JPH0422445A - 固体物質用湿式微粉砕装置、固体物質の微粉砕方法及び固体物質微粒子の水分散液を塗布した記録体 - Google Patents

固体物質用湿式微粉砕装置、固体物質の微粉砕方法及び固体物質微粒子の水分散液を塗布した記録体

Info

Publication number
JPH0422445A
JPH0422445A JP2129884A JP12988490A JPH0422445A JP H0422445 A JPH0422445 A JP H0422445A JP 2129884 A JP2129884 A JP 2129884A JP 12988490 A JP12988490 A JP 12988490A JP H0422445 A JPH0422445 A JP H0422445A
Authority
JP
Japan
Prior art keywords
dispersion
media
wet
vessel
solid substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129884A
Other languages
English (en)
Inventor
Kazuo Kojima
小島 一男
Tosaku Okamoto
岡本 東作
Hisataka Hosaka
穂坂 久隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanzaki Paper Manufacturing Co Ltd
Original Assignee
Kanzaki Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanzaki Paper Manufacturing Co Ltd filed Critical Kanzaki Paper Manufacturing Co Ltd
Priority to JP2129884A priority Critical patent/JPH0422445A/ja
Publication of JPH0422445A publication Critical patent/JPH0422445A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Heat Sensitive Colour Forming Recording (AREA)
  • Color Printing (AREA)
  • Crushing And Grinding (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は固体物質の湿式微粉砕装置に関し、特に粉砕メ
ディアを充填したサンドミルで固体物質の分散液を効率
よく連続的に湿式微粉砕する装置及び方法に関するもの
である。さらに、本発明は極めて均一に微細化された固
体物質の分散液並びにその分散液を塗布して得られる、
高品質を備えた感熱記録体や感圧複写紙等の各種記録体
及びビデオ用テープ、オーディオ用テープ等の磁気記録
媒体に関し、特に透明性に優れた感熱記録体に関する。
「従来の技術」 感熱記録紙や感圧複写紙及びビデオ用或いはオーディオ
用テープ等の各種記録体及び記録媒体には種々の無機又
は有機固体物質が使用されるが、これらの物質はできる
だけ均一に微細化された水分散液或いは溶媒分散液とし
て使用されるのが望ましい。
従来より、固体物質の湿式粉砕方法としては、例えば固
体物質を水又は溶媒に予め分散し、これをボールミル、
アトライター、サンドグラインダー等を用いて粉砕する
方法が提案されている。
近年、微細化の要求が一層高まり、粉砕固体物質の平均
粒子径で1μm以下、特に透明感熱記録体にあっては0
.3μm以下に迄微細化され、且つ粗大粒子を伴わない
、粒度分布のシャープな微粒子化の要請が高まっている
一般に、微粉砕処理を効率良〈実施する方法として、ボ
ールミルよりはアトライターが好ましく使用され、更に
効率を上げる処理方法としては円筒型ベッセルに粉砕メ
ディアを充填した流通管型サンドミルが使用される。流
通管型サンドミルの中でも、ベッセルを横に配列した、
所謂横型サンドミルが、縦型サンドミルに比較して粉砕
メディアの充填率を高くでき、高効率処理が可能なため
に、広く利用されるようになってきた。
しかしながら、これらの一般的な横型サンドミルでは平
均粒子径が2μm程度迄の微細化は可能であるが、ベッ
セル内をショートバスした粗大粒子の混在を避けること
ができず、サンドミルを複数回通過させても平均粒子径
がサブミクロン(1μm以下)といった微細な粒子を得
ることは容易ではない。
他方、サンドミルを用いて固体物質を効率良く粉砕する
ために種々の工夫がなされている。例えば、攪拌ディス
クに複数個の突起体を付けたり、複数個の穴を設けて、
メディアに強い剪断力を与え、且つ乱流を発生させて粉
砕効率を高める方法(特開昭63−93337号公報)
、回転ディスクに独特の溝を付けたもの(DYNOMI
LL)、メディアの運動量を多くするためにディスクに
穴を開けたもの(SIIPERMILL) 、ディスク
に3個以上の穴を開け、該穴の壁部を傾斜にしてメディ
アの移動を助長させる方法(特開昭53−8866号公
報)、穴を開けてない平板ディスクと穴の壁部に傾斜を
持つディスクを組合せて配置し、被粉砕物がショートバ
スするのを防止する方法(特開昭55−145544号
公報)等が提案されている。さらに、適当な容量のタン
クから被粉砕液をポンプでサンドミルに通常の単位当た
り粉砕処理量の30倍以上の液量を送り、このタンクの
間を循環させながらバッチ方式で粉砕処理すると効率が
良くなる(特開昭50−9856.50−27162号
公報)等が提案されている。
これらはいずれもメディアが充填された状態にあるベン
セル内に被粉砕固体分散液を送入して、ディスク等の攪
拌によってメディアと被粉砕固体物とを衝突、剪断力を
付与しながら、粉砕し、べッセルの排出口前段に設けら
れている、スクリーンで粉砕分散液とメディアとが分離
される、即ちメディアはベッセル内に留まっている方式
のサンドミルである。
一方、攪拌翼に突起体を設けると、メディアの運動量は
確実に増加するが、反面突起部の摩耗が早くなり、短時
間でただの円板になってしまう。
また、ディスクに独特の溝を設けたり、穴を開けること
によって、メディアの移動、運動量増加には効果がある
ものの、サブミクロン領域迄の粉砕に効果のある直径0
.5〜0.1mmといった微小メディアを使用する場合
には、分離スクリーンの目開きを0.15〜0.03m
mと極めて狭くしなければならず、通常処理時でも被粉
砕粗分散液が導入口側から入り、その圧力がメディアに
作用し、徐々に排出口側に移動し、粉砕された微細な分
散液は狭いスクリーン口開きより排出され、残ったメデ
ィアは排出口側に集中することになってスクリーンの目
詰りが起こり易い。さらに、特開昭50−9856号公
報や特開昭50−27162号公報に示されている、通
常処理量の30倍以上の分散液を微小メディア対応の狭
い目開きスクリーンに適用しようとすると、目詰りが瞬
時に起こり、結果としてサンドミルのベッセル内圧力が
高くなり、ベッセル回転軸封シール機構の破損やミル内
分散液の温度や粘度の上昇等トラブルが発生し易い。
従来、無色又は淡色の塩基性染料と有機又は無機の呈色
剤との反応を利用し、熱により再発色物質を接触させて
記録像を得るようにした感熱記録体は良く知られている
。かかる感熱記録体は比較的安価であり、また記録機器
がコンパクトで且つその保守も比較的容易であるため、
ファクシミリや各種コンピューター等の媒体としてのみ
ならず幅広い分野において使用されている。
また、用途の多用化に伴い、オーバーヘッドプロジェク
タ−(以下、OHPと略す)や医療機器分野の記録シー
ト等に使用するために、サーマルヘッドで直接記録でき
る透明な感熱記録体に対する要望も高まっており、フィ
ルム等の透明若しくは半透明な支持体上に無色又は淡色
の塩基性染料と呈色剤を含む感熱記録層を形成した感熱
記録体が提案されている。
しかしながら、支持体に透明フィルムを使用したのみで
は充分な透明性が得られず、結果としてOHPに使用し
ても鮮明な投影画像が得られないといった難点を有する
[発明が解決しようとする課題」 感熱記録体や怒圧複写紙等の各種記録体で使用される顔
料、染料、顕色剤、熱可融性物質等の各種固体物質は、
一般に数μm以下に微細化されて使用されるが、近年記
録機器等の高速化に伴い、記録感度の大幅な改良が要請
されており、特に感熱記録体では有機染料や有機顕色剤
を平均粒子径が1μm以下0.3μm程度にまで超微細
化する要請がでてきている。
本願発明は、ショートバス等による粗粒子の混在が防止
され、破砕効率の改善された固体物質の湿式微粉砕装置
、この装置を用いる固体物質の微粉砕方法、及び極めて
均一に微細化された固体物質の水分散液を塗布して得ら
れる記録体を提供するものである。
「課題を解決するための手段」 本発明は、円筒型ベッセル(1)内で駆動軸(2)を介
して回転攪拌大体(3)を回転させ、メディア(4)と
被粉砕物とを強攪拌することによって粉砕する湿式微粉
砕装置において、ベッセル1端の被粉砕物導入口(5)
と他端排出口(6)とを導管(7)で連結し、回転攪拌
翼体の回転によって、ベッセル内のメディアと被粉砕物
とを導入口側から排出口側に強制移動させ、次に導管を
経由して導入口に戻る循環流を発生させる機構を備え、
且つ導管の途中にメディアと被粉砕物とを分離させる分
II横スクリーン(8)を設けたことを特徴とする固体
物質用湿式微粉砕装置であり、且つ該湿式微粉砕装置を
複数台直列に配置して固体物質の水分散液を連続的に湿
式微粉砕する過程で、前段の湿式微粉砕装置のスクリー
ンを通過した水分散液を後段の湿式微粉砕装置へ逐次送
出するようにしたことを特徴とする固体物質の湿式微粉
砕方法である。さらに、このような湿式微粉砕装置と湿
式微粉砕方法によって得られる微粉砕された固体物質の
微粒子を支持体に塗布した記録体である。
「作用」 本発明は上述した如く、3つの発明要件から成っている
。即ち、第1は固体物質を微粉砕する為の湿式微粉砕装
置、第2はその装置を用いて固体物質を微粉砕する方法
、第3はこれらの装置と方法によって得られる固体物質
の微粉砕粒子を支持体に塗布することによって得られる
記録体に関するものである。
本発明の湿式微粉砕装置は、内部にディスクやビンを有
する回転攪拌手段を備えたベンセルにガラスピーズ、セ
ラミックスポール、スチールボール等のメディアを充填
しておき、これに固体物質を含む被粉砕分散液を連続的
に送り込んで粉砕処理する、所謂サンドグラインダー、
ブレーンミル、バールミル、ダイノミル等の如き流通管
型ミルの粉砕効率を高める湿式微粉砕装置である。
従来、湿式粉砕機を使用して固体物質の水分散液を連続
処理する場合には、同種の粉砕機を直列及び/又は並列
に複数台並べ、毎分成る一定量の被粉砕分散液をポンプ
等で送り込んで粉砕処理する方法が取られている。そし
て、−aに粉砕機で固体粒子の微細化の程度を進めるに
は使用する粉砕機の台数を増加するか、或いは1台当た
りの毎分の送り込み量を減量し、ベッセル内滞留時間を
長くすることによって粉砕作用をできるだけを長くする
ことが行われる。従って、個々のベッセル内を通過する
分散液の量は最終段粉砕装置の直後に付設した流量コン
トロール弁021で調節された量と同じであって、1台
のサンドミルベ・ンセル内を通過するに要する時間は概
ね5〜60分間である。
また、粉砕分散液がベッセル内回転軸方向に流れる速度
は通常0.5〜8cm/分であって、ベッセル内での粉
砕滞留時間を長くとって、ショートバスによる粗大粒子
の発注を防止し、均一な微細化をはかることがおこなわ
れている。
なお、均一に微細化を進めるためには、同一の粉砕機で
繰り返し粉砕処理をするか、複数台の粉砕機を連続して
配置し同種の粉砕機による処理が行われる。
しかし、このような方法を用いた場合、ある程度迄の微
細化は可能であるが、均一に1μm以下まで微細化され
た固体粒子を得るのは容易ではなく、例えば、ヘンセル
容量が50I!、の流通管型サンドミルに直径1.5〜
1.7mmのガラスピーズを55Kg充填したサンドミ
ルで繰り返し粉砕処理を行っても、1.5μm程度以下
の微細粒子を得るには極めて長時間の粉砕処理が必要で
あり、10台以上もの粉砕回数を必要とし、非生産的で
あり、実用上問題が大きい。
そのために、微粉砕、超微粉砕処理を促進するために採
られてきた方法としては、例えばベッセル内部に充填す
る粉砕メディアの充填率を高める方法、ディスクの回転
速度を上げる方法、或いは粉砕メディアの材質をできる
だけ比重の重いもの、例えばガラスピーズよりもジルコ
ニヤや金属製ビーズ等に代えて使用する方法等があるが
、いずれも問題を抱えており、なお、改善の余地が残さ
れている。
即ち、粉砕メディアの充填率を高める方法の場合は、そ
れに比例してメディアの運動が円滑に行かず、ディスク
回転の負荷増大等がある。他方、ディスクの回転を上げ
ると動力負荷の増大や粉砕液の発熱等が有り好ましくな
い。また、ジルコニヤや金属製ビーズを使用する方法は
、高価であることや錆等の問題が付随するので好ましく
ない。
粉砕メディアのサイズ(直径)については、微小メディ
アを用いると微粉砕化効率が極めて顕著に発揮される場
合もあるが、必ずしも常に高効率が得られるとは限らな
い。例えばベッセル容量100!の流通管型サンドミル
で直径1.5〜2.0++mのガラスピーズに代えて直
径0.5〜0.7關のガラスピーズを用いて粗粉砕処理
をした場合、かえって粉砕効率が劣ったり、分離機構の
目詰り等を起こし、好ましくない。また、粗粉砕を完了
した平均粒子径が1.6μmの固体物質の水分散液を直
径0.6〜0.8開のガラスピーズを用いて粉砕処理を
したときには、水分散液の平均粒子径が0.7μm程度
までは極めて効率よく粉砕できるが、それ以下の微細化
処理は効率が下り、効率良く微粉砕が行われない。しか
しながら、このようにして微細化された平均粒子径が0
.7μm程度の微細化粒子の水分散液を、直径がより細
かい、例えば0.2〜0.3mmの粉砕メディアを用い
て超微粉砕処理を施すと、極めて効率の良い粉砕ができ
るようになり、例えば0.25μm程度までの微粉砕が
可能である。
しかし、直径0.2〜0.3 mmの微小メディアを使
用するには、その微小メディアに対応する狭い目開き(
0,07〜0.1 mm)の分離スクリーンを使用する
必要があり、その分スクリーンの目詰りが起こり易くな
る。
さらに、従来より一般的に使用されている横型サンドミ
ルの場合にはミル運転中に粉砕メディアが分散液と共に
排出側に流出され、排出口前段に設けられているメディ
ア分離スクリーンに集中することになって目詰りを誘発
し、種々のトラブルの原因となる。この現象は微細化効
率の良い横型サンドミルで微小メディアを用いた場合は
特に烈しく、重大欠陥の1つである。
上述の如き実情より、本発明者等は固体物質の分散液の
高効率粉砕処理装置とその粉砕方法について鋭意研究を
重ねた結果、複数のサンドミルを用いて毎時間光たりあ
る一定量の分散液を粉砕処理する場合、並列に並べて処
理するよりも直列に配備して粉砕処理をした方が平均粒
子径も小さくなり且つ粒度分布もシャープになることが
判った。
さらに、例えばある一定容積を有するサンドミルで固体
物質を粉砕する場合、粉砕される時間(固体物質のベッ
セル内滞留時間)を一定とした場合に少量を時間をかけ
て一回通しさせるよりも、多量を短時間でベッセル内を
通過させ、同じ処理時間となる迄、繰り返しによるサン
ドミル処理を行う方が、前者に比較して粉砕効率がより
良く改善されることが判った。
即ち、例えばベッセル容積が602のサンドミルを用い
て、1!/分で処理すると、ベッセル内滞留時間は60
分掛かることになる。一方、2!/分で処理すると30
分間が滞留時間となるので、この場合は同じ条件で2回
サンドミル処理することになる(合計滞留時間は60分
となる)。さらに、5!/分での処理の場合、滞留時間
が60分間となるようにするには5回サンドミル処理を
行うことになる。上記の如き条件で処理するとき、If
/分で1回処理するよりは、2!/分で2回、さらに好
ましくは5f/分で5回処理を繰り返すように、短時間
の多量処理で処理回数を数多く行う方が粉砕効率がより
改善されることが判った。
本願発明において使用する湿式微粉砕装置を第1図に示
した。
前述の如〈従来型のサンドミルはベッセルの1端に分離
機構(スクリーン)が設けられているので、余り多量の
分散液を流すことは狭い目開き分離スクリーンの目詰り
トラブルとなる。従って、このようなトラブルの発生を
伴わずに多量の分散液をベッセル(1)内を通過処理さ
せる方法として、ヘソセル一端の被粉砕物導入口(5)
と他端被粉砕物排出口(6)とを導管(7)で連結し、
回転撹拌翼体(3)に傾斜面を設ける等の工夫をしてメ
ディアと分散液とを一緒にベンセルから導管、再びベッ
セルに流れるように循環流を発生させる。後段に送る分
散液は導管の途中に設けた分離機構スクリーンのスリッ
ト(9)を通うしてメディアと分散液とを分離すること
によって実質上ベッセルの長さ方向に多量の分散液とメ
ディアを一緒に移動させながら循環流とすることで分離
機構スクリーン(8)に過剰な負荷を与えないようにし
ながら微粉砕できる装置を見出した。
そして、このようなサンドミルを第2図に示した如く複
数台直列に並べて固体物質の分散液を微粉砕処理すると
極めて効率良く固体物質の分散液が得られることが判っ
た。
なお、水分散液を再循環させる配管の断面形状は、丸形
でも多角形でも良い。再循環用配管の断面積が大き過ぎ
る場合には、再循環する水分散液の流速が遅くなり、そ
の結果よどみが生じて好ましくないので、流速は2〜4
0cm/秒、より好ましくは10〜30cm/秒の範囲
で調節されるのが望ましい 本願発明に係るベッセル内で水分散液を導入側から排出
側方向に強制移動させる方法は、例えば第3図に示すよ
うに、攪拌翼体(ディスク)o3)の片面を90度毎に
4分割した4分割面の中の右上の分割面の場合には、次
のようになされる。
即ち、周縁部から中央に向かって下がり且つ中央の稜線
部から回転方向に下がるような傾斜面を付け、そしてそ
の他の4分割面も同様な傾斜面側を付けた回転ディスク
を少なくとも1枚回転軸に取り付け、ベッセル内でディ
スクを回転させてポンプ作用を惹起せしめて水分散液を
導入側から排出側方向に強制移動させる方法によってな
される。
しかし、かかる実施例に限定されるものではな(、水分
散液を強制移動させ得る構造のものであれば適用が可能
であり、例えばプロペラ状の羽根等も使用できる。
なお、上記の実施例では片面に4個所の傾斜面を付けた
回転ディスクが用いられたが、かかる実施例に限定され
るものではなく、少なくとも2個所の傾斜面があれば、
本願発明の目的を果たすものである。
このように効率良く微粉砕化が行われる理由としては必
ずしも明らかではないが、以下のように推定される。
即ち、固体物質を粉砕する力は概ねメディアの質量×衝
突速度の2乗に相当し、メディアの動く速度は回転攪拌
翼体の回転によって決められる。
攪拌翼体の外周部と軸芯部とでは周速度に大差があり、
外周部に位置する被粉砕固体物質には粉砕力が強力に働
くが、それより内側、特に回転軸付近に位置する被粉砕
固体物質には粉砕作用が弱く働き、且つメディアと分散
液の攪拌、移動が弱いので、強い粉砕力を受けない状態
で排出口より排出される。しかしながら、これをベッセ
ル内、外で速い速度の循環流にすると強い粉砕力を受け
る頻度が高くなり、均一に微粉砕できるものと推定され
る。また、サンドミルで微小メディアを用いると微粉砕
化効率が極めて顕著に発揮される理由は必ずしも明らか
ではないが、同一ベッセル容積に対してメディア径の違
いによるメディア個数の違いが大きく寄与しているもの
と思われる。例えば、メディア径が1 、5mmφに対
して0.3mmφのものでは約75倍もメディア個数が
多くなり、このことが微粉砕化効率を高めているものと
推定される。
本発明の方法では上記湿式微粉砕装置を直列に複数台差
べて第2図の如き固体物質の分散液を連続的に粉砕処理
する際に、被粉砕分散液を′$備タンク(図示せず)よ
り毎分溝たり粉砕しようとする量の被粉砕分散液を定量
ポンプ(図示せず)等で最初の湿式微粉砕装置ベッセル
に圧送する。ベンセル内では回転撹拌翼体の回転によっ
てメディアと分散液が烈しく運動し、固体物質に衝突或
いは剪断力の作用によって固体物質が粉砕されると同時
にポンプ作用によってベッセル内と外の導管との間をメ
ディアと被粉砕物分散液が一緒に早い速度で循環する。
分離機+#(8)はベッセル外の導管の1部分にスリッ
トタイプのスクリーン(9)が設けられており、後段に
送出される量だけをスクリーニングされる構造になって
いる。従って、循環流には無関係であってスクリーンの
通過量は毎分粉砕される量、即ち後段に送り出される量
である。
また、該スクリーンはベッセル外の導管中に設けるので
スクリーン総開口面積を自由に、且つ広い面積に設計で
きる特徴がある。
なお、本発明の微粉砕方法は粉砕処理しようとする分散
液の流量や粉砕の最中で分散液の温度や粘度が変化する
ために、循環流量や分離スクリーンの通過性が変動し易
い欠点がある。この欠点を補うために最終段湿式粉砕装
置より排出された段階において圧力調節弁(1))及び
/又は流量調節弁02)でヘンセル内圧を0.1 Kg
/cm2以上、より好ましくはI〜3Kg/cm2稈度
に上げると、排出量のバラツキがなくなり、さらに粉砕
分散液中に含まれる気泡が小さくなり粉砕効率が著しく
高められる。
また、本願発明の湿式微粉砕装置で固体物質を粉砕処理
する際に、粗粉砕から微粉砕、次いで超微粉砕領域の3
段階程度に分けて粉砕メディアの直径を順次細かくした
ものを用いる方法、即ち、粗粉砕から超微粉砕の領域に
亘り固体物質の直径が細かくなるに従い、湿式粉砕装置
毎に粉砕メディアの直径を細かくして粉砕処理を行うと
微細化効率が極めて顕著に発揮されるものである。
なお、有機固体物質の水分散液を得るためには、各種の
分散剤が使用されるが、かかる分散剤としては、例えば
ポリビニルアルコール、メチルセルロース、カルボキシ
メチルセルロース、アクリル酸誘導体、スルホン酸誘導
体、無水マレイン酸誘導体、ゼラチン等の各種水溶性高
分子化合物やアニオン性界面活性剤、ノニオン性界面活
性剤等の各種界面活性剤の1種以上が適宜選択して使用
される。水分散液に添加する分散剤の量は必要最小量が
好ましい。ところが、直列に配置したサンドミルによっ
て湿式粉砕を進めていくと、有機固体物質の表面積が増
加し、粉砕の進行に伴い分散剤の必要量が増加する。従
って、粉砕工程の途中で適宜分散剤を追加添加すること
が好ましい。
他方、分散剤の種類によっては、水分散液の流動性が変
わることがある。例えばポリビニルアルコール系のもの
は分散力は大であるが添加量が多いとグイラタント流動
になる。また、メチルセルロース系のものは機械的剪断
力には弱い面があるがシュードプラスチック流動を示し
、高剪断速度時にも粘度が上昇しないといったメリット
があり、目開きの小さいメディア分離機構(スクリーン
)に対しても目詰りが起こらず、好ましい分散剤の1つ
である。
なお、本発明者等の検討結果によれば、サンドミルで処
理する際の有機固体物質水分散液に最初から全量の分散
剤を添加するより、分割して添加する方が好ましく、と
りわけ本発明の方法で3〜6台のミルを連続して使用し
湿式微粉砕する際には、サンドミルで粗粉砕する直前に
所要とする全分散剤の40〜60重量%を添加し、残り
の分散剤を微細化に伴って各ミルの直前で有機固体物質
水分散液中に分割添加することにより、発泡や増粘現象
(どろつき)が緩和され、細い分離機構での目詰り等の
トラブルが無く、且つ微細化が極めて効率良く達成され
ることが明らかとなった。勿論、分散剤の添加にあたっ
ては、上記した以外に更に分割して効率の上がる添加方
法を適宜採用することも可能である。
本発明の方法で微粉砕される有機固体物質としては、各
種の固体状有機物質が挙げられるが、特に感熱記録体や
感圧複写紙等の各種記録体において使用される有機顔料
、有機染料、有機顕色剤、有機熱可融性物質等の各種有
機物質の微細化に本発明の方法を適用すると極めて顕著
な効果が得られる。なお、温度を下げることによって固
体状になる液状物質の微細化にも本発明の方法を適用す
ることが可能である。
感熱記録体や感圧複写紙等で使用される有機染料として
は、各種のものが知られており、例えば無色ないし淡色
の塩基性染料としては、3.3−ビス(p−ジメチルア
ミノフェニル)−6−シメチルアミノフタリド、3,3
−ビス(p−ジメチルアミノフェニル)フタリド等トリ
アリルメタン系染料、4.4′ −ビス−ジメチルアミ
ノベンズヒドリルベンジルエーテル等のジフェニルメタ
ン系染料、ベンゾイルロイコメチレンブルー等のチアジ
ン系染料、3−メチル−スピロ−ジナフトピラン等のス
ピロ系染料、ローダミン−Bアニリノラクタム等のラク
タム系染料、3−ジメチルアミノ−7メトキシフルオラ
ン等のフルオラン系染料等が挙げられる。
また、塩基性染料と接触して呈色する有機顕色剤も各種
のものが公知であり、例えば4−tertブチルフェノ
ール、4−ヒドロキシジフェノキシド等のフェノール性
化合物、安息香酸、p −tertブチル安息香酸等の
芳香族カルボン酸、及びこれらフェノール性化合物、芳
香族カルボン酸と、例えば亜鉛、マグネシウム、アルミ
ニウム、カルシウム、チタン、マンガン、スズ、ニッケ
ル等の多価金属との塩等の有機酸性物質等が例示される
さらに、有機熱可融性物質としては、例えばステアリン
酸亜鉛、パラフィンワックス等のワックス類、ステアリ
ン酸アミド等の脂肪酸アミド類、2.2 −メチレンビ
ス(4−メチル−6−tertブチルフェノール)等の
ヒンダードフェノール類、2−(2’−ヒドロキシ−5
′−メチルフェニル)ペンヅトリアゾール等の紫外線吸
収剤、ジベンジルテレフタレート、1,2−ジ(3−メ
チルフェノキシ)エタン、1.2−ジフェノキシエタン
等の各種公知のものが挙げられる。
本発明の方法で得られる各種の固体物質水分散液は、固
体物質が極めて均一に超微細化されているため、不透明
な支持体の感熱記録体や透明性に冨んだ支持体の感熱記
録体等各種記録体をはじめ、巾広い技術分野で有効に活
用される。特に使用材料の超微細化要請の強い透明若し
くは半透明な支持体、例えばポリエステル、ポリカーボ
ネート、ポリプロピレン、ポリエチレン、ポリイミド、
ポリエーテルイミド、アラミド、セロファン、コンデン
サーペーパー、及びグラシン紙等が挙げられ、それらの
性状をそのまま活かす場合に有効であり、中でも不透明
度が30%以下の支持体に適用した場合には、極めて優
れた記録感度と優れた透明性のものかえられる。そして
用途としては、例えばOHP等に好ましく用いられるた
め、本発明の方法を適用して得られる好適な実施態様の
1つである。
なお、本発明の方法で微細化された固体物質の水分散液
を使用する限り、感熱記録体の製造方法等については特
に限定されず、各種公知の方法が適宜選択して適用され
る。
因みに、記録層中の塩基性無色染料と顕色剤の使用比率
は、一般に塩基性無色染料1重量部に対して1〜50重
量部、好ましくは1〜10重量部程度であり、記録層を
形成する塗液中には、塩基性無色染料と顕色剤の他に接
着剤成分として、例えばデンプン類、ヒドロキシエチル
セルロース、メチルセルロース、カルボキシメチルセル
ロース、ゼラチン、カゼイン、アラビアゴム、ポリビニ
ルアルコール、ジイソブチレン・無水マレイン酸共重合
体塩、スチレン・無水マレイン酸共重合体塩、エチレン
・アクリル酸共重合体塩、スチレン・アクリル酸共重合
体塩、天然ゴム系エマルジョン、スチレン・ブタジェン
共重合体エマルジョン、アクリロニトリル・ブタジェン
共重合体エマルジョン、メチルメタクリレート・ブタジ
ェン共重合体エマルジョン、ポリクロロプレンエマルジ
ョン、酢酸ビニルエマルジョン、エチレン・酢酸ヒニル
ユマルジョン等が添加される。また、顔料成分として、
例えば珪藻土、焼成珪藻土、カオリン、焼成カオリン、
ホワイトカーボン、炭酸マグネシウム、炭酸カルシウム
、酸化亜鉛、酸化アルミニウム、酸化チタン、酸化珪素
、水酸化アルミニウム、硫酸バリウム、硫酸亜鉛、タル
ク、クレー、焼成りレー等の無機顔料、スチレンマイク
ロボール、ナイロンパウダー、ポリエチレンパウダー、
尿素・ホルマリン樹脂フィラー、生澱粉粒等の有機顔料
等が添加されるが、勿論これらの例示物質に限定される
ものではなく、また、必要に応じて2種以上を併用する
ことも可能である。
さらに、記録層塗液中にはその他の各種助剤を適宜添加
することができ、例えばジオクチルスルフォコハク酸ナ
トリウム、ドデシルベンゼンスルフオン酸ナトリウム、
ラウリルアルコール硫酸エステル・ナトリウム塩、アル
ギン酸塩、脂肪酸金属塩等の分散剤、前述の如き各種熱
可融性物質、消泡剤、蛍光染料、着色染料等が挙げられ
る。
記録層の形成方法も特に限定されず、例えばエアーナイ
フコーター、ブレードコーター、ロールブレード、バー
コーター、グラビアコーター、多層コーター等の適切な
塗布装置により記録層形成塗液を支持体上に塗布・乾燥
する方法等によって形成される。塗液の塗布量について
も特に限定されず、一般に乾燥重量で2〜12g/rr
f程度、好ましくは3〜10 g /rrr程度の範囲
でgJillflffされる。
また、支持体についても特に限定されず、上質紙、ヤン
キーマシンで抄造した原紙、片面艶出し原紙、両面艶出
し原紙、キャストコート祇、アート紙、コート紙、中質
コート紙等の紙類、半透明合成繊維紙、透明合成樹脂フ
ィルム等が適宜使用される。また、記録層を塗布・乾燥
後、必要に応じてスーパーキャレンダー掛は等の平滑化
処理を施したり、記録層上に記録層を保護する等の目的
でオーバーコート層を設けたり、支持体上に下塗り層や
裏塗り層を設ける等感熱記録体分野における各種の公知
技術が付加できる。
かくして得られる本発明の感熱記録体は、均一に超微細
化された塩基性染料、顕色剤、熱可融性物質、顔料等の
水分散液を使用しているため、記緑感度が極めて良好で
あり高速記録に十分適応でき、また高い透明性を維持す
る上で優れた特性を保持しているものである。
「実施例」 以下に実施例を挙げて本発明をより具体的に説明するが
、勿論かかる実施例に限定されるものではない。又、特
に断らない限り例中の部及び%はそれぞれ「重量部」及
び「重量%」を表す。
実施例1 〔塩基性染料分散液の微粉砕処理〕 3−ジブチルアミノ−6−メチル−7−フェニルアミノ
フルオラン         100部1.2−ビス(
3−メチルフェノキシ)エタン250部 メチルセルロースの2%水溶液200 部ジ(トリデシ
ル)スルホコハク酸ソーダ10部水         
           200部からなる塩基性染料の
水分散液を分散槽で調製し、このようにして調製した水
分散液を本発明の湿式微粉砕装置(横型サンドミル、ベ
ッセル容量5042、ベッセル出入口を導管で連結、導
管部に分離機構スリットスクリーン)6台を直列に配置
し、1時間当たりの処理流量を120 kgとして、個
々のミルでは流量1800kg/時間を再循環させ乍ら
、6台のミルを連続通過させて微粉砕処理を行った。
このときの第1台目と第2台目のミルの条件は、直径1
.5〜1.7胴のガラスピーズを85%充填し、分i1
(機構スリットスクリーンの目開きが0.5mm、回転
攪拌翼体に傾斜面を有するディスク7枚を使用し、且つ
ディスクの外周速度が10m/秒となるように運転した
。さらに、第3台目と第4台目はガラスピーズの直径を
0.5〜0.7+++m、スリットスクリーンの目開き
を0.15mmとし、第5台目、第6台日用のガラスピ
ーズとしては更に細かい直径0゜2〜0.25mmのも
のを使用し、スリットスクリーンの目開きを0.06m
mとした。また、最終段6白目サンドミルのスリットス
クリーン後の排出パイプに圧力調節弁(1))により、
その部分の圧力を1.5 kg/cm2に設定し、この
圧力調節弁の後段に流量調節弁02)を併設して排出量
を調節した。かくして直列湿式連続粉砕を行い、表−1
に示すような平均粒子径と累積90%時の粒子径を有す
る塩基性染料の水分散液を得た。
なお、累積90%時の粒子径とは、個々の粒子の直径を
測定し、かかる測定結果から粒子径の分布を描き、最小
の分布幅から順次に累積していき、全粒子数に対して9
0%になった場合の粒子径である。また、全粒子数に対
して50%になったときの粒子径が平均粒子径である。
実施例2 実施例1において、粉砕処理する水分散液の流量を1.
80 kg/時間とした以外は実施例1と同様にして連
続粉砕を行い、表−1に示すような平均粒子径と累積9
0%時の粒子径を存する塩基性染料の水分散液を得た。
実施例3 実施例1において、個々のミルで回転攪拌翼体の傾斜を
変え再循環させる流量を600 kg/時間とした以外
は実施例1と同様にして連続粉砕を行い、表−1に示す
ような平均粒子径と累積90%時の粒子径を有する塩基
性染料の水分散液を得た。
比較例1 実施例1において、使用した6台のサンドミルを従来よ
り一般に用いられている横型サンドミル(ベッセル容1
jt50 n、平均回転ディスク、分t%i1機構、ギ
ャップセパレートスクリーン)を使用し、メディアの材
質及び直径、充填率、スクリーン目間き、処理流量等は
実施例1と同様にして直列連続粉砕処理を行ったところ
、約10分後からベッセル内圧力が徐々に高くなり30
分後には3〜4 kg/Cl12に迄上り、6台目ミル
より排出された粉砕分散液中に多量の破壊ガラス片が含
まれていたので処理を中止した。
比較例2 比較例1において、用いるメディアとギャップセパレー
トスクリーンの目開きを第5台目、第6台目ともに第3
台目、第4台と同じ直径0.5〜0゜7鵬、ギャップセ
パレートスクリーンの目開きを0.15mmに変更した
以外は比較例1と同様にして連続粉砕を行い、表−1に
示すような平均粒子径と累積90%時の粒子径を有する
塩基性染料の水分散液を得た。
実施例4 [顕色剤分散液の微粉砕処理] 4−ヒドロキシ−4゛ −イソプロポキシジフェニルス
ルホン           400部メチルセルロー
スの2%水溶液    200部ジオクチルスルホコハ
ク酸ソーダ    5部水             
       250部からなる顕色剤の水分散液を分
散槽で調製し、調製を終えた水分散液を、実施例1で適
用した塩基性染料分散液の場合と同様の条件で、流量1
20kg/時間でもって6台のミルを連続通過させて微
粉砕処理を行い、表−1に示すような平均粒子径と累積
90%時の粒子径を有する顕色剤水分散液を得た。
実施例5 実施例4において、粉砕処理する水分散液の通過流量を
180 kg/時間とした以外は実施例4と同様にして
水分散液の微細化処理を行った。得られた顕色剤水分散
液の平均粒子径と累積90%時の粒子径を表−1に示し
た。
比較例3 比較例1と同じサンドミル装置及び方法で顕色剤分散液
を120 kg/時間で流し粉砕処理を行ったところ、
比較例1と同様に圧力が高くなり、メディアが破壊して
流出したので処理を中止した。
比較例4 比較例2と同じサンドミル装置及び方法で顕色剤分散液
を120 kg/時間で流し粉砕処理して表=1に示す
ような平均粒子径と累積90%時の粒子径を有する顕色
剤分散液の水分散液を得た。
実施例6 (無機質顔料分散液の微粉砕処理) カオリン(EMC社製、 on−90)      1
00部ポリアクリル酸ソーダー        1部水
                     100部
からなる顔料の水分散液を分散槽で調製し、この分散液
を実施例1で適用した塩基性染料分散液の場合と同様の
条件で、流量120 kg/時間でもって6台のミルを
連続通過させて微粉砕処理を行い、表−1に示すような
平均粒子径と累積90%時の粒子径を有する無機質顔料
水分散液を得た。
比較例5 比較例2と同じサンドミル装置及び方法により無機質顔
料分散液を120 kg/時間で流し、粉砕処理して表
−1に示すような平均粒子径と累積90%時の粒子径を
有する無機質顔料分散液の水分散液を得た。
なお、染料、顕色剤及び無機顔料の平均粒子径、累積9
0%時の平均粒子径はMICROTRACPARTIC
LE 5IZE ANALYZER(日機装株式会社製
〕を用いて測定した。また粉砕時ショートバスに起因す
る粗大粒子混在比の目安として、平均粒子径を(a)、
累積90%時の粒子径を(b)とし、b / aでもっ
て表現し、その結果を表−1に示した。
実施例7〜8 実施例4で得た顕色剤分散液712部、この液にメチル
メタクリレート・アクリルアミド共重合体の10%水溶
液を1000部と無定形酸化珪素100部を分散槽でプ
ロペラミキサーを使用して十分にPil拌を行い、さら
にステアリン酸亜鉛の30%水分散液30部を加えた後
に、実施例1及び実施例2の方法で得られた塩基性染料
の水分散液826部を添加(それぞれ実施例7及び実施
例8)、攪拌して感熱記録紙用塗被液を調製した。
次いで、米坪50g/n(の原紙に無定形酸化珪素10
0部、スチレン・ブタジェン共重合体ラテンクスIO部
(固形分)、カルボキシメチルセルロース2部(固形分
)からなる35%濃度の水分散液をブレードコーターで
乾燥後の塗被量が7g/n(となるように塗被、乾燥し
た。この塗被層面」二に上記の感熱記録紙用塗被液をブ
レードコーターで乾燥後の塗被量が32g/ビとなるよ
うに塗被、乾燥し、さらにスーパーキャレンダーで感熱
記録層表面のベック平滑度が450秒となるように平滑
化処理を施し、2種類の感熱記録紙を得た。
実施例9〜10 実施例7.8において、感熱記録紙用塗被液量を乾燥後
の塗被量として2.6g/rdに減量した以外は実施例
7.8と同様にして2種類の感熱記録紙を得た。
実施例1)〜I2 実施例7.8におで、実施例4で得た顕色剤分散液を4
63部、実施例1及び実施例2の方法で得られた塩基性
染料の水分散液を537部に減量した以外は(それぞれ
実施例1)及び実施例12)実施例7.8と同様にして
2種類の感熱記録紙を得た。
比較例6 実施例7において、実施例4の顕色剤水分散液の代わり
に比較例4で得られた分散液、実施例1の塩基性染料水
分散液の代わりに比較例2で得られた分散液を用いた以
外は実施例7と同様にして感熱記録紙を得た。
比較例7 比較例6において、感熱記録紙用塗被液量を乾燥後の塗
被量として3.5g/iに増量した以外は比較例6と同
様にして感熱記録紙を得た。
比較例8 比較例6において、比較例4で得た顕色剤分散液を46
3部、比較例2の方法で得られた塩基性染料の水分散液
を537部に減量した以外は比較例6と同様にして感熱
記録紙を得た。
実施例13 実施例4で得た顕色剤分散液625部、この液にポリビ
ニルアルコール(PV八−105) 6.7%水溶液1
450部と酸化珪素(徳山曹達社製、ファインシールT
)  100部を混合しサンドミルで平均粒子径が0゜
35μmまで粉砕した分散液を加え、次にSBRラテッ
クス(濃度48%Dow−1571) 400部、更に
実施例1で得た塩基性染料の水分散液365部を混合、
よく攪拌して感熱記録層用塗被液を調製した。なお、該
塗被液中の固体物質の平均粒子径は0.29μmであっ
た。
このようにして得た塗被液を不透明度30%の合成紙(
玉子油化社製、ユボTPG−60)上に乾燥後の重量が
4.5 g/rdとなるようにメイヤバーで塗布、乾燥
し感熱記録層を形成した。
次に、実施例6で得た無機顔料分散液200部と、バイ
ンダーとしてアセトアセチル基変性ポリビニルアルコー
ル(日本合成化学社製、ゴーセフアイマーZ−200)
 10%水溶液500部、ステアリン酸亜鉛(中東油脂
社製、ハイドリンz−7)乳化液(30%)55部を混
合、攪拌して調製した保護層用塗被液を前記の感熱記録
層上に乾燥後の塗被量が3.0g/イとなるようにメイ
ヤーバーで塗布、乾燥して半透明感熱記録体を得た。
実施例14 実施例13において、支持体として不透明度15%の合
成紙(ユポAEX−100(A) ’)を用いた以外は
、実施例13と同様にして半透明感熱記録体を得た。
比較例9 実施例13において、実施例4の顕色剤分散液に代えて
比較例4で得た顕色剤分散液を用い、実施例1の塩基性
染料分散液に代えて、比較例2で得た塩基性染料分散液
を用いた以外は実施例13と同様にして半透明感熱記録
体を得た。
比較例10 比較例9において、支持体として不透明度15%の合成
紙(ユボAEX−100(A) )を用いた以外は、比
較例9と同様にして半透明感熱記録体を得た。
実施例15 実施例13において、支持体として厚さ50μmの透明
なポリエチレンテレフタレートフィルム(光波長500
nmにおける透過率が92%)を用い、感熱記録層用塗
料の乾燥後の塗被量を5g/mとした以外は同様にして
透明感熱記録体を得た。
比較例1) 比較例9において、支持体として厚さ50μmの透明な
ポリエチレンテレフタレートフィルム(光波長500n
mにおける透過率が92%)を用いた以外は、比較例9
と同様にして透明感熱記録体を得た。
(感熱記録体の評価〕 かくして得られた普通紙を支持体に用いた感熱記録体9
種類(実施例7〜12、比較例6〜8)については、市
販の感熱ファクシミリ (商品名:NEFAX−2、日
本電気社製)で記録し、その記録濃度をマクベス濃度計
で測定して、得られた結果を表−2に示した。また、合
成紙を支持体に用いた感熱記録体4種類(実施例13〜
14、比較例9〜10)については、透明性をJIS 
P8138に基づき、不透明度として測定(数値は小さ
い程透明)し、感熱プリンター(三洋電機社製5CT−
P60、ビデオプリンター)で記録を行い、その記録濃
度をマクベス濃度計で測定し、得られた結果を表−2に
示した。
更に、透明なポリエチレンテレフタレートフィルムを支
持体に用いた感熱記録体2種類(実施例I5、比較例1
))については、透明性を可視紫外分光光度計(日本分
光■製UVIDEC−505)を用いて測定波長500
nmにおける光の透過率を調べ、感熱プリンター(SO
NY■製、IIP−701型テレビプリンター)で記録
して、その記録濃度をマクベス濃度計で測定し、得られ
た結果を表−2に示した。
「効果」 表−1、表−2の結果から明らかなように、本発明の装
置と方法で微粉砕するとメディア分離機構(スクリーン
)のトラブルもなく、その平均粒子径は極めて小さく、
粗大粒子の混在比率も少なく、且つ微粉砕後の染料及び
/又は顕色剤を使用して製造された感熱記録体は優れた
記録濃度を示した。とりわけ、透明もしくは半透明な支
持体に適用すると、特に透明性に秀れた感熱記録体を得
ることができた。
【図面の簡単な説明】
第1図は本発明の湿式微粉砕装置の主要部側面を展開し
た図である。 第2図は本発明の微粉砕方法の概略フローシートである
。 第3図はベッセル内で水分散液を導入側から排出側方向
に強制移動させるための傾斜面を付けた回転ディスクの
平面と側面を示す図である。 (1)−ベッセル (2)一回転駆動軸 (3)一回転撹拌翼体 (4)−メディア (5)−被粉砕物導入口 (6)−被粉砕物排出口 (7)−導管 (8)−分M機構 (9)−スリットスクリーン 微粉砕装置(ベッセル) 圧力調節弁 02)−流量調節弁 回転ディスク 傾斜面

Claims (9)

    【特許請求の範囲】
  1. (1)円筒型ベッセル内で駆動軸を介して回転攪拌翼体
    を回転させ、メディアと被粉砕物(固体物質)とを強攪
    拌することによって粉砕する湿式微粉砕装置において、
    ベッセル1端の被粉砕物導入口と他端排出口とを導管で
    連結し、回転攪拌翼体の回転によって、ベッセル内のメ
    ディアと被粉砕物とを導入口側から排出口側に強制移動
    させ、次に導管を経由して導入口に戻る循環流を発生さ
    せる機構を備え、且つ導管の途中にメディアと被粉砕物
    とを分離させるスクリーンを設けたことを特徴とする固
    体物質用湿式微粉砕装置。
  2. (2)回転攪拌翼体の片面に、周縁部から中央に向かっ
    て下がり且つ稜線部から回転方向に下がるような傾斜面
    を少なくとも2個所設けた回転翼体(ディスク)を用い
    るか、或いはプロペラ状の羽根を少なくとも1枚取り付
    けて、攪拌翼体(ディスク)や羽根を回転させることに
    より、水分散液を導入側から排出側方向に強制移動させ
    るようにした請求項(1)記載の固体物質用湿式微粉砕
    装置。
  3. (3)スクリーンが目開き0.12mm以下のスリット
    型スクリーンである請求項(1)記載の固体物質用湿式
    微粉砕装置。
  4. (4)請求項(1)、(2)又は(3)記載の湿式微粉
    砕装置を複数台直列に配置して固体物質の水分散液を連
    続的に湿式微粉砕する方法において、前段の湿式微粉砕
    装置のスクリーンを通過した水分散液を後段の湿式微粉
    砕装置へ逐次送出するようにしたことを特徴とする固体
    物質の湿式微粉砕方法。
  5. (5)湿式微粉砕装置内における固体物質の水分散液の
    通過量を最終段湿式微粉砕装置の直後に付設した圧力及
    び/又は流量コントロール弁で調節する請求項(4)記
    載の湿式微粉砕方法。
  6. (6)水分散液の固体物質が顔料、染料、有機顕色剤、
    有機熱可融性物質、又はこれらの混合物である請求項(
    4)又は(5)記載の湿式微粉砕方法。
  7. (7)請求項(4)又は(5)記載の湿式微粉砕方法で
    微粉砕された有機固体物質の微粒子を含む水分散液を塗
    布した記録体。
  8. (8)記録体が感熱記録体である請求項(7)記載の記
    録体。
  9. (9)記録体が透明若しくは半透明である支持体からな
    る請求項(7)又は(8)記載の記録体。
JP2129884A 1990-05-18 1990-05-18 固体物質用湿式微粉砕装置、固体物質の微粉砕方法及び固体物質微粒子の水分散液を塗布した記録体 Pending JPH0422445A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129884A JPH0422445A (ja) 1990-05-18 1990-05-18 固体物質用湿式微粉砕装置、固体物質の微粉砕方法及び固体物質微粒子の水分散液を塗布した記録体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129884A JPH0422445A (ja) 1990-05-18 1990-05-18 固体物質用湿式微粉砕装置、固体物質の微粉砕方法及び固体物質微粒子の水分散液を塗布した記録体

Publications (1)

Publication Number Publication Date
JPH0422445A true JPH0422445A (ja) 1992-01-27

Family

ID=15020721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129884A Pending JPH0422445A (ja) 1990-05-18 1990-05-18 固体物質用湿式微粉砕装置、固体物質の微粉砕方法及び固体物質微粒子の水分散液を塗布した記録体

Country Status (1)

Country Link
JP (1) JPH0422445A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508447A (ja) * 2013-02-28 2016-03-22 サン・ケミカル・コーポレーション 連続的微細メディア含有粉砕プロセス
JP2019508533A (ja) * 2016-01-27 2019-03-28 クローノス インターナショナル インコーポレイテッドKronos International, Inc. 狭い粒径分布を有する、硫酸塩法によって得られる二酸化チタン顔料の製造

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508447A (ja) * 2013-02-28 2016-03-22 サン・ケミカル・コーポレーション 連続的微細メディア含有粉砕プロセス
JP2019063801A (ja) * 2013-02-28 2019-04-25 サン・ケミカル・コーポレーション 連続的微細メディア含有粉砕プロセス
US10406529B2 (en) 2013-02-28 2019-09-10 Sun Chemical Corporation Continuous contained-media micromedia milling process
JP2019508533A (ja) * 2016-01-27 2019-03-28 クローノス インターナショナル インコーポレイテッドKronos International, Inc. 狭い粒径分布を有する、硫酸塩法によって得られる二酸化チタン顔料の製造

Similar Documents

Publication Publication Date Title
CN109098042A (zh) 防伪热敏纸及其制备方法
US20040096767A1 (en) Process for producing toner particles
JP2008018619A (ja) 感熱記録体
CN100423951C (zh) 增敏剂分散体及其制造方法、热敏记录体用混合分散体的制造方法及热敏记录体
JPH0422445A (ja) 固体物質用湿式微粉砕装置、固体物質の微粉砕方法及び固体物質微粒子の水分散液を塗布した記録体
JP2846403B2 (ja) 湿式微粉砕装置、この装置を用いる固体物質の微粉砕方法、及び固体物質の水分散液を塗布した記録体
JPH03275154A (ja) 固体物質の湿式微粉砕方法及び固体物質微粒子の水分散液を塗布した記録体
JP2543596B2 (ja) 感熱記録材料の製造方法
JPH03169355A (ja) 有機固体物質の湿式微粉砕方法及び有機固体物質微粒子の水分散液を塗布した記録体
JP2007210328A (ja) 感熱記録体
JP2740677B2 (ja) 有機固体物質の湿式微粉砕法,有機固体物質微粒子の水分散液,及び有機固体物質微粒子の水分散液を塗布した記録体。
JP2007223090A (ja) 感熱記録層用塗液の製造方法
JP2601887B2 (ja) 有機固体物質の湿式微粉砕法及び有機固体物質微粒子の水分散液を塗布した記録体
CN104742556B (zh) 以硬脂酸酰胺为主要成分的热敏记录体用敏化剂微粒分散体的制造方法
JP3047490B2 (ja) 有機顕色剤水分散液の調製方法
JPH0226648A (ja) 有機固体物質の湿式微粉砕法,有機固体物質微粒子の水分散液,及び有機固体物質微粒子の水分散液を塗布した記録体
JPH02103179A (ja) 感熱記録体の製造方法
JPH03155983A (ja) 感熱記録体の製造方法
JPH0679968A (ja) 感熱記録材料の製造方法
JPH0122157B2 (ja)
JP2010240860A (ja) 感熱記録体
US5747414A (en) Thermal recording sheet
JPH06210953A (ja) 感熱記録材料の製造方法
JP2011005795A (ja) 感熱記録体
JP5559584B2 (ja) 感熱記録材料