JPH04360582A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04360582A
JPH04360582A JP3163949A JP16394991A JPH04360582A JP H04360582 A JPH04360582 A JP H04360582A JP 3163949 A JP3163949 A JP 3163949A JP 16394991 A JP16394991 A JP 16394991A JP H04360582 A JPH04360582 A JP H04360582A
Authority
JP
Japan
Prior art keywords
layer
material layer
polycrystalline silicon
main material
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3163949A
Other languages
Japanese (ja)
Inventor
Motoi Ashida
基 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3163949A priority Critical patent/JPH04360582A/en
Publication of JPH04360582A publication Critical patent/JPH04360582A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily control a threshold voltage and to reduce a resistance of a gate electrode by so laminating the electrode as to include a sub material layer having a low contact resistance and low contact resistance with a main material layer for constituting the gate electrode between the main material layers. CONSTITUTION:A gate electrode is formed of a three-layer structure having a first layer gate polycrystalline silicon 7/silicide film 6/second layer gate polycrystalline silicon 8, and a gate electrode material (main material layer) is used as the silicon 8 of a channel side. The film 6 of a sub material layer having lower resistance than those of the silicons 7, 8 of main material layers and low contact resistance with the main material layer, is inserted to the electrode. Accordingly, flatness and relationship between a channel and a work station can be maintained similarly to that of prior art, and a threshold voltage can be easily controlled. Further, a resistance of the electrode can be lowered.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体装置に関し、特
にSRAMメモリセルに用いる薄膜電界効果型トランジ
スタの構造の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor devices, and more particularly to improvements in the structure of thin film field effect transistors used in SRAM memory cells.

【0002】0002

【従来の技術】図2は一般的な薄膜多結晶シリコントラ
ンジスタ(Thin Film Transistor
:TFT)のうち、ゲートがチャネル層の下に形成され
るタイプ(下ゲート型)の断面図である。図において、
2はシリコン酸化膜よりなる下地絶縁膜、1はゲート電
極となるゲート多結晶シリコンで、下地絶縁膜2上に形
成されている。3はシリコン酸化膜よりなるゲート絶縁
膜である。4はソース/ドレインを形成する薄膜多結晶
シリコン、5はチャネルとなる薄膜多結晶シリコンで、
上記ゲート絶縁膜3を介して形成され、トランジスタの
活性層となっている。
2. Description of the Related Art FIG. 2 shows a general thin film polycrystalline silicon transistor (Thin Film Transistor).
2 is a cross-sectional view of a type (lower gate type) in which the gate is formed under the channel layer (TFT). In the figure,
2 is a base insulating film made of a silicon oxide film, and 1 is a gate polycrystalline silicon serving as a gate electrode, which is formed on the base insulating film 2. 3 is a gate insulating film made of a silicon oxide film. 4 is a thin film polycrystalline silicon that forms the source/drain, 5 is a thin film polycrystalline silicon that becomes a channel,
It is formed with the gate insulating film 3 interposed therebetween, and serves as an active layer of the transistor.

【0003】高集積化が進むSRAMにおいて、小面積
で低待機電流を実現するためにnMOST上にpMOS
薄膜多結晶シリコントランジスタ(pMOSTFT)を
積み重ねたメモリセル(完全CMOS型)が要求されて
いる。
[0003] In SRAMs, which are becoming increasingly highly integrated, pMOS is placed on nMOST in order to realize low standby current in a small area.
A memory cell (full CMOS type) in which thin film polycrystalline silicon transistors (pMOSTFT) are stacked is required.

【0004】図2はその目的に合わせたpMOSTFT
の構造を示すものであり、pMOSTFTのゲート電極
層には極性を持った多結晶シリコン1、例えばN型多結
晶シリコンが用いられている。
[0004] Figure 2 shows a pMOSTFT suitable for that purpose.
The gate electrode layer of the pMOSTFT is made of polarized polycrystalline silicon 1, for example, N-type polycrystalline silicon.

【0005】[0005]

【発明が解決しようとする課題】従来の半導体装置は以
上のように構成されており、閾値電圧の制御を行うため
に多結晶シリコンが用いられており、ゲート電極層の低
抵抗化に限りがあるという問題点があった。またゲート
電極層に極性(例えばN型)があるため、このゲート電
極を他の機能を持つ素子の異極性(例えばP型)の領域
と接続する場合、既成のPN接合を形成してしまうとい
う問題点があった。
[Problems to be Solved by the Invention] Conventional semiconductor devices are constructed as described above, and polycrystalline silicon is used to control the threshold voltage, so there is a limit to how low the resistance of the gate electrode layer can be reduced. There was a problem. Furthermore, since the gate electrode layer has a polarity (for example, N-type), when this gate electrode is connected to a region of a different polarity (for example, P-type) of an element with another function, a ready-made PN junction will be formed. There was a problem.

【0006】この発明は上記のような問題点を解消する
ためになされたもので、閾値電圧の制御が容易であり、
かつ抵抗が低く、また既成のPN接合を形成することの
ない半導体装置を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and it is easy to control the threshold voltage.
It is an object of the present invention to obtain a semiconductor device which has low resistance and does not require the formation of a ready-made PN junction.

【0007】[0007]

【課題を解決するための手段】この発明に係る半導体装
置は、ゲート電極を、低抵抗かつ該ゲート電極を構成す
る主材料層との接触抵抗が低い副材料層を上記主材料層
の間に含むように積層して構成したものである。また上
記主材料層を上記副材料層の上方と下方とで極性が異な
るようにしたものである。
[Means for Solving the Problems] A semiconductor device according to the present invention includes a gate electrode having a sub-material layer having a low resistance and a low contact resistance with a main material layer constituting the gate electrode, between the main material layer. It is constructed by laminating layers so as to include. Further, the polarity of the main material layer is different between above and below the sub-material layer.

【0008】[0008]

【作用】この発明においては、ゲート電極を、低抵抗か
つ上記ゲート電極を構成する主材料層と接触抵抗の低い
副材料層を上記主材料層の間に含むように積層して構成
したので、ゲートとチャネルのワークファンクション(
仕事関数)の関係を従来と同様に保ちつつ、ゲート電極
の低抵抗化を実現できる。また上記主材料層を上記副材
料層の上方と下方とで極性が異なるようにしたので、ゲ
ート電極を他の素子の異極性の部分と接続する場合にお
いて、オーミックライクな接続が可能となる。
[Operation] In the present invention, the gate electrode is constructed by laminating a main material layer having low resistance constituting the gate electrode and an auxiliary material layer having low contact resistance between the main material layers. Gate and channel work functions (
This makes it possible to reduce the resistance of the gate electrode while maintaining the same relationship (work function) as before. Furthermore, since the main material layer has different polarities above and below the sub-material layer, an ohmic-like connection is possible when connecting the gate electrode to a portion of another element having a different polarity.

【0009】[0009]

【実施例】図1はこの発明の一実施例によるTFTの断
面構造図である。図において、図2と同一符号は同一又
は相当部分を示し、6は例えばWSixを用いたシリサ
イド膜(副材料層)、7は主材料層である第1層ゲート
多結晶シリコン膜、8は主材料層である第2層ゲート多
結晶シリコン膜であり、図に示すように、ゲート電極は
、第1層ゲート多結晶シリコン7/シリサイド膜6/第
2層ゲート多結晶シリコン8の三層構造となっている。 そして上記第1層ゲート多結晶シリコン7はp型で、第
2層ゲート多結晶シリコン8はn型となっており、極性
が異なるものとなっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of a TFT according to an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 2 indicate the same or equivalent parts, 6 is a silicide film (sub-material layer) using WSix, 7 is the first layer gate polycrystalline silicon film which is the main material layer, and 8 is the main material layer. The material layer is a second layer gate polycrystalline silicon film, and as shown in the figure, the gate electrode has a three-layer structure of first layer gate polycrystalline silicon 7/silicide film 6/second layer gate polycrystalline silicon 8. It becomes. The first layer gate polycrystalline silicon 7 is p-type, and the second layer gate polycrystalline silicon 8 is n-type, so that they have different polarities.

【0010】次にこの発明のTFTの製造方法の一例を
示す。まず、下地絶縁膜2上に第1層ゲート多結晶シリ
コン7をLPCVD法で堆積し、極性を与えるため第1
層ゲート多結晶シリコン7にp型不純物を注入する。次
にシリサイド膜(WSix)6をスパッタ法で堆積する
。そして第2層ゲート多結晶シリコン8をLPCVD法
で堆積し、n型不純物を注入する。次にフォトレジスト
でマスクして、シリサイド膜6,第1層ゲート多結晶シ
リコン7,第2層ゲート多結晶シリコン8をエッチング
し、ゲートパターンを残す。次にゲート絶縁膜3を常圧
でのCVD法により堆積する。そして薄膜多結晶シリコ
ン4,5をLPCVD法で堆積し、フォトレジストのマ
スクをかけて薄膜多結晶シリコン4に不純物を注入し、
ソース/ドレイン領域を形成する。
Next, an example of a method for manufacturing a TFT according to the present invention will be described. First, a first layer gate polycrystalline silicon 7 is deposited on the base insulating film 2 by the LPCVD method.
A p-type impurity is implanted into the layer gate polycrystalline silicon 7. Next, a silicide film (WSix) 6 is deposited by sputtering. Then, a second layer gate polycrystalline silicon 8 is deposited by the LPCVD method, and n-type impurities are implanted. Next, using a photoresist mask, the silicide film 6, first layer gate polycrystalline silicon 7, and second layer gate polycrystalline silicon 8 are etched, leaving a gate pattern. Next, a gate insulating film 3 is deposited by CVD at normal pressure. Then, thin film polycrystalline silicon 4 and 5 are deposited by the LPCVD method, and impurities are implanted into the thin film polycrystalline silicon 4 using a photoresist mask.
Form source/drain regions.

【0011】TFTの動作については周知であるので、
ここではその説明は省略し、以下作用,効果について説
明する。本実施例によれば、ゲート電極を第1層ゲート
多結晶シリコン7/シリサイド膜6/第2層ゲート多結
晶シリコン8からなる三層構造にし、チャネル側の第2
層ゲート電極多結晶シリコン8に従来と同様のゲート電
極材料(主材料層)を用いたので、平坦性ならびにチャ
ネルとのワークファンションの関係を従来と同様に保つ
ことができ、又閾値電圧の制御も従来と同様に容易に行
うことができる。またゲート電極に、主材料層である第
1,第2層ゲート多結晶シリコン7,8よりも低抵抗で
、かつ主材料層と接触抵抗の低い副材料層であるシリサ
イド膜6を挿入しているため、ゲート電極の抵抗を下げ
ることができる。
Since the operation of TFT is well known,
The explanation will be omitted here, and the operation and effect will be explained below. According to this embodiment, the gate electrode has a three-layer structure consisting of the first layer gate polycrystalline silicon 7/silicide film 6/second layer gate polycrystalline silicon 8, and the second layer gate electrode on the channel side
Since the same gate electrode material (main material layer) as the conventional one is used for the layer gate electrode polycrystalline silicon 8, the flatness and the work function relationship with the channel can be maintained as before, and the threshold voltage can be maintained as well. Control can also be easily performed in the same manner as before. In addition, a silicide film 6, which is a sub-material layer having a lower resistance than the first and second-layer gate polycrystalline silicon 7 and 8, which are the main material layers, and which has a low contact resistance with the main material layer, is inserted into the gate electrode. Therefore, the resistance of the gate electrode can be lowered.

【0012】またゲート電極である第1層ゲート多結晶
シリコン7を他の機能を持つ素子と接続する場合、相手
側の接続部分がp型のとき、本実施例では第1層ゲート
多結晶シリコン7がp型となっているため、オーミック
ライクな接続が可能であり、既成PN接合を防止できる
。例えば相手側の薄膜トランジスタのソース/ドレイン
がp型である場合、ゲート電極の第1層多結晶シリコン
7をp型にすると、両者間にダイオード接合(PN接合
)を形成することがなく、p−p型の直接結線を行うこ
とが可能である。
Furthermore, when the first layer gate polycrystalline silicon 7, which is a gate electrode, is connected to an element having another function, when the connecting portion of the other side is p-type, in this embodiment, the first layer gate polycrystalline silicon 7 is connected to an element having another function. Since 7 is p-type, an ohmic-like connection is possible, and an existing PN junction can be prevented. For example, when the source/drain of the thin film transistor on the other side is p-type, if the first layer polycrystalline silicon 7 of the gate electrode is made p-type, a diode junction (PN junction) will not be formed between the two, and a p- It is possible to perform a p-type direct connection.

【0013】なお上記実施例では、副材料層であるシリ
サイド膜6にWSixを用いたが、シリサイド膜6に用
いる材料としては第1,第2層ゲート多結晶シリコン7
,8との接触抵抗の低い、オーミックライクな接続が可
能な、かつ抵抗の低い材料ならなんでもよく、他のシリ
サイド膜や高融点金属膜であってもよい。
In the above embodiment, WSix was used for the silicide film 6 as the sub-material layer, but the material used for the silicide film 6 was the first and second layer gate polycrystalline silicon 7.
, 8, which allows ohmic-like connection and which has low resistance, may be used, and may be other silicide films or high-melting point metal films.

【0014】また上記実施例ではPN接合が形成される
のを防止するために、シリサイド膜6を挟む第1層ゲー
ト多結晶シリコン7と第2層ゲート多結晶シリコン8と
を異極性に設定したが、このPN接合の問題のない時は
同極性にしてもよいことはいうまでもない。
Further, in the above embodiment, in order to prevent the formation of a PN junction, the first layer gate polycrystalline silicon 7 and the second layer gate polycrystalline silicon 8 sandwiching the silicide film 6 are set to have different polarities. However, it goes without saying that the same polarity may be used when there is no problem with this PN junction.

【0015】また上記実施例では、ゲート電極を第1層
ゲート多結晶シリコン7/シリサイド膜6/第2層ゲー
ト多結晶シリコン8からなる三層構造としたが、3層構
造以外のものであってもよい。
Further, in the above embodiment, the gate electrode has a three-layer structure consisting of the first layer gate polycrystalline silicon 7/silicide film 6/second layer gate polycrystalline silicon 8, but it is possible to use a structure other than the three-layer structure. You can.

【0016】[0016]

【発明の効果】以上のようにこの発明に係る半導体装置
によれば、ゲート電極を、主材料層よりも低抵抗、かつ
主材料層との接触抵抗が低い副材料層を上記主材料層の
間に含むように積層した構造としたので、ゲート電極の
チャネル側に従来と同様のゲート電極材料である主材料
層が形成されていることによって、素子の平坦性ならび
にチャネルとのワークファンションの関係を従来と同様
に保ちつつ、閾値電圧の制御を容易にできるとともに、
ゲート電極の低抵抗化を実現できる効果がある。
As described above, according to the semiconductor device according to the present invention, the gate electrode is formed by forming the sub-material layer, which has a lower resistance than the main material layer and has a lower contact resistance with the main material layer, into the main material layer. Since the layered structure is made such that the main material layer is the same gate electrode material as conventional gate electrodes, it is formed on the channel side of the gate electrode, which improves the flatness of the device and the work function between the channel and the channel. While maintaining the same relationship as before, it is possible to easily control the threshold voltage, and
This has the effect of lowering the resistance of the gate electrode.

【0017】また、上記主材料層を上記副材料層の上方
の層と下方の層とで極性が異なるようにした場合には、
即ち上記主材料層のうちの他の機能をもつ素子の部分を
接続する方の主材料層を、上記他の機能を持つ素子の接
続する部分の極性と同じ極性となるようにした場合には
、PN接合が形成されるのを防止でき、オーミックライ
クな接続を行うことができる効果がある。
[0017] Furthermore, when the main material layer has different polarities between the layer above and the layer below the sub-material layer,
In other words, if the main material layer that connects the parts of the elements with other functions among the main material layers is made to have the same polarity as the parts of the elements with other functions that connect. , the formation of a PN junction can be prevented, and an ohmic-like connection can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例による半導体装置の断面図
である。
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the invention.

【図2】従来の半導体装置の断面図である。FIG. 2 is a cross-sectional view of a conventional semiconductor device.

【符号の簡単な説明】[Brief explanation of symbols]

1  ゲート多結晶シリコン 2  下地絶縁膜 3  ゲート絶縁膜 4  薄膜多結晶シリコン(ソース/ドレイン)5  
薄膜多結晶シリコン(チャネル)6  シリサイド膜(
WSix) 7  第1層ゲート多結晶シリコン 8  第2層ゲート多結晶シリコン
1 Gate polycrystalline silicon 2 Base insulating film 3 Gate insulating film 4 Thin film polycrystalline silicon (source/drain) 5
Thin film polycrystalline silicon (channel) 6 Silicide film (
WSix) 7 First layer gate polycrystalline silicon 8 Second layer gate polycrystalline silicon

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  下地絶縁膜上に形成されたゲート電極
と、該ゲート電極上にゲート絶縁膜を介して形成された
活性層とを備えた半導体装置において、上記ゲート電極
は、該ゲート電極を構成する主材料層よりも低抵抗で、
かつ主材料層との接触抵抗が低い副材料層を上記主材料
層の間に含むように積層した構造を有することを特徴と
する半導体装置。
1. In a semiconductor device comprising a gate electrode formed on a base insulating film and an active layer formed on the gate electrode with a gate insulating film interposed therebetween, the gate electrode It has a lower resistance than the main material layer that makes it up,
A semiconductor device characterized in that the semiconductor device has a structure in which a sub-material layer having a low contact resistance with the main material layer is laminated between the main material layers.
【請求項2】  請求項1記載の半導体装置において、
上記主材料層は上記副材料層の上方の層と下方の層とで
極性が異なることを特徴とする半導体装置。
2. The semiconductor device according to claim 1,
A semiconductor device characterized in that the main material layer has different polarities between a layer above the sub-material layer and a layer below the sub-material layer.
【請求項3】  請求項1記載の半導体装置において、
上記主材料層は上記副材料層の上方の層と下方の層とで
極性が同じであることを特徴とする半導体装置。
3. The semiconductor device according to claim 1,
A semiconductor device characterized in that the main material layer has the same polarity as a layer above the sub-material layer and a layer below the sub-material layer.
【請求項4】  請求項1記載の半導体装置において、
上記主材料層の材料は多結晶シリコンであり、上記副材
料層の材料は高融点金属あるいはそのシリサイドである
ことを特徴とする半導体装置。
4. The semiconductor device according to claim 1,
A semiconductor device characterized in that the material of the main material layer is polycrystalline silicon, and the material of the sub-material layer is a high melting point metal or its silicide.
JP3163949A 1991-06-06 1991-06-06 Semiconductor device Pending JPH04360582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3163949A JPH04360582A (en) 1991-06-06 1991-06-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3163949A JPH04360582A (en) 1991-06-06 1991-06-06 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04360582A true JPH04360582A (en) 1992-12-14

Family

ID=15783886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3163949A Pending JPH04360582A (en) 1991-06-06 1991-06-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04360582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260645A (en) * 1993-03-04 1994-09-16 Kodo Eizo Gijutsu Kenkyusho:Kk Thin-film semiconductor device and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260645A (en) * 1993-03-04 1994-09-16 Kodo Eizo Gijutsu Kenkyusho:Kk Thin-film semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
JP2684980B2 (en) Semiconductor memory device and manufacturing method thereof
JPS61292951A (en) Semiconductor integrated circuit device
JP3074758B2 (en) Static semiconductor memory device and method of manufacturing the same
JPH06275724A (en) Semiconductor device and manufacture thereof
JP3006520B2 (en) Semiconductor device
US5410165A (en) Thin film transistor with conductive layer and static RAM with thin film transistor
JPH04360582A (en) Semiconductor device
JPH02295164A (en) Semiconductor memory
JP2970858B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3154130B2 (en) Semiconductor memory
JPS6353965A (en) Semiconductor integrated circuit device
JPH01144673A (en) Semiconductor integrated circuit device
JP2803729B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH06232372A (en) Semiconductor storage device
JPH0273666A (en) Semiconductor memory device
JPH06302783A (en) Semiconductor storage device
JPH02114532A (en) Semiconductor device
JPS6329573A (en) Semiconductor integrated circuit device
JP3063179B2 (en) Semiconductor memory device
JP3158531B2 (en) TFT load type static RAM
JPH04226081A (en) Semiconductor device
JPH0341762A (en) Semiconductor device
JPH0240951A (en) Semiconductor storage device
JPH02183565A (en) Semiconductor device
JPH0414869A (en) Semiconductor memory