JPH04206901A - Laminated thermistor - Google Patents

Laminated thermistor

Info

Publication number
JPH04206901A
JPH04206901A JP33904390A JP33904390A JPH04206901A JP H04206901 A JPH04206901 A JP H04206901A JP 33904390 A JP33904390 A JP 33904390A JP 33904390 A JP33904390 A JP 33904390A JP H04206901 A JPH04206901 A JP H04206901A
Authority
JP
Japan
Prior art keywords
thermistor
constant
temperature
resistance
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33904390A
Other languages
Japanese (ja)
Other versions
JP3047466B2 (en
Inventor
Hirobumi Sunahara
博文 砂原
Yukio Sakabe
行雄 坂部
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2339043A priority Critical patent/JP3047466B2/en
Publication of JPH04206901A publication Critical patent/JPH04206901A/en
Application granted granted Critical
Publication of JP3047466B2 publication Critical patent/JP3047466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize resistance temperature characteristics on a low temperature side to stably prevent a rush current in a wide temperature range by means of only one laminated thermistor by laminating a resistor layer with a large thermistor constant B and a resistor layer with a small thermistor constant B. CONSTITUTION:The title laminated thermistor is formed by lamination of two kinds or more of resistor layers with respective thermistor constants B represented in the range of 50<=B<6000 and with different resistance temperature characteristics and combined resistance temperature characteristics are set at 2000<=B<=5000 in the range of a temperature T of 50 deg.C<=T<=70 deg.C and at 50<=B<=2500 in the range of -10 deg.C<=T<50 deg.C. When a resistor layer 14 with a small thermistor constant B and a resistor layer 16 with a large thermistor constant are connected in parallel, the combined resistance temperature coefficients of two resistor layers are arranged in an almost straight line in a certain temperature range. Therefore, it is possible to obtain a laminated thermistor stable in resistance temperature characteristics especially on a low temperature side and useful to prevent a rush current. As a result, it is possible to solve such hitherto known complicatedness in use as that in combining the thermistor with a fixed resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は積層サーミスタに関し、特にたとえば突入電
流防止用積層サーミスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminated thermistor, and particularly to a laminated thermistor for preventing rush current.

〔従来技術〕[Prior art]

スイッチング電源では、交流入力を直接ダイオードによ
って整流し、それを電解コンデンサで平滑化する。その
ため、スイッチング時に電解コンデンサにサージ電流が
流れ、これを突入電流という。この突入電流はたとえば
百数十アンペアという大電流であり、スイッチ接点やダ
イオードの劣化を早めてしまう。この突入電流を抑制す
る方法の1つとして、従来より、ザーミスタの動特性を
利用するものがある。ずなわぢ、ザーミスタは常温で数
Ω〜数十Ωの抵抗値を有し、スイッチがオンされたとき
この抵抗値によって突入電流を抑制する。また、ザーミ
スタはスイッチング電源の安定状態では自己発熱し、そ
の抵抗値は常温の1/10程度になるので、電力ロスな
どの支障は生じない。
In a switching power supply, AC input is directly rectified by a diode and smoothed by an electrolytic capacitor. Therefore, a surge current flows through the electrolytic capacitor during switching, and this is called an inrush current. This rush current is a large current of, for example, hundreds of amperes, and accelerates the deterioration of switch contacts and diodes. One of the conventional methods for suppressing this rush current is to utilize the dynamic characteristics of the thermistor. The thermistor has a resistance value of several ohms to several tens of ohms at room temperature, and this resistance value suppresses inrush current when the switch is turned on. Further, the thermistor self-heats when the switching power supply is in a stable state, and its resistance value is about 1/10 of that at room temperature, so problems such as power loss do not occur.

このような突入電流防止用サーミスタとして、常温付近
で使用できるものとしては、Mn−N系、M−Ni−C
o系またはMn−Ni =Co系などの酸化物があり、
また、800℃前後で使用できるものとしてはZr−Y
系酸化物などがある。
As such inrush current prevention thermistors, Mn-N type and M-Ni-C are usable at room temperature.
There are oxides such as o-based or Mn-Ni = Co-based,
In addition, Zr-Y can be used at around 800℃.
There are various types of oxides.

これらのザーミスタは温度係数が大きい上、形状や抵抗
値の自由度が大きく、また安価である等の利点を有して
いる。
These thermistors have advantages such as a large temperature coefficient, a large degree of freedom in shape and resistance value, and low cost.

[発明が解決しようとする課題] ごのような半導体特性を利用するサーミスタの抵抗温度
特性は以下の式で表される。
[Problems to be Solved by the Invention] The resistance-temperature characteristics of a thermistor that utilizes the semiconductor characteristics described above are expressed by the following equation.

R,=R2exp  ((1/T+ −1/Tz )B
IT、、T2 :  温度(k) R,、R2:  温度T、、T2における抵抗値B(k
)   :  ・す゛−ミスタ定数この式からよく分か
るように、従来のサーミスタでは、抵抗温度特性が直線
的でないため、特に低温側での抵抗値が危、激に増大し
てしまう。したがって、従来のサーミスタを突入電流防
止用として用いるには、低温側での抵抗値を低く安定化
させる必要がある。そのため、従来では、数種類の負特
性サーミスタと数種類の定抵抗体とを組み合わせたり、
または、サーミスタ定数Bに制約を設けて用いなければ
ならない等、実用性に問題があった・ それゆえに、この発明の主たる目的は、低温側において
も抵抗温度特性が安定な、積層サーミスタを提供するご
とである。
R,=R2exp ((1/T+ -1/Tz)B
IT,,T2: Temperature (k) R,,R2: Resistance value B(k) at temperature T,,T2
) : ・Su-mister constant As can be clearly seen from this equation, in conventional thermistors, the resistance temperature characteristic is not linear, so the resistance value increases dangerously and dramatically, especially at low temperatures. Therefore, in order to use a conventional thermistor for inrush current prevention, it is necessary to stabilize the resistance value at a low temperature side. Therefore, in the past, several types of negative characteristic thermistors and several types of constant resistance elements were combined,
Alternatively, the thermistor constant B must be used with restrictions, which poses problems in practicality. Therefore, the main purpose of the present invention is to provide a laminated thermistor with stable resistance-temperature characteristics even at low temperatures. This is true.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、簡単にいえば、それぞれのサーミスタ定数
Bが50≦B<6000の範囲で示されかつ抵抗温度特
性の異なる抵抗体層を2種類以−1−積層してなり、合
成した抵抗温度特性を、温度Tの範囲50℃≦T≦70
℃で2000≦B≦5000でありかつ一層 O’C≦
T〈50℃の範囲で50≦B≦2500に設定した、積
層サーミスタである。
To put it simply, this invention consists of laminating two or more types of resistor layers each having a thermistor constant B in the range of 50≦B<6000 and having different resistance-temperature characteristics. Characteristics, temperature T range 50℃≦T≦70
℃ 2000≦B≦5000 and even more O'C≦
This is a laminated thermistor in which T is set to 50≦B≦2500 in the range of 50°C.

〔作用] たとえばサーミスタ定数Bの大きい抵抗体層とサーミス
タ定数Bの小さい抵抗体層とを積層すると、合成抵抗温
度特性が必要な温度範囲でほぼ直線となる。
[Function] For example, when a resistor layer with a large thermistor constant B and a resistor layer with a small thermistor constant B are laminated, the combined resistance-temperature characteristic becomes almost a straight line in the required temperature range.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、抵抗温度特性がほぼ直線になり安定
するので、とりわけ低温側における抵抗温度特性が安定
化され、1つの積層サーミスタだけで広い温度範囲にお
いて安定して突入電流を防止でき、従来のような固定抵
抗との組み合わせ等の使用」−の煩雑さが解消する。
According to this invention, the resistance-temperature characteristic is almost linear and stable, so the resistance-temperature characteristic is stabilized, especially on the low temperature side, and inrush current can be stably prevented over a wide temperature range with just one laminated thermistor. This eliminates the complexity of using a combination with a fixed resistor such as

この発明の上述の目的、その他の目的、特徴および利点
は、図面を参照して行う以下の実施例の詳細な説明から
一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

C実施例〕 第1図を参照して、この実施例の突入電流防止用の積層
サーミスタ10はサーミスタチップ12を含む。サーミ
スタチップ12は、サーミスタ定数Bの小さい抵抗体層
14およびその上に積層されたサーミスタ定数Bの大き
い抵抗体層16を含む。
Embodiment C] Referring to FIG. 1, a multilayer thermistor 10 for preventing rush current according to this embodiment includes a thermistor chip 12. The thermistor chip 12 includes a resistor layer 14 with a small thermistor constant B and a resistor layer 16 with a large thermistor constant B laminated thereon.

低サーミスタ定数の抵抗体層14は、その−力士面上に
内部電極18が形成された複数のサーミスタ基板20を
含み、第1図図示のように内部電極18が互い違いにな
るように、サーミスタ基板20を積層することによって
形成される。
The low thermistor constant resistor layer 14 includes a plurality of thermistor substrates 20 having internal electrodes 18 formed on their - sumo surfaces, and the thermistor substrates 20 are arranged such that the internal electrodes 18 are alternated as shown in FIG. It is formed by laminating 20 layers.

同じように、低サーミスタ定数の抵抗体層14の上に積
層された高サーミスタ定数の抵抗体層16は、その−力
士面上に内部電極18が形成された複数のサーミスタ基
板22を含む。そして、内部電極18が互い違いに配置
されるように、サーミスタ基板22を積層して、抵抗体
層1Gが形成される。
Similarly, the high thermistor constant resistor layer 16 laminated on the low thermistor constant resistor layer 14 includes a plurality of thermistor substrates 22 on which internal electrodes 18 are formed on the - sumo wrestler surface. Then, the thermistor substrates 22 are stacked so that the internal electrodes 18 are arranged alternately to form the resistor layer 1G.

なお、抵抗体層14および16のサーミスタ定数Bはと
もに50≦B<6000の範囲に設定される。
Note that the thermistor constants B of the resistor layers 14 and 16 are both set in the range of 50≦B<6000.

このようにして得られるサーミスタチップ12には、内
部電極18が露出する2側面から上下主面の一部にかけ
て、それぞれ断面コ字状の外部電極24が形成される。
In the thermistor chip 12 obtained in this manner, external electrodes 24 each having a U-shaped cross section are formed from the two side surfaces where the internal electrodes 18 are exposed to part of the upper and lower main surfaces.

この外部電極24にまって抵抗体層14および20が並
列接続される。
Resistor layers 14 and 20 are connected in parallel across this external electrode 24.

このように、サーミスタ定数Bの小さい抵抗体層]4と
サーミスタ定数の大きい抵抗体層16とを並列接続する
ことによって、その合成抵抗温度係数は一定の温度範囲
でほぼ直線となる。したがって、特に低温側での抵抗温
度特性が安定し、突入電流防止用として有用な積層サー
ミスタが得られる。
In this way, by connecting the resistor layer 4 with a small thermistor constant B and the resistor layer 16 with a large thermistor constant in parallel, the combined temperature coefficient of resistance becomes approximately a straight line within a certain temperature range. Therefore, a multilayer thermistor with stable resistance-temperature characteristics particularly on the low temperature side and useful for preventing rush current can be obtained.

実ル1 まず、Ca / M n系酸化物からなる低サーミスタ
定数の抵抗材料に、Ca C03、M n CCL+を
所定量秤量混合した後、900℃で2時間仮焼して、そ
の仮焼物にバインダ、可塑剤および純水を加えて十分に
混練してスラリを作成した。ドクタブレード法を用いて
スラリをテープキャスティングし、厚さ0.3mmの低
ザーミスタ定数のグリーンテープを作成した。ごのグリ
ーンテープの一方主面上に所定間隔毎に長方形の所定面
積を有する内部電極ペースト層18′を塗布した。なお
、この内部電極ペースI・とじては、ptペーストを用
いた。そして、その一方端面に内部電極ペースト層18
′が露出しかつそれぞれ同じ大きさとなるように、グリ
ーンテープを切断して、複数のグリーンテープユニット
20′を作成した。そして、グリーンテープユニット2
0′を、第2図図示のように内部電極ペースト層18′
が互い違いになるよ・うに所定枚数積層した。
Example 1: First, a predetermined amount of Ca C03 and M n CCL+ was mixed into a resistance material with a low thermistor constant made of Ca/M n-based oxide, and then calcined at 900°C for 2 hours to form the calcined product. A binder, plasticizer, and pure water were added and sufficiently kneaded to create a slurry. The slurry was tape cast using a doctor blade method to produce a 0.3 mm thick green tape with a low thermistor constant. An internal electrode paste layer 18' having a rectangular predetermined area was applied at predetermined intervals on one main surface of each green tape. Note that PT paste was used for this internal electrode paste I. Then, an internal electrode paste layer 18 is formed on one end surface of the internal electrode paste layer 18.
A plurality of green tape units 20' were produced by cutting the green tape so that the green tape units 20' were exposed and each had the same size. And green tape unit 2
0' to the internal electrode paste layer 18' as shown in FIG.
A predetermined number of sheets were laminated so that the sheets were alternated.

ついで、Mn−Ni系酸化物からなる高サーミスタ定数
の抵抗材料に、MnC0a 、N1COa、Coco:
+およびAlCO3を所定量秤量混合し、先と同様の方
法によって、厚さ0.03mmのグリーンテープを作成
し、その−力士面」―に所定間隔で所定面積の内部電極
ペースト層18′を形成した。そして、その一方端面に
内部電極ペースト層18′が露出しかつそれぞれ同じ大
きさとなるように、グリーンテープを切断して、複数の
グリーンテーブユニツl−22’を作成した。そして、
グリーンテープユニット22′を、第2図図示のように
内部電極ペースト層18′が互い違いになるように所定
枚数積層した。
Next, MnC0a, N1COa, Coco:
Weigh and mix predetermined amounts of + and AlCO3, create a green tape with a thickness of 0.03 mm in the same manner as above, and form internal electrode paste layers 18' of a predetermined area at predetermined intervals on the - sumo wrestler surface. did. Then, the green tape was cut so that the internal electrode paste layer 18' was exposed on one end face and each had the same size to create a plurality of green tape units 1-22'. and,
A predetermined number of green tape units 22' were laminated so that the internal electrode paste layers 18' were alternated as shown in FIG.

このようにして準備した抵抗体グリーンユニットを高サ
ーミスタ定数のものが低ザーミスク定数のものの」二に
なるように積層して、熱圧着して、グリーンユニット1
2′を得た。このグリーンテープl−12′を1200
℃で2時間一体焼成し、第1図図示のザーミスタチップ
12を得た。
The resistor green units prepared in this way are stacked so that the one with a high thermistor constant is twice that of the one with a low thermistor constant, and the green unit 1 is bonded with heat.
I got 2'. This green tape l-12' is 1200
The product was integrally fired at .degree. C. for 2 hours to obtain the thermistor chip 12 shown in FIG.

その後、ザーミスタチップ12の両端面にAgペースト
を500℃で焼き付けることによって外部電極24を形
成した。
Thereafter, external electrodes 24 were formed on both end surfaces of the thermistor chip 12 by baking Ag paste at 500°C.

なお、−船釣に、積層ザーミスタ10の抵抗温度特性を
平滑化するには、抵抗体層14および16の抵抗値を、
平滑化を行う温度範囲付近で同程度の大きさにする必要
がある。しかし、この実施例の抵抗体層14および16
としてそれぞれ使用されたC a / M n系酸化物
とMn−Ni−Co系酸化物との抵抗値は、常温付近で
2桁程度の差がある。したがって、この差を解消するた
めに、抵抗体層14の各サーミスタ基板20(第1図)
の厚さを抵抗体層16の各サーミスタ基板22の厚さよ
り10倍以上厚くしている。
In addition, in order to smooth the resistance-temperature characteristics of the laminated thermistor 10 for boat fishing, the resistance values of the resistor layers 14 and 16 are
It is necessary to have a similar size around the temperature range in which smoothing is performed. However, in this embodiment, resistor layers 14 and 16
The resistance values of the Ca/Mn-based oxides and the Mn-Ni-Co-based oxides, which were respectively used as oxides, have a difference of about two orders of magnitude at room temperature. Therefore, in order to eliminate this difference, each thermistor substrate 20 (FIG. 1) of the resistor layer 14 is
The thickness of the resistor layer 16 is made ten times or more thicker than the thickness of each thermistor substrate 22 of the resistor layer 16.

また、サーミスタ定数B=6000以上の材料は比抵抗
が100にΩ・cm以上となり、規格寸法の自由度が制
限される。このため、サーミスタ定数Bとしては、0≦
B<6000の範囲で利用するのが望ましい。
Further, a material with a thermistor constant B=6000 or more has a specific resistance of 100 Ω·cm or more, which limits the degree of freedom in standard dimensions. Therefore, the thermistor constant B is 0≦
It is desirable to use it in the range of B<6000.

このようにして得られた積層サーミスタ10の抵抗温度
特性が第3A図、第3B[Dおよび第3C図にそれぞれ
示される。
The resistance-temperature characteristics of the multilayer thermistor 10 thus obtained are shown in FIGS. 3A, 3B[D, and 3C, respectively.

実験では、低ザーミスタ定数の抵抗体層14のサーミス
タ定数Bを300にと−・定にし、高サーミスタ定数の
抵抗体層16のサーミスタ定数Bをそれぞれ6000K
 (第3A図)、5000K(第3B図)および400
0K(第3C図)に設定した。
In the experiment, the thermistor constant B of the resistor layer 14 with a low thermistor constant was set to 300, and the thermistor constant B of the resistor layer 16 with a high thermistor constant was set to 6000K.
(Figure 3A), 5000K (Figure 3B) and 400K
It was set to 0K (Figure 3C).

第3A図〜第3C図のいずれの例においても、積層ザー
ミスタ10の合成抵抗温度特性は、線へで示すように、
測定温度範囲すなわち−】0℃≦]゛≦70℃において
ほぼ直線を呈する。因みに、線Bばザーミスタチンブを
高サーミスタ定数の抵抗体層16だけで形成した積層ザ
ーミスタの抵抗温度特性を示し、線Cはザーミスタチッ
プを低ザーミスク定数の抵抗体層14だけで形成した積
層サーミスタの抵抗温度特性を示す。
In any of the examples shown in FIGS. 3A to 3C, the composite resistance temperature characteristic of the laminated thermistor 10 is as shown by the line
It exhibits a substantially straight line in the measurement temperature range, that is, -]0°C≦]゛≦70°C. Incidentally, line B shows the resistance-temperature characteristics of a multilayer thermistor in which the thermistor chip is formed only with the resistor layer 16 with a high thermistor constant, and line C shows the resistance temperature characteristics of a multilayer thermistor in which the thermistor chip is formed only with the resistor layer 14 with a low thermistor constant. Shows resistance temperature characteristics.

また、次表に、各サーミスタ定数Bを有する抵抗体層を
組み合わせたときの特性を示す。
Further, the following table shows the characteristics when resistor layers having each thermistor constant B are combined.

この表および先の第3A図〜第3C図からよく分かるよ
うに、この発明に従えば、抵抗温度係数特に低温側での
抵抗温度係数が安定している。
As can be clearly seen from this table and FIGS. 3A to 3C above, according to the present invention, the temperature coefficient of resistance, especially on the low temperature side, is stable.

(以下余白) この表において、R−、o/R25ば一10’Cの抵抗
値と25℃の抵抗値との変化割合を示し、B 60−1
゜0は60“C〜100 ’Cでのザーミスタ定数の合
成値を示す。
(Margins below) In this table, the change ratio between the resistance value at 10'C and the resistance value at 25°C is shown for R-, o/R25, and B 60-1
0 indicates the composite value of the thermistor constant at 60"C to 100'C.

なお、上表には、低温側での抵抗温度特性を比較するた
めに、サーミスタ定数3390単体のR−IQ/R2,
のイ直も掲載した。
In addition, in the above table, in order to compare the resistance temperature characteristics on the low temperature side, R-IQ/R2 of a single thermistor constant of 3390,
I also posted the i-nao.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す断面図である。 第2図は第1図実施例の製造工程を示す分解斜視図であ
る。 第3A図〜第3C図は、それぞれ、実施例の積層サーミ
スタの抵抗温度特性を、比較例とともに示すグラフであ
る。 図において、10は積層サーミスタ、14.16は抵抗
体層、18は内部電極、20.22はサーミスタ基板、
24ば外部電極を示す。 特許出願人 株式会社 村田製作所 代理人 弁理士 山 1) 義 人 −11= 第1図 ]0 第2図 第3A図 1^  凸  1凸  つ凸  つ凸  l凸  Qn
  らn  7n第3C図 温  度  じC) 第3B図 温  度 (0C)
FIG. 1 is a sectional view showing an embodiment of the present invention. FIG. 2 is an exploded perspective view showing the manufacturing process of the embodiment shown in FIG. FIGS. 3A to 3C are graphs showing the resistance-temperature characteristics of the laminated thermistor of the example, together with a comparative example. In the figure, 10 is a laminated thermistor, 14.16 is a resistor layer, 18 is an internal electrode, 20.22 is a thermistor substrate,
24 indicates an external electrode. Patent Applicant Murata Manufacturing Co., Ltd. Agent Patent Attorney Yama 1) Yoshihito-11 = Figure 1] 0 Figure 2 Figure 3A 1^ Convex 1 convex 1 convex 1 convex l convex Qn
7n Figure 3C Temperature DiC) Figure 3B Temperature (0C)

Claims (1)

【特許請求の範囲】[Claims]  それぞれのサーミスタ定数Bが50≦B<6000の
範囲で示されかつ抵抗温度特性の異なる抵抗体層を2種
類以上積層してなり、合成抵抗温度特性を、温度Tの範
囲50℃≦T≦70℃で2000≦B≦5000であり
かつ−10℃≦T<50℃の範囲で50≦B≦2500
に設定した、積層サーミスタ。
Two or more types of resistor layers each having a thermistor constant B in the range of 50≦B<6000 and having different resistance-temperature characteristics are laminated, and the combined resistance-temperature characteristic is within the range of temperature T 50°C≦T≦70. 2000≦B≦5000 at ℃ and 50≦B≦2500 in the range of -10℃≦T<50℃
A multilayer thermistor set to
JP2339043A 1990-11-30 1990-11-30 Multi-layer thermistor Expired - Lifetime JP3047466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2339043A JP3047466B2 (en) 1990-11-30 1990-11-30 Multi-layer thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2339043A JP3047466B2 (en) 1990-11-30 1990-11-30 Multi-layer thermistor

Publications (2)

Publication Number Publication Date
JPH04206901A true JPH04206901A (en) 1992-07-28
JP3047466B2 JP3047466B2 (en) 2000-05-29

Family

ID=18323728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2339043A Expired - Lifetime JP3047466B2 (en) 1990-11-30 1990-11-30 Multi-layer thermistor

Country Status (1)

Country Link
JP (1) JP3047466B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907271A (en) * 1995-12-13 1999-05-25 Murata Manufacturing Co., Ltd. Positive characteristic thermistor device
JP2008205388A (en) * 2007-02-22 2008-09-04 Tdk Corp Thermistor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907271A (en) * 1995-12-13 1999-05-25 Murata Manufacturing Co., Ltd. Positive characteristic thermistor device
JP2008205388A (en) * 2007-02-22 2008-09-04 Tdk Corp Thermistor element
JP4655053B2 (en) * 2007-02-22 2011-03-23 Tdk株式会社 Thermistor element

Also Published As

Publication number Publication date
JP3047466B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JP5422052B2 (en) Chip thermistor and manufacturing method thereof
JP5398534B2 (en) Semiconductor ceramic material and NTC thermistor
JP3175102B2 (en) Positive thermistor body and positive thermistor
JP3687696B2 (en) Semiconductor porcelain composition and semiconductor porcelain element using the same
JPH04206901A (en) Laminated thermistor
JP3206601B2 (en) Multi-layer thermistor
JP2003257706A (en) Compensating thermistor composition for making temperature characteristics rectilinear
JP4780306B2 (en) Multilayer thermistor and manufacturing method thereof
JPS59215701A (en) Method of producing composite function element
JP4888264B2 (en) Multilayer thermistor and manufacturing method thereof
JPH0883932A (en) Current limiting element
JPH02189901A (en) Laminated thermistor
JPH03214702A (en) Composite for thermistor
EP1227507B1 (en) Semiconductive ceramic composition and semiconductive ceramic element using the same
JPH04150001A (en) Thermistor element
WO2019064949A1 (en) Thermoelectric conversion element and method for manufacturing thermoelectric conversion element
JPH08198674A (en) Semiconductor ceramic material having negative resistance-temperature characteristic and semiconductor ceramic parts using that
JPH04206902A (en) Thermistor apparatus
JP2005303160A (en) Laminated semiconductor ceramic electronic parts
JP2000124008A (en) Composite chip thermistor electronic component and its manufacture
JPH06283765A (en) Thermoelectric transfer element
JP3632592B2 (en) Chip thermistor and manufacturing method thereof
JPH07326535A (en) Grain boundary insulated semiconductor ceramic capacitor
JPH07176406A (en) Negative resistance temp. coefficient semiconductor ceramics, rush current-blocking element and motor start delaying element
JP4492598B2 (en) NTC composition and NTC element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11