

【0002】0002

【従来の技術】エポキシ樹脂は耐熱性、耐湿性、電気特
性、接着性などに優れており、さらに配合処方により種
々の特性が付与できるため、塗料、接着剤、電気絶縁材
料など工業材料として利用されている。たとえば、半導
体装置などの電子回路部品の封止方法として従来より金
属やセラミックスによるハーメチックシールとフェノー
ル樹脂、シリコーン樹脂、エポキシ樹脂などによる樹脂
封止が提案されている。しかし、経済性、生産性、物性
のバランスの点からエポキシ樹脂による樹脂封止が中心
になっている。
[Prior art] Epoxy resins have excellent heat resistance, moisture resistance, electrical properties, adhesive properties, etc., and can be given various properties depending on the formulation, so they are used as industrial materials such as paints, adhesives, and electrical insulation materials. has been done. For example, as methods for sealing electronic circuit components such as semiconductor devices, hermetic seals using metals or ceramics, and resin sealing using phenol resins, silicone resins, epoxy resins, and the like have been proposed. However, from the viewpoint of economy, productivity, and balance of physical properties, resin sealing using epoxy resin has become the main method.

【0003】一方、最近はプリント基板への部品実装に
おいても高密度化、自動化が進められており、従来のリ
ードピンを基板の穴に挿入する“挿入実装方式”に代り
、基板表面に部品を半田付けする“表面実装方式”が盛
んになってきた。それに伴いパッケージも従来のDIP
(デュアル・インライン・パッケージ)から高密度実装
、表面実装に適した薄型のTSOP(シン・スモール・
アウトライン・パッケージ)やQFP(クワッド・フラ
ット・パッケージ)に移行しつつある。
On the other hand, recently, the mounting density and automation of components on printed circuit boards have been increasing, and instead of the conventional "insertion mounting method" in which lead pins are inserted into holes in the board, components are soldered onto the surface of the board. The "surface mount method" for attaching devices has become popular. Along with this, the packaging is also conventional DIP.
(dual in-line package) to thin TSOP (thin small package) suitable for high-density mounting and surface mounting.
Outline packages) and QFPs (quad flat packages) are on the way.

【0004】表面実装方式への移行に伴い、従来あまり
問題にならなかった半田付け工程が大きな問題になって
きた。従来のピン挿入実装方式では半田付け工程はリー
ド部が部分的に加熱されるだけであったが、表面実装方
式ではパッケージ全体が熱媒に浸され加熱される。表面
実装方式における半田付け方法としては半田浴浸漬、不
活性液体の飽和蒸気や赤外線によって加熱する半田リフ
ロー法などが用いられるが、いずれの方法でもパッケー
ジ全体が210〜270℃の高温に加熱されることにな
る。そのため従来の封止樹脂で封止したパッケージは、
半田付け時に樹脂部分にクラックが発生し、信頼性が低
下して製品として使用できないという問題がおきていた
[0004] With the shift to the surface mounting method, the soldering process, which did not pose much of a problem in the past, has become a major problem. In the conventional pin insertion mounting method, only the leads are partially heated during the soldering process, but in the surface mounting method, the entire package is immersed in a heating medium and heated. Soldering methods used in the surface mount method include immersion in a solder bath, saturated vapor of an inert liquid, and a solder reflow method in which heating is performed using infrared rays, but in either method, the entire package is heated to a high temperature of 210 to 270 degrees Celsius. It turns out. Therefore, packages sealed with conventional sealing resin,
There was a problem that cracks occurred in the resin part during soldering, reducing reliability and making it unusable as a product.

【0005】半田付け工程におけるクラックの発生は、
後硬化してから実装工程の間までに吸湿した水分が半田
付け加熱時に爆発的に水蒸気化、膨脹することに起因す
るといわれており、その対策として封止用樹脂の改良が
種々検討されている。
[0005] The occurrence of cracks in the soldering process is
This is said to be caused by moisture absorbed between post-curing and the mounting process that explosively turns into water vapor and expands during soldering heat, and various improvements to the sealing resin are being considered as countermeasures. .

【0006】従来はエポキシ樹脂にオルソクレゾールノ
ボラック型エポキシ樹脂、硬化剤にフェノールノボラッ
ク樹脂を用い、無機充填材として平均粒径10〜20μ
mの破砕状溶融シリカを用いるのが一般的であったが、
表面実装時の加熱によりクラックが発生する問題を回避
できなかった。そこで、エポキシ樹脂にビフェニル骨格
を有するエポキシ樹脂を用い、溶融シリカに平均粒径1
2μm以下の破砕状シリカと平均粒径40μm以下の球
状シリカとを組み合わせて用いる方法(特開平2−99
514号公報)などが提案されている。
Conventionally, an orthocresol novolac type epoxy resin was used as the epoxy resin, a phenol novolac resin was used as the curing agent, and an average particle size of 10 to 20 μm was used as the inorganic filler.
It was common to use crushed fused silica of m.
The problem of cracks occurring due to heating during surface mounting could not be avoided. Therefore, we used an epoxy resin with a biphenyl skeleton as the epoxy resin, and added fused silica with an average particle size of 1.
A method using a combination of crushed silica with a particle size of 2 μm or less and spherical silica with an average particle size of 40 μm or less (Japanese Patent Application Laid-Open No. 2-99
No. 514) and the like have been proposed.

【0007】しかし、これら種々の方法で改良された樹
脂も、それぞれ半田付け時のクラックに対してある程度
効果をあげてきているが、まだ十分ではない。例えば、
エポキシ樹脂にビフェニル骨格を有するエポキシ樹脂を
用い、溶融シリカに平均粒径12μm以下の破砕状シリ
カと平均粒径40μm以下の球状シリカとを組み合わせ
て用いる方法では大きな粒径の球状シリカを用いるため
に耐クラック性が低くまだ十分な半田耐熱性が得られて
いない。
[0007] However, although the resins improved by these various methods have been effective to some extent in preventing cracks during soldering, they are still not sufficient. for example,
In a method in which an epoxy resin having a biphenyl skeleton is used as the epoxy resin, and a combination of crushed silica with an average particle size of 12 μm or less and spherical silica with an average particle size of 40 μm or less is used as fused silica, spherical silica with a large particle size is used. Crack resistance is low and sufficient soldering heat resistance has not yet been achieved.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、かか
る半田付け工程で生じるパッケージクラックの問題を解
消する、すなわち半田耐熱性に優れる半導体封止用エポ
キシ樹脂組成物を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an epoxy resin composition for semiconductor encapsulation that eliminates the problem of package cracks occurring in the soldering process, that is, has excellent solder heat resistance.

【0009】[0009]

【課題を解決するための手段】本発明者らは、特定の硬
化剤と特定の粒径、形状の組み合わせからなる溶融シリ
カとを使用することにより、上記の課題を解決し、目的
に合致したエポキシ樹脂組成物が得られることを見出し
本発明に到達した。
[Means for Solving the Problems] The present inventors have solved the above problems by using a specific curing agent and fused silica having a specific combination of particle size and shape. The inventors have discovered that an epoxy resin composition can be obtained and have arrived at the present invention.

【0010】すなわち本発明は、エポキシ樹脂(A)、
フェノール系硬化剤(B)、溶融シリカ(C)とを必須
成分として含有してなる樹脂組成物であって、前記フェ
ノール系硬化剤(B)が式(I)
[0010] That is, the present invention provides an epoxy resin (A),
A resin composition comprising a phenolic curing agent (B) and fused silica (C) as essential components, the phenolic curing agent (B) having the formula (I)

【0011】[0011]

【化4】[C4]

【0012】(ただし、R1 〜R4 は水素原子、C
1 〜C4 の低級アルキル基から選ばれ、すべてが同
一である必要はない。)で表されるフェノール系化合物
(b)を硬化剤(B)中に50重量%以上含有するとと
もに、前記溶融シリカ(C)が平均粒径10μm以下の
破砕状溶融シリカ97〜60重量%と平均粒径4μm以
下の球状溶融シリカ3〜40重量%からなり、球状溶融
シリカの平均粒径が破砕状溶融シリカの平均粒径より小
さく、かつ溶融シリカ(C)を含む無機充填材の割合が
全体の75〜90重量%であるエポキシ樹脂組成物であ
って、さらに前記エポキシ樹脂(A)が式(II)
(However, R1 to R4 are hydrogen atoms, C
They are selected from 1 to C4 lower alkyl groups, and do not need to all be the same. ) is contained in the curing agent (B) in an amount of 50% by weight or more, and the fused silica (C) is 97 to 60% by weight of crushed fused silica with an average particle size of 10 μm or less. Consisting of 3 to 40% by weight of spherical fused silica with an average particle diameter of 4 μm or less, the average particle diameter of the spherical fused silica is smaller than the average particle diameter of crushed fused silica, and the proportion of the inorganic filler containing fused silica (C) is 75 to 90% by weight of the epoxy resin composition, wherein the epoxy resin (A) is of the formula (II).

【0
013】
0
013]

【化5】[C5]

【0014】(ただし、R5 〜R12は水素原子、C
1 〜C4 の低級アルキル基またはハロゲン原子から
選ばれ、すべてが同一である必要はない。)で表される
エポキシ樹脂(a1 )、および、式(III)
(However, R5 to R12 are hydrogen atoms, C
They are selected from 1 to C4 lower alkyl groups or halogen atoms, and do not need to be all the same. ) Epoxy resin (a1) represented by formula (III)

【00
15】
00
15]

【化6】[C6]

【0016】(ただし、R13〜R20のうち2つは2
,3−エポキシプロポキシ基であり、残りは水素原子、
C1 〜C4の低級アルキル基またはハロゲン原子から
選ばれ、すべてが同一である必要はない。)で表される
エポキシ樹脂(a2 )の、少なくとも一方を必須成分
として含有することがさらに好ましいエポキシ樹脂組成
物である。
(However, two of R13 to R20 are 2
, 3-epoxypropoxy group, the rest are hydrogen atoms,
They are selected from C1 to C4 lower alkyl groups or halogen atoms, and do not need to be all the same. It is more preferable that the epoxy resin composition contains at least one of the epoxy resins (a2) represented by (a2) as an essential component.

【0017】本発明のエポキシ樹脂組成物が半田耐熱性
に優れる理由はまだ明確ではないが、(1)本発明で用
いられる硬化剤が1分子中に水酸基を2個しか持たない
2官能のフェノール系化合物を一定量以上含有すること
により、硬化物の架橋密度が適度に低下して低吸水性を
示すとともに高温での柔軟性が増大して耐クラック性が
向上すること、(2)本発明に必須の溶融シリカの形状
、粒径の組み合わせにより高温で高い強度を示すととも
に、局所応力を低減させクラック伝播を抑止している可
能性のあること、などの効果が相乗的に働いて各々の単
独の寄与からは予想し得ないほどの優れた半田耐熱性を
示すものと思われる。
The reason why the epoxy resin composition of the present invention has excellent soldering heat resistance is not yet clear, but (1) the curing agent used in the present invention is a difunctional phenol having only two hydroxyl groups in one molecule. By containing a certain amount or more of the system compound, the crosslinking density of the cured product is moderately reduced, exhibiting low water absorption, and increasing flexibility at high temperatures and improving crack resistance; (2) the present invention; The combination of shape and particle size of fused silica, which is essential for It is thought that it exhibits excellent soldering heat resistance that could not be expected from a single contribution.

【0018】以下、本発明の構成を詳述する。The configuration of the present invention will be explained in detail below.

【0019】本発明におけるエポキシ樹脂(A)は一分
子中に2個以上のエポキシ基を含有する多官能エポキシ
樹脂であれば特に制限を加えるものではないが、通常は
多官能フェノールのポリグリシジルエーテル型エポキシ
樹脂が用いられる。多官能フェノールのポリグリシジル
エーテル型エポキシ樹脂の具体例としてはクレゾールノ
ボラック型エポキシ樹脂、フェノールノボラック型エポ
キシ樹脂、ビスフェノールAとホルムアルデヒド、ナフ
トールやジヒドロキシナフタレンとホルムアルデヒドや
ベンズアルデヒドから合成されたノボラック型樹脂のポ
リグリシジルエーテルなどが例示できる。これらのエポ
キシ樹脂においては特に耐湿性、耐熱性および生産性の
バランスからクレゾールノボラック型エポキシ樹脂が好
ましく用いられる。
The epoxy resin (A) in the present invention is not particularly limited as long as it is a polyfunctional epoxy resin containing two or more epoxy groups in one molecule, but it is usually a polyglycidyl ether of a polyfunctional phenol. Type epoxy resin is used. Specific examples of polyglycidyl ether type epoxy resins of multifunctional phenols include cresol novolac type epoxy resins, phenol novolac type epoxy resins, and polyglycidyl novolac type resins synthesized from bisphenol A and formaldehyde, naphthol, dihydroxynaphthalene, formaldehyde, and benzaldehyde. An example is ether. Among these epoxy resins, cresol novolac type epoxy resins are particularly preferably used from the viewpoint of the balance of moisture resistance, heat resistance, and productivity.

【0020】本発明においてはこれら多官能フェノール
のポリグリシジルエーテルは難燃性を付与する目的でハ
ロゲン化されたものでもかまわない。
In the present invention, the polyglycidyl ether of these polyfunctional phenols may be halogenated for the purpose of imparting flame retardance.

【0021】また、本発明においてはエポキシ樹脂(A
)として式(II)
Furthermore, in the present invention, epoxy resin (A
) as formula (II)

【0022】[0022]

【化7】[C7]

【0023】(ただし、R5 〜R12は水素原子、C
1 〜C4 の低級アルキル基またはハロゲン原子から
選ばれ、すべてが同一である必要はない。)で表される
エポキシ樹脂(a1 )、および、式(III)
(However, R5 to R12 are hydrogen atoms, C
They are selected from 1 to C4 lower alkyl groups or halogen atoms, and do not need to be all the same. ) Epoxy resin (a1) represented by formula (III)

【00
24】
00
24]

【化8】[Chemical formula 8]

【0025】(ただし、R13〜R20のうち2つは2
,3−エポキシプロポキシ基であり、残りは水素原子、
C1 〜C4の低級アルキル基またはハロゲン原子から
選ばれ、すべてが同一である必要はない。)で表される
エポキシ樹脂(a2 )の、少なくとも一方を必須成分
として含有することがさらに好ましい。エポキシ樹脂(
a1 )や(a2 )のような2官能でかつ耐熱性の高
いビフェニルやナフチル骨格を持つエポキシ樹脂は本発
明においては全く同等の効果を有し、これらを含有する
ことによって半田付け工程におけるクラックの発生防止
効果はより一段と向上する。
(However, two of R13 to R20 are 2
, 3-epoxypropoxy group, the rest are hydrogen atoms,
They are selected from C1 to C4 lower alkyl groups or halogen atoms, and do not need to be all the same. It is more preferable to contain at least one of the epoxy resins (a2) represented by (a2) as an essential component. Epoxy resin(
Epoxy resins such as a1) and (a2), which are bifunctional and have a highly heat-resistant biphenyl or naphthyl skeleton, have exactly the same effect in the present invention, and by containing them, cracks can be prevented in the soldering process. The prevention effect will be further improved.

【0026】本発明におけるエポキシ樹脂(a1 )の
好ましい具体例としては、4,4´−ビス(2,3−エ
ポキシプロポキシ)ビフェニル、4,4´−ビス(2,
3−エポキシプロポキシ)−3,3´,5,5´−テト
ラメチルビフェニル、4、4´−ビス(2,3−エポキ
シプロポキシ)−3,3´,5,5´−テトラメチル−
2−クロロビフェニル、4,4´−ビス(2,3−エポ
キシプロポキシ)−3,3´,5,5´−テトラメチル
−2−ブロモビフェニル、4、4´−ビス(2,3−エ
ポキシプロポキシ)−3、3´,5,5´−テトラエチ
ルビフェニル、4,4´−ビス(2,3−エポキシプロ
ポキシ)−3、3´,5,5´−テトラブチルビフェニ
ルなどがあげられ、4,4´−ビス(2,3−エポキシ
プロポキシ)ビフェニル、4,4´−ビス(2,3−エ
ポキシプロポキシ)−3,3´,5,5´−テトラメチ
ルビフェニルが特に好ましい。
Preferred specific examples of the epoxy resin (a1) in the present invention include 4,4'-bis(2,3-epoxypropoxy)biphenyl, 4,4'-bis(2,
3-epoxypropoxy)-3,3',5,5'-tetramethylbiphenyl, 4,4'-bis(2,3-epoxypropoxy)-3,3',5,5'-tetramethyl-
2-chlorobiphenyl, 4,4'-bis(2,3-epoxypropoxy)-3,3',5,5'-tetramethyl-2-bromobiphenyl, 4,4'-bis(2,3-epoxy propoxy)-3,3',5,5'-tetraethylbiphenyl, 4,4'-bis(2,3-epoxypropoxy)-3,3',5,5'-tetrabutylbiphenyl, etc. , 4'-bis(2,3-epoxypropoxy)biphenyl, and 4,4'-bis(2,3-epoxypropoxy)-3,3',5,5'-tetramethylbiphenyl are particularly preferred.

【0027】また、本発明におけるエポキシ樹脂(a2
 )の好ましい具体例としては、1,5−ジ(2,3−
エポキシプロポキシ)ナフタレン、1,5−ジ(2,3
−エポキシプロポキシ)−7−メチルナフタレン、1,
6−ジ(2,3−エポキシプロポキシ)ナフタレン、1
,6−ジ(2,3−エポキシプロポキシ)−2−メチル
ナフタレン、1,6−ジ(2,3−エポキシプロポキシ
)−8−メチルナフタレン、1,6−ジ(2,3−エポ
キシプロポキシ)−4,8−ジメチルナフタレン、2−
ブロム−1,6−ジ(2,3−エポキシプロポキシ)ナ
フタレン、8−ブロム−1,6−ジ(2,3−エポキシ
プロポキシ)ナフタレン、2,7−ジ(2,3−エポキ
シプロポキシ)ナフタレンなどがあげられ、1,5−ジ
(2,3−エポキシプロポキシ)ナフタレン、1,6−
ジ(2,3−エポキシプロポキシ)ナフタレン、2,7
−ジ(2,3−エポキシプロポキシ)ナフタレンが特に
好ましい。
[0027] Furthermore, the epoxy resin (a2
) is a preferable specific example of 1,5-di(2,3-
epoxypropoxy) naphthalene, 1,5-di(2,3
-epoxypropoxy)-7-methylnaphthalene, 1,
6-di(2,3-epoxypropoxy)naphthalene, 1
, 6-di(2,3-epoxypropoxy)-2-methylnaphthalene, 1,6-di(2,3-epoxypropoxy)-8-methylnaphthalene, 1,6-di(2,3-epoxypropoxy) -4,8-dimethylnaphthalene, 2-
Bromo-1,6-di(2,3-epoxypropoxy)naphthalene, 8-bromo-1,6-di(2,3-epoxypropoxy)naphthalene, 2,7-di(2,3-epoxypropoxy)naphthalene 1,5-di(2,3-epoxypropoxy)naphthalene, 1,6-
Di(2,3-epoxypropoxy)naphthalene, 2,7
-di(2,3-epoxypropoxy)naphthalene is particularly preferred.

【0028】エポキシ樹脂(A)中に含有されるエポキ
シ樹脂(a1 )、(a2 )の割合に関しては特に制
限はないが、より十分な効果を発揮させるためには、エ
ポキシ樹脂(a1 )、(a2 )の少なくとも一方を
エポキシ樹脂(A)中に30重量%以上含有せしめるこ
とが好ましい。
There is no particular restriction on the ratio of the epoxy resins (a1) and (a2) contained in the epoxy resin (A), but in order to exhibit a more sufficient effect, it is necessary to It is preferable that at least one of a2) is contained in the epoxy resin (A) in an amount of 30% by weight or more.

【0029】本発明において、エポキシ樹脂(A)の配
合量は通常4〜20重量%、好ましくは5〜15重量%
である。
In the present invention, the blending amount of the epoxy resin (A) is usually 4 to 20% by weight, preferably 5 to 15% by weight.
It is.

【0030】本発明におけるフェノール系硬化剤(B)
は式(I)
[0030] Phenolic curing agent (B) in the present invention
is the formula (I)

【0031】[0031]

【化9】[Chemical formula 9]

【0032】(ただし、R1 〜R4 は水素原子、C
1 〜C4 の低級アルキル基から選ばれ、すべてが同
一である必要はない。)で表されるフェノール系化合物
(b)を硬化剤(B)中に50重量%以上含有する必要
がある。 硬化剤中でのフェノール系化合物(b)の含有量が50
重量%より少ない場合は半田付け工程におけるクラック
の発生防止効果が十分には得られない。
(However, R1 to R4 are hydrogen atoms, C
They are selected from 1 to C4 lower alkyl groups, and do not need to all be the same. It is necessary to contain 50% by weight or more of the phenolic compound (b) represented by ) in the curing agent (B). The content of phenolic compound (b) in the curing agent is 50
If it is less than % by weight, the effect of preventing cracks in the soldering process cannot be sufficiently achieved.

【0033】例えば、従来から半導体封止樹脂に使用さ
れているフェノールノボラック樹脂には式(IV)
For example, a phenol novolac resin conventionally used as a semiconductor encapsulation resin has the formula (IV).

【0
034】
0
034]

【化10】[Chemical formula 10]

【0035】で表される2核体成分が少量含まれている
が、軟化点83℃のフェノールノボラック樹脂では15
重量%前後、軟化点95℃のフェノールノボラック樹脂
では10重量%前後しか含まれておらず、この程度の含
有量では半田付け工程におけるクラックの発生防止効果
が十分に得られない。
Although it contains a small amount of the binuclear component represented by
A phenol novolac resin with a softening point of 95° C. contains only about 10% by weight, and this level of content does not sufficiently prevent the occurrence of cracks in the soldering process.

【0036】本発明におけるフェノール系化合物(b)
の好ましい具体例としてはフェノールノボラック樹脂の
2核体成分、ビスフェノールF、テトラメチルビスフェ
ノールFなどがあげられ、その合計量が50重量%以上
であれば2種以上の物を同時に用いてもかまわない。
Phenolic compound (b) in the present invention
Preferred specific examples include the binuclear component of phenol novolac resin, bisphenol F, tetramethylbisphenol F, etc., and two or more of them may be used at the same time as long as the total amount is 50% by weight or more. .

【0037】また、本発明におけるフェノール系硬化剤
(B)は、上記フェノール系化合物(b)を硬化剤(B
)中に50重量%以上含有していれば残りはエポキシ樹
脂と反応して硬化させるものであれば特に限定されない
が、好ましい具体例としてはフェノールノボラック樹脂
、クレゾールノボラック樹脂、ビスフェノールAやレゾ
ルシンとホルムアルデヒドとを反応させた各種ノボラッ
ク樹脂などがあげられる。
In addition, the phenolic curing agent (B) in the present invention is a curing agent (B) in which the above phenolic compound (b) is combined with the curing agent (B).
), the remainder is not particularly limited as long as it reacts with the epoxy resin to cure it, but preferred specific examples include phenol novolak resin, cresol novolac resin, bisphenol A, resorcinol, and formaldehyde. Examples include various novolak resins made by reacting with.

【0038】本発明において、フェノール系硬化剤(B
)の配合量は通常2〜10重量%、好ましくは3〜9重
量%である。さらには、エポキシ樹脂(A)とフェノー
ル系硬化剤(B)の配合比は、機械的性質や耐湿性の点
から水酸基/エポキシ基の化学当量比が0.7〜1.3
の範囲にあることが好ましく、特に0.8〜1.2の範
囲にあることが好ましい。
In the present invention, a phenolic curing agent (B
) is usually 2 to 10% by weight, preferably 3 to 9% by weight. Furthermore, the compounding ratio of the epoxy resin (A) and the phenolic curing agent (B) is such that the chemical equivalent ratio of hydroxyl group/epoxy group is 0.7 to 1.3 from the viewpoint of mechanical properties and moisture resistance.
It is preferably in the range of 0.8 to 1.2, particularly preferably in the range of 0.8 to 1.2.

【0039】また、本発明においてエポキシ樹脂(A)
とフェノール系硬化剤(B)の硬化反応を促進するため
硬化触媒を用いてもよい。硬化触媒は硬化反応を促進す
るものならば特に限定されず、たとえば2−メチルイミ
ダゾール、2−フェニルイミダゾール、2−フェニル−
4−メチルイミダゾール、2−ヘプタデシルイミダゾー
ルなどのイミダゾール化合物、トリエチルアミン、ベン
ジルジメチルアミン、α−メチルベンジルジメチルアミ
ン、1,8−ジアザビシクロ(5,4,0)ウンデセン
−7などの3級アミン化合物、トリフェニルホスフィン
、トリブチルホスフィン、トリ(p−メチルフェニル)
ホスフィン、トリ(ノニルフェニル)ホスフィン、トリ
フェニルホスフィン・トリフェニルボレート、テトラフ
ェニルホスフィン・テトラフェニルボレートなどの有機
ホスフィン化合物があげられる。なかでも耐湿性の点か
ら、有機ホスフィン化合物が好ましく、トリフェニルホ
スフィンが特に好ましく用いられる。
[0039] Furthermore, in the present invention, epoxy resin (A)
A curing catalyst may be used to promote the curing reaction of the phenolic curing agent (B) and the phenolic curing agent (B). The curing catalyst is not particularly limited as long as it promotes the curing reaction, and examples thereof include 2-methylimidazole, 2-phenylimidazole, and 2-phenyl-
Imidazole compounds such as 4-methylimidazole and 2-heptadecylimidazole, tertiary amine compounds such as triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, 1,8-diazabicyclo(5,4,0)undecene-7, Triphenylphosphine, tributylphosphine, tri(p-methylphenyl)
Examples include organic phosphine compounds such as phosphine, tri(nonylphenyl)phosphine, triphenylphosphine/triphenylborate, and tetraphenylphosphine/tetraphenylborate. Among them, from the viewpoint of moisture resistance, organic phosphine compounds are preferred, and triphenylphosphine is particularly preferably used.

【0040】これらの硬化触媒は用途によっては二種以
上を併用してもよく、その添加量はエポキシ樹脂(A)
100重量部に対して0.5〜5重量部の範囲が好まし
い。本発明における溶融シリカ(C)は平均粒径10μ
m以下の破砕状溶融シリカ97〜60重量%と平均粒径
4μm以下の球状溶融シリカ3〜40重量%とからなり
、球状溶融シリカの平均粒径が破砕状溶融シリカの平均
粒径より小さいものである。ここで平均粒径は累積重量
50%になる粒径(メジアン径)を意味し、たとえばレ
ーザー回析式粒度分布測定装置などを用いて測定された
値である。
[0040] These curing catalysts may be used in combination of two or more depending on the application, and the amount added is determined by the amount of the epoxy resin (A).
The range of 0.5 to 5 parts by weight per 100 parts by weight is preferred. The fused silica (C) in the present invention has an average particle size of 10μ
Consisting of 97 to 60% by weight of crushed fused silica with a particle diameter of 4 μm or less and 3 to 40% by weight of spherical fused silica with an average particle size of 4 μm or less, and the average particle size of the spherical fused silica is smaller than the average particle size of the crushed fused silica. It is. The average particle size herein means the particle size (median diameter) that accounts for 50% of the cumulative weight, and is a value measured using, for example, a laser diffraction particle size distribution analyzer.

【0041】破砕状溶融シリカの平均粒径は10μmを
越えると半田耐熱性が不十分になり、10μm以下であ
れば特に制限を加えるものではないが、半田耐熱性の点
から3μm以上、10μm以下のものが好ましく用いら
れ、3μm以上、7μm未満が特に好ましく用いられる
。ここで、破砕状溶融シリカは平均粒径が10μm以下
になれば平均粒径が異なる2種類以上のものを併用して
もよい。
If the average particle diameter of the crushed fused silica exceeds 10 μm, the soldering heat resistance will be insufficient, and if it is 10 μm or less, there is no particular restriction, but from the viewpoint of soldering heat resistance, it is 3 μm or more and 10 μm or less. Those having a diameter of 3 μm or more and less than 7 μm are particularly preferably used. Here, as long as the average particle size of the crushed fused silica is 10 μm or less, two or more types of crushed fused silica having different average particle sizes may be used in combination.

【0042】また、球状溶融シリカの平均粒径は4μm
を越えると半田耐熱性が不十分になり、4μm以下であ
れば特に制限を加えるものではないが、半田耐熱性の点
から0.01μm以上、4μm以下のものが特に好まし
く用いられる。ここで、球状溶融シリカは平均粒径が4
μm以下になれば平均粒径が異なる2種類以上のものを
併用してもよい。
[0042] The average particle diameter of the spherical fused silica is 4 μm.
If the thickness exceeds 4 μm, the soldering heat resistance becomes insufficient, and if the thickness is 4 μm or less, there is no particular restriction. However, from the viewpoint of soldering heat resistance, 0.01 μm or more and 4 μm or less are particularly preferably used. Here, the spherical fused silica has an average particle size of 4
Two or more types of particles having different average particle diameters may be used in combination as long as the particle size is less than μm.

【0043】本発明における溶融シリカ(C)において
は、球状溶融シリカの平均粒径が破砕状溶融シリカの平
均粒径より小さいことが重要である。球状溶融シリカの
平均粒径が破砕状溶融シリカの平均粒径より大きくなる
と半田耐熱性が大きく低下する。球状溶融シリカの平均
粒径は破砕状溶融シリカの平均粒径より小さければよい
が、好ましくは球状溶融シリカの平均粒径が破砕状溶融
シリカの平均粒径の2/3以下であり、特に好ましくは
1/2以下である。
In the fused silica (C) in the present invention, it is important that the average particle size of the spherical fused silica is smaller than the average particle size of the crushed fused silica. If the average particle size of the spherical fused silica is larger than the average particle size of the crushed fused silica, the soldering heat resistance will be greatly reduced. The average particle size of the spherical fused silica should be smaller than the average particle size of the crushed fused silica, but preferably the average particle size of the spherical fused silica is 2/3 or less of the average particle size of the crushed fused silica, particularly preferably. is less than 1/2.

【0044】さらに、破砕状溶融シリカと球状溶融シリ
カとの重量比が上記の範囲に無い場合は半田耐熱性に優
れた硬化物が得られない。
Furthermore, if the weight ratio of crushed fused silica to spherical fused silica is not within the above range, a cured product with excellent soldering heat resistance cannot be obtained.

【0045】本発明において溶融シリカ(C)を含む無
機充填材の割合は組成物全体の中の75〜90重量%で
あり、さらに好ましくは75〜87重量%である。無機
充填材の組成物全体に対する割合が上記の範囲に無い場
合は半田耐熱性に優れた硬化物が得られない。
In the present invention, the proportion of the inorganic filler containing fused silica (C) is 75 to 90% by weight, more preferably 75 to 87% by weight, based on the total composition. If the ratio of the inorganic filler to the entire composition is not within the above range, a cured product with excellent soldering heat resistance cannot be obtained.

【0046】無機充填材中に含まれる溶融シリカ(C)
の割合に関しては特に制限はないが、より十分な効果を
発揮させるためには、溶融シリカ(C)を無機充填材中
に通常80重量%以上、好ましくは90重量%以上含有
せしめることが好ましい。
Fused silica (C) contained in inorganic filler
There is no particular restriction on the proportion of fused silica (C), but in order to exhibit a more sufficient effect, it is preferable that the inorganic filler contains fused silica (C) in an amount of usually 80% by weight or more, preferably 90% by weight or more.

【0047】また、本発明における無機充填材は、上記
溶融シリカ(C)を無機充填材中に80重量%以上含有
していれば残りは特に限定されないが、好ましい具体例
としては結晶性シリカ、アルミナ、マグネシア、クレー
、タルク、ケイ酸カルシウム、酸化チタン、酸化アンチ
モン、各種セラミックスなどがあげられる。
Further, the inorganic filler in the present invention is not particularly limited as long as it contains the above-mentioned fused silica (C) in an amount of 80% by weight or more, but preferred specific examples include crystalline silica, Examples include alumina, magnesia, clay, talc, calcium silicate, titanium oxide, antimony oxide, and various ceramics.

【0048】本発明において、溶融シリカ(C)を含む
無機充填材をシランカップリング剤、チタネートカップ
リング剤などのカップリング剤であらかじめ表面処理す
ることが耐湿信頼性の点で好ましい。カップリング剤と
してエポキシシラン、アミノシラン、メルカプトシラン
などのシランカップリング剤が好ましく用いられる。
In the present invention, it is preferable from the viewpoint of moisture resistance reliability that the inorganic filler containing fused silica (C) is previously surface-treated with a coupling agent such as a silane coupling agent or a titanate coupling agent. As the coupling agent, silane coupling agents such as epoxysilane, aminosilane, and mercaptosilane are preferably used.

【0049】本発明のエポキシ樹脂組成物にはハロゲン
化エポキシ樹脂、ハロゲン化合物、リン化合物などの難
燃剤、三酸化アンチモンなどの難燃助剤、カーボンブラ
ックなどの着色剤、シリコーンゴム、変性ニトリルゴム
、変性ポリブタジエンゴム、変性シリコーンオイルなど
のエラストマー、ポリエチレンなどの熱可塑性樹脂、長
鎖脂肪酸、長鎖脂肪酸の金属塩、長鎖脂肪酸のエステル
、パラフィンワックス、変性シリコーンオイルなどの離
型剤を任意に添加することができる。
The epoxy resin composition of the present invention includes halogenated epoxy resins, flame retardants such as halogen compounds and phosphorus compounds, flame retardant aids such as antimony trioxide, colorants such as carbon black, silicone rubber, and modified nitrile rubber. , elastomers such as modified polybutadiene rubber and modified silicone oil, thermoplastic resins such as polyethylene, long chain fatty acids, metal salts of long chain fatty acids, esters of long chain fatty acids, paraffin wax, modified silicone oil and other mold release agents. Can be added.

【0050】本発明のエポキシ樹脂組成物は溶融混練す
ることが好ましく、たとえばニーダー、ロール、単軸も
しくは二軸の押出機およびコニーダーなどの公知の混練
方法を用いて溶融混練することにより、製造される。
The epoxy resin composition of the present invention is preferably melt-kneaded, and can be produced by melt-kneading using a known kneading method such as a kneader, roll, single-screw or twin-screw extruder, or co-kneader. Ru.

【0051】[0051]

【実施例】以下、実施例により本発明を具体的に説明す
る。
[Examples] The present invention will be specifically explained below with reference to Examples.

【0052】実施例1〜12、比較例1〜8表1に示し
た配合物を、表2(実施例1〜12)および表3(比較
例1〜8)に示した組成比でミキサ−を用いてブレンド
した。これを、バレル設定温度90℃の二軸の押出機を
用いて溶融混練後、冷却・粉砕してエポキシ樹脂組成物
を製造した。
Examples 1 to 12, Comparative Examples 1 to 8 The formulations shown in Table 1 were mixed in a mixer at the composition ratios shown in Table 2 (Examples 1 to 12) and Table 3 (Comparative Examples 1 to 8). Blend using. This was melt-kneaded using a twin-screw extruder with a barrel set temperature of 90°C, and then cooled and pulverized to produce an epoxy resin composition.

【0053】[0053]

【表1】[Table 1]

【0054】[0054]

【表2】[Table 2]

【0055】[0055]

【表3】[Table 3]

【0056】このエポキシ樹脂組成物を用い、以下に示
した半田耐熱性試験を行った。
Using this epoxy resin composition, the following solder heat resistance test was conducted.

【0057】半田耐熱性試験:80pinQFPデバイ
ス(パッケージサイズ:17×17×1.7mm、チッ
プサイズ:9×9×0.5mm)を低圧トランスファー
成形機を用いて175℃×120秒の条件で成形し、1
75℃で12時間硬化した。このテストデバイス16個
を85℃/85%RH雰囲気下で所定の時間加湿した後
、215℃に加熱したVPS(ベーパー・フェーズ・ソ
ルダー・リフロー)浴に90秒間浸漬してクラックの発
生したデバイスを不良とした。
Solder heat resistance test: An 80-pin QFP device (package size: 17 x 17 x 1.7 mm, chip size: 9 x 9 x 0.5 mm) was molded using a low-pressure transfer molding machine at 175°C for 120 seconds. 1
Cured at 75°C for 12 hours. After humidifying the 16 test devices in an 85°C/85%RH atmosphere for a predetermined time, they were immersed in a VPS (vapor phase solder reflow) bath heated to 215°C for 90 seconds to remove cracked devices. It was marked as defective.

【0058】また、加湿後のテストデバイスをVPS浴
に代えて260℃に加熱した半田浴に10秒間浸漬する
試験も合わせて行った。
A test was also conducted in which the humidified test device was immersed in a solder bath heated to 260° C. for 10 seconds instead of the VPS bath.

【0059】表4に示したように、本発明のエポキシ樹
脂組成物(実施例1〜12)は半田耐熱性に優れている
。これに対して表5に示したように、無機充填材の全体
に対する割合が本発明の範囲より少ない比較例1では半
田耐熱性が悪い。また、フェノール系化合物(b)の含
有量が本発明の範囲外である比較例2では半田耐熱性が
悪く、さらに比較例6では溶融混練時のトルクが高くな
るために良好な組成物が得られず評価するにも至らなか
った。また、球状溶融シリカの溶融シリカ(C)中での
割合が本発明の範囲を外れる比較例3および比較例8、
破砕状溶融シリカ、球状溶融シリカの平均粒径がそれぞ
れ本発明の範囲を外れる比較例4および比較例5、球状
溶融シリカの平均粒径が破砕状溶融シリカの平均粒径よ
り大きい比較例7ではいずれも半田耐熱性が悪い。
As shown in Table 4, the epoxy resin compositions of the present invention (Examples 1 to 12) have excellent soldering heat resistance. On the other hand, as shown in Table 5, Comparative Example 1, in which the proportion of the inorganic filler to the whole was smaller than the range of the present invention, had poor solder heat resistance. Furthermore, in Comparative Example 2, in which the content of the phenolic compound (b) was outside the range of the present invention, the soldering heat resistance was poor, and in Comparative Example 6, a good composition was obtained because the torque during melt-kneading was high. It was not possible to evaluate the results. In addition, Comparative Example 3 and Comparative Example 8 in which the proportion of spherical fused silica in fused silica (C) is outside the scope of the present invention,
Comparative Examples 4 and 5, in which the average particle diameters of crushed fused silica and spherical fused silica are outside the scope of the present invention, and Comparative Example 7, in which the average particle diameter of spherical fused silica is larger than the average particle diameter of crushed fused silica. Both have poor solder heat resistance.

【0060】[0060]

【表4】[Table 4]

【0061】[0061]

【表5】[Table 5]

【0062】また、表6に見られるように本発明のエポ
キシ樹脂組成物にさらにエポキシ樹脂(a1 ) およ
び(a2 )の少なくとも一方を含有させることによっ
て、半田耐熱性はさらに一段と向上する。
Furthermore, as shown in Table 6, by further containing at least one of epoxy resins (a1) and (a2) in the epoxy resin composition of the present invention, the soldering heat resistance is further improved.

【0063】[0063]

【表6】[Table 6]

【0064】[0064]

【発明の効果】本発明のエポキシ樹脂組成物は、特定の
硬化剤と特定の粒径、形状の組み合わせからなる溶融シ
リカとを使用したことによって、半導体封止用として優
れた半田耐熱性を有する。
Effects of the Invention The epoxy resin composition of the present invention has excellent soldering heat resistance for semiconductor encapsulation by using a specific curing agent and fused silica having a specific combination of particle size and shape. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  エポキシ樹脂(A)、フェノール系硬
化剤(B)、溶融シリカ(C)とを必須成分として含有
してなる樹脂組成物であって、前記フェノール系硬化剤
(B)が式(I) 【化1】 (ただし、R1 〜R4 は水素原子、C1 〜C4 
の低級アルキル基から選ばれ、すべてが同一である必要
はない。)で表されるフェノール系化合物(b)を硬化
剤(B)中に50重量%以上含有するとともに、前記溶
融シリカ(C)が平均粒径10μm以下の破砕状溶融シ
リカ97〜60重量%と平均粒径4μm以下の球状溶融
シリカ3〜40重量%からなり、球状溶融シリカの平均
粒径が破砕状溶融シリカの平均粒径より小さく、かつ溶
融シリカ(C)を含む無機充填材の割合が全体の75〜
90重量%であるエポキシ樹脂組成物。
1. A resin composition comprising an epoxy resin (A), a phenolic curing agent (B), and fused silica (C) as essential components, wherein the phenolic curing agent (B) has the formula (I) [Chemical 1] (However, R1 to R4 are hydrogen atoms, C1 to C4
lower alkyl groups, not all of which need to be the same. ) is contained in the curing agent (B) in an amount of 50% by weight or more, and the fused silica (C) is 97 to 60% by weight of crushed fused silica with an average particle size of 10 μm or less. Consisting of 3 to 40% by weight of spherical fused silica with an average particle diameter of 4 μm or less, the average particle diameter of the spherical fused silica is smaller than the average particle diameter of crushed fused silica, and the proportion of the inorganic filler containing fused silica (C) is Overall 75~
An epoxy resin composition that is 90% by weight.
【請求項2】  前記エポキシ樹脂(A)が式(II)
【化2】 (ただし、R5 〜R12は水素原子、C1 〜C4 
の低級アルキル基またはハロゲン原子から選ばれ、すべ
てが同一である必要はない。)で表されるエポキシ樹脂
  (a1 )、および、式(III) 【化3】 (ただし、R13〜R20のうち2つは2,3−エポキ
シプロポキシ基であり、残りは水素原子、C1 〜C4
 の低級アルキル基またはハロゲン原子から選ばれ、す
べてが同一である必要はない。)で表されるエポキシ樹
脂(a2 )の、少なくとも一方を必須成分として含有
する請求項1記載のエポキシ樹脂組成物。
2. The epoxy resin (A) has the formula (II)
[Chemical formula 2] (However, R5 to R12 are hydrogen atoms, C1 to C4
are selected from lower alkyl groups or halogen atoms, and do not need to be all the same. ), and an epoxy resin represented by formula (III) [Chemical formula 3] (However, two of R13 to R20 are 2,3-epoxypropoxy groups, and the rest are hydrogen atoms, C1 to C4
are selected from lower alkyl groups or halogen atoms, and do not need to be all the same. 2. The epoxy resin composition according to claim 1, which contains at least one of the epoxy resins (a2) represented by (a2) as an essential component.
JP9751991A 1991-04-26 1991-04-26 Epoxy resin composition for semiconductor sealing Pending JPH04325516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9751991A JPH04325516A (en) 1991-04-26 1991-04-26 Epoxy resin composition for semiconductor sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9751991A JPH04325516A (en) 1991-04-26 1991-04-26 Epoxy resin composition for semiconductor sealing

Publications (1)

Publication Number Publication Date
JPH04325516A true JPH04325516A (en) 1992-11-13

Family

ID=14194509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9751991A Pending JPH04325516A (en) 1991-04-26 1991-04-26 Epoxy resin composition for semiconductor sealing

Country Status (1)

Country Link
JP (1) JPH04325516A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004329A1 (en) * 1994-08-04 1996-02-15 Hokuriku Toryo Kabushiki Kaisya Flowable sealing resin composition
JPH08325357A (en) * 1995-03-28 1996-12-10 Toray Ind Inc Epoxy resin composition for semiconductor sealing use and semiconductor device
JP2002284856A (en) * 2001-03-26 2002-10-03 Toray Ind Inc Epoxy resin composition and semiconductor device using the same
JP2009051880A (en) * 2007-08-24 2009-03-12 Sumitomo Bakelite Co Ltd Resin composition and semiconductor device
WO2016056263A1 (en) * 2014-10-10 2016-04-14 株式会社日立製作所 Electric insulation resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004329A1 (en) * 1994-08-04 1996-02-15 Hokuriku Toryo Kabushiki Kaisya Flowable sealing resin composition
JPH08325357A (en) * 1995-03-28 1996-12-10 Toray Ind Inc Epoxy resin composition for semiconductor sealing use and semiconductor device
JP2002284856A (en) * 2001-03-26 2002-10-03 Toray Ind Inc Epoxy resin composition and semiconductor device using the same
JP2009051880A (en) * 2007-08-24 2009-03-12 Sumitomo Bakelite Co Ltd Resin composition and semiconductor device
WO2016056263A1 (en) * 2014-10-10 2016-04-14 株式会社日立製作所 Electric insulation resin
JP2016079195A (en) * 2014-10-10 2016-05-16 株式会社日立製作所 Electrical insulation resin

Similar Documents

Publication Publication Date Title
EP0450944B1 (en) An epoxy resin composition for encapsulating a semiconductor device
JPH04325516A (en) Epoxy resin composition for semiconductor sealing
JPH04218523A (en) Epoxy resin composition
JPH09241483A (en) Epoxy resin composition
JP2501143B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH09235452A (en) Epoxy resin composition for semiconductor sealing
JPH0668010B2 (en) Resin composition for semiconductor encapsulation
JP2697510B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0299514A (en) Epoxy based composition having heat resistance to solder
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH04306224A (en) Epoxy resin composition
JP3413923B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP3451666B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH04370137A (en) Epoxy resin composition for sealing semiconductor
JP3528925B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3451710B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP2675108B2 (en) Epoxy resin composition
JPH04226123A (en) Epoxy resin composition for sealing semiconductor
JPH04236218A (en) Epoxy resin composition for sealing semiconductor
JP2680389B2 (en) Epoxy resin composition
JP3451690B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2964634B2 (en) Epoxy composition
JP2600450B2 (en) Epoxy composition for semiconductor encapsulation
JPH0676539B2 (en) Epoxy-containing composition for semiconductor encapsulation
JP2004155841A (en) Sealing resin composition, and semiconductor sealing device