JPH04218523A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH04218523A
JPH04218523A JP3070887A JP7088791A JPH04218523A JP H04218523 A JPH04218523 A JP H04218523A JP 3070887 A JP3070887 A JP 3070887A JP 7088791 A JP7088791 A JP 7088791A JP H04218523 A JPH04218523 A JP H04218523A
Authority
JP
Japan
Prior art keywords
fused silica
epoxy resin
resin composition
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3070887A
Other languages
Japanese (ja)
Other versions
JPH0733429B2 (en
Inventor
Shiro Honda
史郎 本田
Keiji Kayaba
啓司 萱場
Masayuki Tanaka
正幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3070887A priority Critical patent/JPH0733429B2/en
Publication of JPH04218523A publication Critical patent/JPH04218523A/en
Publication of JPH0733429B2 publication Critical patent/JPH0733429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To prevent package cracks from occurring in a surface mounting process of semiconductor devices. CONSTITUTION:A semiconductor sealing epoxy resin composition which is a resin composition, containing an epoxy resin, a curing agent and fused silica as essential components. The epoxy resin contains a bifunctional epoxy resin having a biphenyl skeleton as an essential component and the fused silica is simultaneously composed of 97-60wt.% fused silica in a crushed form having <=10mum average grain size and 3-40wt.% spherical fused silica having <=4mum average grain size. The average grain size of the spherical fused silica is smaller than that of the fused silica in the crushed form. The ratio of an inorganic filler containing the fused silica is 75-90wt.% based on the whole composition. The aforementioned epoxy resin composition is a resin composition, having excellent solder heat resistance and useful as an epoxy resin composition for sealing semiconductors.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半田付け工程で生じる
パッケージクラックの問題を解消する、すなわち半田耐
熱性に優れるエポキシ樹脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition that eliminates the problem of package cracks occurring during the soldering process, that is, has excellent soldering heat resistance.

【0002】0002

【従来の技術】エポキシ樹脂は耐熱性、耐湿性、電気特
性、接着性などに優れており、さらに配合処方により種
々の特性が付与できるため、塗料、接着剤、電気絶縁材
料など工業材料として利用されている。たとえば、半導
体装置などの電子回路部品の封止方法として従来より金
属やセラミックスによるハーメチックシールとフェノー
ル樹脂、シリコーン樹脂、エポキシ樹脂などによる樹脂
封止が提案されている。しかし、経済性、生産性、物性
のバランスの点からエポキシ樹脂による樹脂封止が中心
になっている。
[Prior art] Epoxy resins have excellent heat resistance, moisture resistance, electrical properties, adhesive properties, etc., and can be given various properties depending on the formulation, so they are used as industrial materials such as paints, adhesives, and electrical insulation materials. has been done. For example, as methods for sealing electronic circuit components such as semiconductor devices, hermetic seals using metals or ceramics, and resin sealing using phenol resins, silicone resins, epoxy resins, and the like have been proposed. However, from the viewpoint of economy, productivity, and balance of physical properties, resin sealing using epoxy resin has become the main method.

【0003】一方、最近はプリント基板への部品実装に
おいても高密度化、自動化が進められており、従来のリ
ードピンを基板の穴に挿入する“挿入実装方式”に代り
、基板表面に部品を半田付けする“表面実装方式”が盛
んになってきた。それに伴いパッケージも従来のDIP
(デュアル・インライン・パッケージ)から高密度実装
、表面実装に適した薄型のTSOP(シン・スモール・
アウトライン・パッケージ)やQFP(クワッド・フラ
ット・パッケージ)に移行しつつある。
On the other hand, recently, the mounting density and automation of components on printed circuit boards have been increasing, and instead of the conventional "insertion mounting method" in which lead pins are inserted into holes in the board, components are soldered onto the surface of the board. The "surface mount method" for attaching devices has become popular. Along with this, the packaging is also conventional DIP.
(dual in-line package) to thin TSOP (thin small package) suitable for high-density mounting and surface mounting.
Outline packages) and QFPs (quad flat packages) are on the way.

【0004】表面実装方式への移行に伴い、従来あまり
問題にならなかった半田付け工程が大きな問題になって
きた。従来のピン挿入実装方式では半田付け工程はリー
ド部が部分的に加熱されるだけであったが、表面実装方
式ではパッケージ全体が熱媒に浸され加熱される。表面
実装方式における半田付け方法としては半田浴浸漬、不
活性液体の飽和蒸気や赤外線によって加熱する半田リフ
ロー法などが用いられるが、いずれの方法でもパッケー
ジ全体が210〜270℃の高温に加熱されることにな
る。そのため従来の封止樹脂で封止したパッケージは、
半田付け時に樹脂部分にクラックが発生し、信頼性が低
下して製品として使用できないという問題がおきていた
[0004] With the shift to the surface mounting method, the soldering process, which did not pose much of a problem in the past, has become a major problem. In the conventional pin insertion mounting method, only the leads are partially heated during the soldering process, but in the surface mounting method, the entire package is immersed in a heating medium and heated. Soldering methods used in the surface mount method include immersion in a solder bath, saturated vapor of an inert liquid, and a solder reflow method in which heating is performed using infrared rays, but in either method, the entire package is heated to a high temperature of 210 to 270 degrees Celsius. It turns out. Therefore, packages sealed with conventional sealing resin,
There was a problem that cracks occurred in the resin part during soldering, reducing reliability and making it unusable as a product.

【0005】半田付け工程におけるクラックの発生は、
後硬化してから実装工程の間までに吸湿した水分が半田
付け加熱時に爆発的に水蒸気化、膨脹することに起因す
るといわれており、その対策として封止用樹脂の改良が
種々検討されている。
[0005] The occurrence of cracks in the soldering process is
This is said to be caused by moisture absorbed between post-curing and the mounting process that explosively turns into water vapor and expands during soldering heat, and various improvements to the sealing resin are being considered as countermeasures. .

【0006】従来はエポキシ樹脂にオルソクレゾールノ
ボラック型エポキシ樹脂、硬化剤にフェノールノボラッ
ク樹脂を用い、無機充填材として平均粒径10〜20μ
mの破砕状溶融シリカを用いるのが一般的であったが、
表面実装時に半田によりクラックが発生する問題を回避
できなかった。
Conventionally, an orthocresol novolac type epoxy resin was used as the epoxy resin, a phenol novolac resin was used as the curing agent, and an average particle size of 10 to 20 μm was used as the inorganic filler.
It was common to use crushed fused silica of m.
The problem of cracks caused by solder during surface mounting could not be avoided.

【0007】そこで、エポキシ樹脂にビフェニル骨格を
有するエポキシ樹脂を用い、無機充填材として平均粒径
14μm以下の粉末状充填材を組み合わせて用いる方法
(特開昭64−87616号公報)が提案されているが
、半田耐熱性は十分とはいいがたい。
[0007] Therefore, a method has been proposed in which an epoxy resin having a biphenyl skeleton is used in combination with a powdered filler having an average particle size of 14 μm or less as an inorganic filler (Japanese Patent Laid-Open Publication No. 87616/1987). However, it cannot be said that the soldering heat resistance is sufficient.

【0008】また、半田耐熱性に関する記述は無いが、
平均粒径7〜30μmの粗粒シリカと平均粒径0.1〜
3μmの単分散球状シリカを組み合わせて用いる方法(
特開平1−263131号公報)が提案されている。 しかし、この方法では封止材の流動性が改善されるだけ
で半田耐熱性のレベルは低い。
[0008]Also, although there is no description regarding soldering heat resistance,
Coarse silica with an average particle size of 7 to 30 μm and an average particle size of 0.1 to 30 μm
A method using a combination of 3 μm monodispersed spherical silica (
Japanese Unexamined Patent Publication No. 1-263131) has been proposed. However, this method only improves the fluidity of the sealing material, but the level of soldering heat resistance is low.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、かか
る半田付け工程で生じるパッケージクラックの問題を解
消する、すなわち半田耐熱性に優れる半導体封止用エポ
キシ樹脂組成物を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an epoxy resin composition for semiconductor encapsulation that eliminates the problem of package cracks occurring in the soldering process, that is, has excellent solder heat resistance.

【0010】0010

【課題を解決するための手段】本発明者らは、特定のエ
ポキシ樹脂と特定の粒径、形状の組み合わせからなる溶
融シリカとを使用することにより、上記の課題を解決し
、目的に合致したエポキシ樹脂組成物が得られることを
見出し本発明に到達した。
[Means for Solving the Problems] The present inventors have solved the above problems by using a specific epoxy resin and fused silica having a specific combination of particle size and shape. The inventors have discovered that an epoxy resin composition can be obtained and have arrived at the present invention.

【0011】すなわち本発明は、エポキシ樹脂(A)、
硬化剤(B)、溶融シリカ(C)とを必須成分として含
有してなる樹脂組成物であって、前記エポキシ樹脂(A
)が次の一般式(I)
[0011] That is, the present invention provides an epoxy resin (A),
A resin composition comprising a curing agent (B) and fused silica (C) as essential components, the resin composition comprising the epoxy resin (A).
) is the following general formula (I)

【0012】0012

【化2】[Case 2]

【0013】(ただし、R1 〜R8 は水素原子、C
1 〜C4 の低級アルキル基またはハロゲン原子から
選ばれ、すべてが同一である必要はない。)で表される
エポキシ樹脂(a)を必須成分として含有するとともに
、前記溶融シリカ(C)が平均粒径10μm以下の破砕
状溶融シリカ97〜60重量%と平均粒径4μm以下の
球状溶融シリカ3〜40重量%からなり、球状溶融シリ
カの平均粒径が破砕状溶融シリカの平均粒径より小さく
、かつ溶融シリカ(C)を含む無機充填材の割合が全体
の75〜90重量%であるエポキシ樹脂組成物である。
(However, R1 to R8 are hydrogen atoms, C
They are selected from 1 to C4 lower alkyl groups or halogen atoms, and do not need to be all the same. ) contains the epoxy resin (a) represented by (a) as an essential component, and the fused silica (C) is 97 to 60% by weight of crushed fused silica with an average particle size of 10 μm or less and spherical fused silica with an average particle size of 4 μm or less 3 to 40% by weight, the average particle size of the spherical fused silica is smaller than the average particle size of the crushed fused silica, and the proportion of the inorganic filler containing fused silica (C) is 75 to 90% by weight of the total. It is an epoxy resin composition.

【0014】本発明のエポキシ樹脂組成物が半田耐熱性
に優れる理由はまだ明確ではないが、(1)本発明に必
須のエポキシ樹脂が1分子中にエポキシ基を2個しか持
たない2官能のエポキシ樹脂であることにより、硬化物
の架橋密度が適度に低下して低吸水性を示すこと、(2
)硬化物の架橋密度がある程度低いにもかかわらずエポ
キシ樹脂が耐熱性の高いビフェニル骨格を持つため高温
において強靭性(高強度、高伸度)を示すこと、(3)
溶融シリカの小粒径化により、補強効果が増大するとと
もに応力が分散すること、(4)破砕状溶融シリカとそ
れより平均粒径の小さい球状溶融シリカを組み合わせた
ことにより、局所応力が低減されるとともにクラック伝
播が抑止されている可能性のあること、などの効果が相
乗的に働いて各々の単独の寄与からは予想し得ないほど
の優れた半田耐熱性を示すものと思われる。
The reason why the epoxy resin composition of the present invention has excellent soldering heat resistance is not yet clear, but (1) the epoxy resin essential to the present invention is a bifunctional epoxy resin having only two epoxy groups in one molecule. By being an epoxy resin, the crosslinking density of the cured product is moderately reduced and exhibits low water absorption.
) Even though the crosslinking density of the cured product is low to some extent, the epoxy resin has a highly heat-resistant biphenyl skeleton, so it exhibits toughness (high strength, high elongation) at high temperatures; (3)
(4) Local stress is reduced by combining crushed fused silica and spherical fused silica with a smaller average particle size. It is thought that these effects, such as the possibility of suppressing crack propagation, work synergistically to provide excellent soldering heat resistance that cannot be expected from the individual contributions of each component.

【0015】以下、本発明の構成を詳述する。The configuration of the present invention will be explained in detail below.

【0016】本発明におけるエポキシ樹脂(A)は、次
の一般式(I)
The epoxy resin (A) in the present invention has the following general formula (I)

【0017】[0017]

【化3】[Chemical formula 3]

【0018】(ただし、R1 〜R8 は水素原子、C
1 〜C4 の低級アルキル基またはハロゲン原子から
選ばれ、すべてが同一である必要はない。)で表される
エポキシ樹脂(a)を必須成分として含有する必要があ
る。エポキシ樹脂(a)を含有しない場合は半田付け工
程におけるクラック発生防止効果は発揮されない。
(However, R1 to R8 are hydrogen atoms, C
They are selected from 1 to C4 lower alkyl groups or halogen atoms, and do not need to be all the same. ) It is necessary to contain the epoxy resin (a) represented by (a) as an essential component. If the epoxy resin (a) is not contained, the effect of preventing crack generation in the soldering process will not be exhibited.

【0019】本発明におけるエポキシ樹脂(a)の好ま
しい具体例としては、4,4´−ビス(2,3−エポキ
シプロポキシ)ビフェニル、4,4´−ビス(2,3−
エポキシプロポキシ)−3,3´,5,5´−テトラメ
チルビフェニル、4、4´−ビス(2,3−エポキシプ
ロポキシ)−3,3´,5,5´−テトラメチル−2−
クロロビフェニル、4,4´−ビス(2,3−エポキシ
プロポキシ)−3,3´,5,5´−テトラメチル−2
−ブロモビフェニル、4、4´−ビス(2,3−エポキ
シプロポキシ)−3,3´,5,5´−テトラエチルビ
フェニル、4,4´−ビス(2,3−エポキシプロポキ
シ)−3,3´,5,5´−テトラブチルビフェニルな
どがあげられ、4,4´−ビス(2,3−エポキシプロ
ポキシ)ビフェニル、4,4´−ビス(2,3−エポキ
シプロポキシ)−3,3´,5,5´−テトラメチルビ
フェニルが特に好ましい。
Preferred specific examples of the epoxy resin (a) in the present invention include 4,4'-bis(2,3-epoxypropoxy)biphenyl, 4,4'-bis(2,3-
epoxypropoxy)-3,3',5,5'-tetramethylbiphenyl, 4,4'-bis(2,3-epoxypropoxy)-3,3',5,5'-tetramethyl-2-
Chlorobiphenyl, 4,4'-bis(2,3-epoxypropoxy)-3,3',5,5'-tetramethyl-2
-bromobiphenyl, 4,4'-bis(2,3-epoxypropoxy)-3,3',5,5'-tetraethylbiphenyl, 4,4'-bis(2,3-epoxypropoxy)-3,3 Examples include ',5,5'-tetrabutylbiphenyl, 4,4'-bis(2,3-epoxypropoxy)biphenyl, 4,4'-bis(2,3-epoxypropoxy)-3,3',5,5'-tetramethylbiphenyl is particularly preferred.

【0020】エポキシ樹脂(A)中に含有されるエポキ
シ樹脂(a)の割合に関しては特に制限はないが、より
十分な効果を発揮させるためにはエポキシ樹脂(a)を
エポキシ樹脂(A)中に通常50重量%以上、好ましく
は60重量%以上含有せしめる必要がある。
There is no particular restriction on the proportion of epoxy resin (a) contained in epoxy resin (A), but in order to exhibit a more sufficient effect, epoxy resin (a) should be added to epoxy resin (A). It is usually necessary to contain 50% by weight or more, preferably 60% by weight or more.

【0021】また、本発明におけるエポキシ樹脂(A)
はエポキシ樹脂(a)をエポキシ樹脂(A)中に50重
量%以上含有していれば残りは特に制限されないが、好
ましい具体例としてはオルソクレゾールノボラック型エ
ポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビ
スフェノールA型エポキシ樹脂、ビスフェノールF型エ
ポキシ樹脂、ハロゲン化エポキシ樹脂などがあげられる
[0021] Furthermore, the epoxy resin (A) in the present invention
The rest is not particularly limited as long as the epoxy resin (a) is contained in the epoxy resin (A) in an amount of 50% by weight or more, but preferred specific examples include orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, and bisphenol A. Examples include bisphenol F type epoxy resin, bisphenol F type epoxy resin, and halogenated epoxy resin.

【0022】本発明において、エポキシ樹脂(A)の配
合量は通常4〜20重量%、好ましくは6〜18重量%
である。
In the present invention, the blending amount of the epoxy resin (A) is usually 4 to 20% by weight, preferably 6 to 18% by weight.
It is.

【0023】本発明における硬化剤(B)はエポキシ樹
脂(A)と反応して硬化させるものであれば特に制限さ
れないが、それらの具体例としてはフェノールノボラッ
ク樹脂、クレゾールノボラック樹脂、ビスフェノールA
やレゾルシンとホルムアルデヒドとから合成される各種
ノボラック樹脂などのフェノール系硬化剤、無水マレイ
ン酸、無水フタル酸、無水ピロメリット酸などの酸無水
物、およびメタフェニレンジアミン、ジアミノジフェニ
ルメタン、ジアミノジフェニルスルホンなどの芳香族ア
ミンなどがあげられる。中でも半導体装置封止用として
は、耐熱性、耐湿性および保存性の点からフェノール系
硬化剤が好ましく用いられ、用途によっては二種以上の
硬化剤を併用してもよい。
The curing agent (B) in the present invention is not particularly limited as long as it reacts with the epoxy resin (A) to cure it, but specific examples thereof include phenol novolak resin, cresol novolak resin, and bisphenol A.
phenolic curing agents such as various novolak resins synthesized from resorcinol and formaldehyde; acid anhydrides such as maleic anhydride, phthalic anhydride, and pyromellitic anhydride; and metaphenylene diamine, diaminodiphenylmethane, and diaminodiphenylsulfone. Examples include aromatic amines. Among them, phenolic curing agents are preferably used for encapsulating semiconductor devices from the viewpoint of heat resistance, moisture resistance, and storage stability, and two or more types of curing agents may be used in combination depending on the application.

【0024】本発明において硬化剤(B)の配合量は通
常3〜15重量%、好ましくは4〜10重量%である。 さらに、エポキシ樹脂(A)と硬化剤(B)の配合比は
機械的性質や耐湿性の点から水酸基/エポキシ基の化学
当量比が0.7〜1.3の範囲にあることが好ましく、
特に0.8〜1.2の範囲にあることが好ましい。
[0024] In the present invention, the amount of curing agent (B) blended is usually 3 to 15% by weight, preferably 4 to 10% by weight. Further, the compounding ratio of the epoxy resin (A) and the curing agent (B) is preferably such that the chemical equivalent ratio of hydroxyl group/epoxy group is in the range of 0.7 to 1.3 from the viewpoint of mechanical properties and moisture resistance.
In particular, it is preferably in the range of 0.8 to 1.2.

【0025】また、本発明においてエポキシ樹脂(A)
と硬化剤(B)の硬化反応を促進するため硬化触媒を用
いてもよい。硬化触媒は硬化反応を促進するものならば
特に限定されず、たとえば2−メチルイミダゾール、2
−フェニルイミダゾール、2−フェニル−4−メチルイ
ミダゾール、2−ヘプタデシルイミダゾールなどのイミ
ダゾール化合物、トリエチルアミン、ベンジルジメチル
アミン、α−メチルベンジルジメチルアミン、1,8−
ジアザビシクロ(5,4,0)ウンデセン−7などの3
級アミン化合物、トリフェニルホスフィン、トリブチル
ホスフィン、トリ(p−メチルフェニル)ホスフィン、
トリ(ノニルフェニル)ホスフィン、トリフェニルホス
フィン・トリフェニルボレート、テトラフェニルホスフ
ィン・テトラフェニルボレートなどの有機ホスフィン化
合物があげられる。なかでも耐湿性の点から、有機ホス
フィン化合物が好ましく、トリフェニルホスフィンが特
に好ましく用いられる。
[0025] Furthermore, in the present invention, epoxy resin (A)
A curing catalyst may be used to promote the curing reaction of and curing agent (B). The curing catalyst is not particularly limited as long as it promotes the curing reaction, and examples include 2-methylimidazole and 2-methylimidazole.
- Imidazole compounds such as phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecyl imidazole, triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, 1,8-
3 such as diazabicyclo(5,4,0) undecene-7
class amine compounds, triphenylphosphine, tributylphosphine, tri(p-methylphenyl)phosphine,
Examples include organic phosphine compounds such as tri(nonylphenyl)phosphine, triphenylphosphine/triphenylborate, and tetraphenylphosphine/tetraphenylborate. Among them, from the viewpoint of moisture resistance, organic phosphine compounds are preferred, and triphenylphosphine is particularly preferably used.

【0026】これらの硬化触媒は用途によっては二種以
上を併用してもよく、その添加量はエポキシ樹脂(A)
100重量部に対して0.5〜5重量部の範囲が好まし
い。本発明における溶融シリカ(C)は平均粒径10μ
m以下の破砕状溶融シリカ97〜60重量%と平均粒径
4μm以下の球状溶融シリカ3〜40重量%とからなり
、球状溶融シリカの平均粒径が破砕状溶融シリカの平均
粒径より小さいものである。ここで平均粒径は累積重量
50%になる粒径(メジアン径)を意味し、たとえばレ
ーザー回析式粒度分布測定装置などを用いて測定された
値である。
[0026] These curing catalysts may be used in combination of two or more types depending on the application, and the amount added is determined by the amount of the epoxy resin (A).
The range of 0.5 to 5 parts by weight per 100 parts by weight is preferred. The fused silica (C) in the present invention has an average particle size of 10μ
Consisting of 97 to 60% by weight of crushed fused silica with a particle diameter of 4 μm or less and 3 to 40% by weight of spherical fused silica with an average particle size of 4 μm or less, and the average particle size of the spherical fused silica is smaller than the average particle size of the crushed fused silica. It is. The average particle size herein means the particle size (median diameter) that accounts for 50% of the cumulative weight, and is a value measured using, for example, a laser diffraction particle size distribution analyzer.

【0027】破砕状溶融シリカの平均粒径は10μmを
越えると半田耐熱性が不十分になり、10μm以下であ
れば特に制限を加えるものではないが、半田耐熱性の点
から3μm以上、10μm以下のものが好ましく用いら
れ、3μm以上、7μm未満のものが特に好ましく用い
られる。ここで、破砕状溶融シリカは平均粒径が10μ
m以下になれば平均粒径が異なる2種類以上のものを併
用してもよい。
If the average particle size of crushed fused silica exceeds 10 μm, the soldering heat resistance will be insufficient, and if it is 10 μm or less, there is no particular restriction, but from the viewpoint of soldering heat resistance, it should be 3 μm or more and 10 μm or less. Those having a diameter of 3 μm or more and less than 7 μm are particularly preferably used. Here, the average particle size of the crushed fused silica is 10μ
Two or more types of particles having different average particle diameters may be used in combination as long as the particle size is less than m.

【0028】また、球状溶融シリカの平均粒径は4μm
を越えると半田耐熱性が不十分になり、4μm以下であ
れば特に制限を加えるものではないが、成形性を考慮す
ると0.1μm以上、4μm以下のものが特に好ましく
用いられる。ここで、球状溶融シリカは平均粒径が4μ
m以下になれば平均粒径が異なる2種類以上のものを併
用してもよい。
[0028] Furthermore, the average particle diameter of the spherical fused silica is 4 μm.
If it exceeds 4 μm, the soldering heat resistance becomes insufficient, and if it is 4 μm or less, there is no particular restriction, but in consideration of moldability, 0.1 μm or more and 4 μm or less are particularly preferably used. Here, the average particle size of spherical fused silica is 4μ
Two or more types of particles having different average particle diameters may be used in combination as long as the particle size is less than m.

【0029】本発明における溶融シリカ(C)において
は、球状溶融シリカの平均粒径が破砕状溶融シリカの平
均粒径より小さいことが重要である。球状溶融シリカの
平均粒径が破砕状溶融シリカの平均粒径より大きくなる
と半田耐熱性が大きく低下する。球状溶融シリカの平均
粒径は破砕状溶融シリカの平均粒径より小さければよい
が、好ましくは球状溶融シリカの平均粒径が破砕状溶融
シリカの平均粒径の2/3以下であり、特に好ましくは
1/2以下である。さらに、破砕状溶融シリカと球状溶
融シリカの比率が上記の範囲に無い場合は半田耐熱性に
優れた硬化物が得られない。
In the fused silica (C) in the present invention, it is important that the average particle size of the spherical fused silica is smaller than the average particle size of the crushed fused silica. If the average particle size of the spherical fused silica is larger than the average particle size of the crushed fused silica, the soldering heat resistance will be greatly reduced. The average particle size of the spherical fused silica should be smaller than the average particle size of the crushed fused silica, but preferably the average particle size of the spherical fused silica is 2/3 or less of the average particle size of the crushed fused silica, particularly preferably. is less than 1/2. Furthermore, if the ratio of crushed fused silica to spherical fused silica is not within the above range, a cured product with excellent soldering heat resistance cannot be obtained.

【0030】本発明において溶融シリカ(C)を含む無
機充填材の割合は全体の75〜90重量%であり、さら
に好ましくは77〜88重量%である。無機充填材の全
体に対する割合が上記の範囲に無い場合は半田耐熱性に
優れた硬化物が得られない。無機充填材中に含まれる溶
融シリカ(C)の割合に関しては特に制限はないが、よ
り十分な効果を発揮させるためには、溶融シリカ(C)
を無機充填材中に通常80重量%以上、好ましくは90
重量%以上含有せしめることが好ましい。
In the present invention, the proportion of the inorganic filler containing fused silica (C) is 75 to 90% by weight, more preferably 77 to 88% by weight. If the proportion of the inorganic filler to the whole is not within the above range, a cured product with excellent soldering heat resistance cannot be obtained. There is no particular restriction on the proportion of fused silica (C) contained in the inorganic filler, but in order to exhibit a more sufficient effect, it is necessary to add fused silica (C)
in the inorganic filler, usually 80% by weight or more, preferably 90% by weight.
It is preferable to contain it in an amount of % by weight or more.

【0031】また、本発明におけるの無機充填材は、上
記溶融シリカ(C)を無機充填材中に80重量%以上含
有していれば残りは特に限定されないが、好ましい具体
例としては結晶性シリカ、アルミナ、マグネシア、クレ
ー、タルク、ケイ酸カルシウム、酸化チタン、酸化アン
チモン、各種セラミックスなどがあげられる。
Further, the inorganic filler in the present invention is not particularly limited as long as it contains 80% by weight or more of the above-mentioned fused silica (C), but a preferred specific example is crystalline silica. , alumina, magnesia, clay, talc, calcium silicate, titanium oxide, antimony oxide, and various ceramics.

【0032】本発明において、溶融シリカ(C)を含む
無機充填材をシランカップリング剤、チタネートカップ
リング剤などのカップリング剤であらかじめ表面処理す
ることが信頼性の点で好ましい。カップリング剤として
エポキシシラン、アミノシラン、メルカプトシランなど
のシランカップリング剤が好ましく用いられる。
In the present invention, it is preferable from the viewpoint of reliability that the inorganic filler containing fused silica (C) is previously surface-treated with a coupling agent such as a silane coupling agent or a titanate coupling agent. As the coupling agent, silane coupling agents such as epoxysilane, aminosilane, and mercaptosilane are preferably used.

【0033】本発明のエポキシ樹脂組成物にはハロゲン
化エポキシ樹脂、ハロゲン化合物、リン化合物などの難
燃剤、三酸化アンチモンなどの難燃助剤、カーボンブラ
ックなどの着色剤、シリコーンゴム、変性ニトリルゴム
、変性ポリブタジエンゴム、変性シリコーンオイルなど
のエラストマー、ポリエチレンなどの熱可塑性樹脂、長
鎖脂肪酸、長鎖脂肪酸の金属塩、長鎖脂肪酸のエステル
、パラフィンワックス、変性シリコーンオイルなどの離
型剤を任意に添加することができる。
The epoxy resin composition of the present invention includes halogenated epoxy resins, flame retardants such as halogen compounds and phosphorus compounds, flame retardant aids such as antimony trioxide, colorants such as carbon black, silicone rubber, and modified nitrile rubber. , elastomers such as modified polybutadiene rubber and modified silicone oil, thermoplastic resins such as polyethylene, long chain fatty acids, metal salts of long chain fatty acids, esters of long chain fatty acids, paraffin wax, modified silicone oil and other mold release agents. Can be added.

【0034】本発明のエポキシ樹脂組成物は溶融混練す
ることが好ましく、たとえばニーダー、ロール、単軸も
しくは二軸の押出機およびコニーダーなどの公知の混練
方法を用いて溶融混練することにより、製造される。
The epoxy resin composition of the present invention is preferably melt-kneaded, and can be produced by melt-kneading using a known kneading method such as a kneader, roll, single-screw or twin-screw extruder, or co-kneader. Ru.

【0035】[0035]

【実施例】以下、実施例により本発明を具体的に説明す
る。
[Examples] The present invention will be specifically explained below with reference to Examples.

【0036】実施例1〜12、比較例1〜9表1に示し
た配合物を、表2(実施例1〜12)および表3(比較
例1〜9)に示した組成比でミキサ−を用いてブレンド
した。これを、バレル設定温度90℃の二軸の押出機を
用いて溶融混練後、冷却・粉砕してエポキシ樹脂組成物
を製造した。
Examples 1 to 12, Comparative Examples 1 to 9 The formulations shown in Table 1 were mixed in a mixer at the composition ratios shown in Table 2 (Examples 1 to 12) and Table 3 (Comparative Examples 1 to 9). Blend using. This was melt-kneaded using a twin-screw extruder with a barrel set temperature of 90°C, and then cooled and pulverized to produce an epoxy resin composition.

【0037】[0037]

【表1】[Table 1]

【0038】[0038]

【表2】[Table 2]

【0039】[0039]

【表3】[Table 3]

【0040】このエポキシ樹脂組成物を用い、以下に示
した半田耐熱性試験を行った。
Using this epoxy resin composition, the following soldering heat resistance test was conducted.

【0041】半田耐熱性試験:80pinQFPデバイ
ス(パッケージサイズ:17×17×1.7mm、チッ
プサイズ:9×9×0.5mm)32個を低圧トランス
ファー成形機を用いて175℃×120秒の条件で成形
し、180℃で5時間硬化した。このテストデバイスを
85℃/85%RH雰囲気下で所定の時間加湿した後、
16個を260℃に加熱した半田浴に10秒間浸漬し、
残り16個を215℃に加熱したVPS(ベーパー・フ
ェーズ・ソルダー・リフロー)浴に90秒間浸漬してそ
れぞれクラックの発生したデバイスを不良とした。
Solder heat resistance test: 32 80-pin QFP devices (package size: 17 x 17 x 1.7 mm, chip size: 9 x 9 x 0.5 mm) were molded using a low pressure transfer molding machine at 175°C for 120 seconds. It was molded and cured at 180°C for 5 hours. After humidifying this test device in an 85°C/85%RH atmosphere for a predetermined time,
16 pieces were immersed in a solder bath heated to 260°C for 10 seconds,
The remaining 16 devices were immersed in a VPS (vapor phase solder reflow) bath heated to 215° C. for 90 seconds, and each device with cracks was judged as defective.

【0042】表4にみられるように、本発明のエポキシ
樹脂組成物(実施例1〜12)は半田耐熱性に優れてい
る。これに対してエポキシ樹脂(a)の含有量が本発明
の範囲外である比較例2では半田耐熱性が悪く、さらに
比較例6では溶融混練時のトルクが高くなるために良好
な組成物が得られず評価するにも至らなかった。また、
破砕状溶融シリカ、球状溶融シリカの平均粒径がそれぞ
れ本発明の範囲を外れる比較例5および比較例7、球状
溶融シリカの溶融シリカ(C)中での割合が本発明の範
囲を外れる比較例3および比較例8、球状溶融シリカの
平均粒径が破砕状溶融シリカの平均粒径より大きい比較
例4ではいずれも半田耐熱性が悪い。さらに無機充填材
の全体に対する割合が本発明の範囲より少ない比較例1
では半田耐熱性が悪く、本発明の範囲より多い比較例9
では溶融混練時のトルクが高くなるために良好な組成物
が得られず評価するにも至らなかった。
As seen in Table 4, the epoxy resin compositions of the present invention (Examples 1 to 12) have excellent soldering heat resistance. On the other hand, in Comparative Example 2, in which the content of epoxy resin (a) was outside the range of the present invention, the solder heat resistance was poor, and in Comparative Example 6, the torque during melt-kneading was high, resulting in a good composition. It was not possible to obtain and evaluate the results. Also,
Comparative Examples 5 and 7 in which the average particle diameters of crushed fused silica and spherical fused silica are outside the scope of the present invention, respectively, and Comparative Examples in which the proportion of spherical fused silica in fused silica (C) is outside the scope of the present invention Comparative Example 3, Comparative Example 8, and Comparative Example 4 in which the average particle size of the spherical fused silica was larger than the average particle size of the crushed fused silica, all had poor solder heat resistance. Comparative Example 1 in which the proportion of the inorganic filler to the whole is lower than the range of the present invention
Comparative Example 9 has poor solder heat resistance and exceeds the range of the present invention.
However, since the torque during melt-kneading was high, a good composition could not be obtained and could not be evaluated.

【0043】[0043]

【表4】[Table 4]

【0044】[0044]

【表5】[Table 5]

【0045】また、表6にみられるように、さらに加湿
条件を厳しくすると破砕状溶融シリカの平均粒径が7μ
m以上の組成物ではパッケージの一部にクラックが出始
め、破砕状溶融シリカの平均粒径が7μm未満の組成物
がさらに一段と半田耐熱性に優れていることがわかる。
Furthermore, as shown in Table 6, when the humidification conditions are made even stricter, the average particle diameter of the crushed fused silica increases to 7 μm.
It can be seen that cracks begin to appear in some parts of the package for compositions with a particle size of m or more, and compositions in which the average particle size of crushed fused silica is less than 7 μm have even better solder heat resistance.

【0046】[0046]

【表6】[Table 6]

【0047】[0047]

【発明の効果】本発明のエポキシ樹脂組成物は、特定の
エポキシ樹脂と特定の粒径、形状の組み合わせからなる
溶融シリカとを使用したことによって半導体封止用とし
て優れた半田耐熱性を有する。
EFFECTS OF THE INVENTION The epoxy resin composition of the present invention has excellent solder heat resistance for semiconductor encapsulation due to the use of a specific epoxy resin and fused silica having a specific combination of particle size and shape.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  エポキシ樹脂(A)、硬化剤(B)、
溶融シリカ(C)とを必須成分として含有してなる樹脂
組成物であって、前記エポキシ樹脂(A)が次の一般式
(I) 【化1】 (ただし、R1 〜R8 は水素原子、C1 〜C4 
の低級アルキル基またはハロゲン原子から選ばれ、すべ
てが同一である必要はない。)で表されるエポキシ樹脂
(a)を必須成分として含有するとともに、前記溶融シ
リカ(C)が平均粒径10μm以下の破砕状溶融シリカ
97〜60重量%と平均粒径4μm以下の球状溶融シリ
カ3〜40重量%からなり、球状溶融シリカの平均粒径
が破砕状溶融シリカの平均粒径より小さく、かつ溶融シ
リカ(C)を含む無機充填材の割合が全体の75〜90
重量%であるエポキシ樹脂組成物。
Claim 1: Epoxy resin (A), curing agent (B),
A resin composition containing fused silica (C) as an essential component, wherein the epoxy resin (A) has the following general formula (I) [Formula 1] (wherein R1 to R8 are hydrogen atoms, C1 ~C4
are selected from lower alkyl groups or halogen atoms, and do not need to be all the same. ) contains the epoxy resin (a) represented by (a) as an essential component, and the fused silica (C) is 97 to 60% by weight of crushed fused silica with an average particle size of 10 μm or less and spherical fused silica with an average particle size of 4 μm or less 3 to 40% by weight, the average particle size of the spherical fused silica is smaller than the average particle size of the crushed fused silica, and the proportion of the inorganic filler containing fused silica (C) is 75 to 90% of the total.
% by weight of the epoxy resin composition.
JP3070887A 1990-04-04 1991-04-03 Epoxy resin composition Expired - Lifetime JPH0733429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3070887A JPH0733429B2 (en) 1990-04-04 1991-04-03 Epoxy resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9001890 1990-04-04
JP2-90018 1990-04-04
JP3070887A JPH0733429B2 (en) 1990-04-04 1991-04-03 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH04218523A true JPH04218523A (en) 1992-08-10
JPH0733429B2 JPH0733429B2 (en) 1995-04-12

Family

ID=26412013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3070887A Expired - Lifetime JPH0733429B2 (en) 1990-04-04 1991-04-03 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH0733429B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020969A1 (en) * 1995-01-05 1996-07-11 Toray Industries, Inc. Epoxy resin composition
JP2002512278A (en) * 1998-04-22 2002-04-23 マルチコア ソルダーズ リミテッド Adhesive sealing material with flux properties
US6521354B1 (en) 1999-08-06 2003-02-18 Toray Industries, Inc. Epoxy resin composition and semiconductor device
US6618933B2 (en) 1999-07-06 2003-09-16 Taiyo Ink Manufacturing Co., Ltd. Liquid thermosetting insulating resin composition and method for permanently filling holes in printed circuit board by the use thereof
JP2008266378A (en) * 2007-04-17 2008-11-06 Denki Kagaku Kogyo Kk Composition and metal-based circuit board using the same
US8252419B2 (en) 1998-08-13 2012-08-28 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board and process for its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274924A (en) * 1985-09-30 1987-04-06 Toshiba Corp Epoxy resin composition for sealing semiconductor device
JPS63251419A (en) * 1987-04-08 1988-10-18 Toray Ind Inc Resin composition for sealing semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274924A (en) * 1985-09-30 1987-04-06 Toshiba Corp Epoxy resin composition for sealing semiconductor device
JPS63251419A (en) * 1987-04-08 1988-10-18 Toray Ind Inc Resin composition for sealing semiconductor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020969A1 (en) * 1995-01-05 1996-07-11 Toray Industries, Inc. Epoxy resin composition
US5798400A (en) * 1995-01-05 1998-08-25 Toray Industries, Inc. Epoxy resin compound
US5985455A (en) * 1995-01-05 1999-11-16 Toray Industries, Inc. Semiconductor element sealed with an epoxy resin compound
US8273458B2 (en) 1997-02-14 2012-09-25 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board and process for its production
JP2002512278A (en) * 1998-04-22 2002-04-23 マルチコア ソルダーズ リミテッド Adhesive sealing material with flux properties
JP4879394B2 (en) * 1998-04-22 2012-02-22 マルチコア ソルダーズ リミテッド Adhesive sealing material with flux characteristics
US8252419B2 (en) 1998-08-13 2012-08-28 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board and process for its production
US8273457B2 (en) 1998-08-13 2012-09-25 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board and process for its production
US6618933B2 (en) 1999-07-06 2003-09-16 Taiyo Ink Manufacturing Co., Ltd. Liquid thermosetting insulating resin composition and method for permanently filling holes in printed circuit board by the use thereof
US6521354B1 (en) 1999-08-06 2003-02-18 Toray Industries, Inc. Epoxy resin composition and semiconductor device
JP2008266378A (en) * 2007-04-17 2008-11-06 Denki Kagaku Kogyo Kk Composition and metal-based circuit board using the same

Also Published As

Publication number Publication date
JPH0733429B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
JPH04218523A (en) Epoxy resin composition
JPH062799B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3649535B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2955013B2 (en) Epoxy resin composition
JPH04325516A (en) Epoxy resin composition for semiconductor sealing
JP2501143B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0668010B2 (en) Resin composition for semiconductor encapsulation
JPH0299514A (en) Epoxy based composition having heat resistance to solder
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2697510B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2541712B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3451666B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3413923B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP3632936B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH04370137A (en) Epoxy resin composition for sealing semiconductor
JP2964634B2 (en) Epoxy composition
JPH04306224A (en) Epoxy resin composition
JP3451710B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP2675108B2 (en) Epoxy resin composition
JP3528925B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0676539B2 (en) Epoxy-containing composition for semiconductor encapsulation
JPH05166974A (en) Epoxy resin composition
JP2680389B2 (en) Epoxy resin composition
JPH04370138A (en) Epoxy resin composition
JP2004155841A (en) Sealing resin composition, and semiconductor sealing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 16

EXPY Cancellation because of completion of term