JPH08198674A - Semiconductor ceramic material having negative resistance-temperature characteristic and semiconductor ceramic parts using that - Google Patents

Semiconductor ceramic material having negative resistance-temperature characteristic and semiconductor ceramic parts using that

Info

Publication number
JPH08198674A
JPH08198674A JP7005870A JP587095A JPH08198674A JP H08198674 A JPH08198674 A JP H08198674A JP 7005870 A JP7005870 A JP 7005870A JP 587095 A JP587095 A JP 587095A JP H08198674 A JPH08198674 A JP H08198674A
Authority
JP
Japan
Prior art keywords
semiconductor ceramic
ceramic
negative
semiconductor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7005870A
Other languages
Japanese (ja)
Other versions
JP3141719B2 (en
Inventor
Kenjirou Mihara
賢二良 三原
Hideaki Niimi
秀明 新見
Terunobu Ishikawa
輝伸 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP07005870A priority Critical patent/JP3141719B2/en
Priority to TW085100527A priority patent/TW293183B/zh
Priority to KR1019960000887A priority patent/KR960030454A/en
Priority to EP96100708A priority patent/EP0723276A3/en
Publication of JPH08198674A publication Critical patent/JPH08198674A/en
Application granted granted Critical
Publication of JP3141719B2 publication Critical patent/JP3141719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To obtain a semiconductor ceramic material having small resistivity, large B const. and negative resistance-temp. characteristics and to obtain such a negative characteristic thermistor and semiconductor ceramic parts to control an electric current that can be made small in size, low in height and made into SMD and that the resistance during temp. is raised is decreased to suppress generation of heat and the product can respond for a large current by using the semiconductor ceramic material above described. CONSTITUTION: This semiconductor ceramic material having negative resistance- temp. characteristics consists of YCaMn oxide ceramic material, especially expressed by Y1-x Cax MnO3 (x=0.2 to 0.6). The semiconductor ceramic parts consist of a semiconductor ceramic element 1 having negative resistance-temp. characteristics and electrodes 2a, 2b formed on the semiconductor ceramic element 1. The ceramic element is YCaMn oxide ceramic, especially expressed by Y1-x Cax MnO3 (x=0.2 to 0.6).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、負の抵抗温度特性を
有する半導体セラミックとそれを用いた半導体セラミッ
ク部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor ceramic having a negative resistance temperature characteristic and a semiconductor ceramic component using the same.

【0002】[0002]

【従来の技術】図4は従来の負の抵抗温度特性を有する
半導体セラミック(以下、負特性サーミスタという)の
外観図である。負特性サーミスタは、スピネル酸化物系
からなる負の抵抗温度特性を有する半導体セラミック
(図示していない)の両主面に電極(図示していない)
を形成し、前記電極に端子3a,3bを半田(図示して
いない)を介して接続し、外表面を樹脂4で被覆してい
る。
2. Description of the Related Art FIG. 4 is an external view of a conventional semiconductor ceramic having a negative resistance temperature characteristic (hereinafter referred to as a negative characteristic thermistor). The negative characteristic thermistor includes electrodes (not shown) on both main surfaces of a semiconductor ceramic (not shown) having a negative temperature coefficient of resistance made of spinel oxide.
Are formed, terminals 3a and 3b are connected to the electrodes via solder (not shown), and the outer surface is covered with resin 4.

【0003】例えば、スイッチング電源ではスイッチを
入れた瞬間に過電流が流れることから、この初期の突入
電流を吸収するものとして、いわゆる負特性サーミスタ
が用いられている。この負特性サーミスタは、室温での
抵抗値が高く、温度の上昇とともに抵抗値が低下する機
能を有しており、これにより初期の突入電流を抑制し、
その後自己発熱により昇温して低抵抗となり、定常状態
では電力消費量を低減できる。このような負特性サーミ
スタのセラミックとしては、従来からスピネル酸化物系
セラミックが用いられている。
For example, a so-called negative characteristic thermistor is used to absorb the initial rush current because an overcurrent flows in the switching power supply at the moment when the switch is turned on. This negative characteristic thermistor has a high resistance value at room temperature and has a function of decreasing the resistance value as the temperature rises, thereby suppressing the initial inrush current,
After that, the temperature rises due to self-heating and becomes low resistance, and the power consumption can be reduced in the steady state. As a ceramic of such a negative characteristic thermistor, a spinel oxide-based ceramic has been conventionally used.

【0004】ところで、近年、電子部品はチップ化、表
面実装(以下、SMDという)化への対応が要求され、
小型化、軽量化、低背化への対応が求められている。し
かしながら、図4に見られるように、従来の負特性サー
ミスタでは、端子を有する構造のため低背化しにくく、
また、スピネル酸化物系の半導体セラミックは、室温の
比抵抗が大きいため、低抵抗とするには形状を大きくし
なければならない。したがって、一般的なチップ部品、
例えばセラミックコンデンサのように、小型の素子を作
製することができなかった。
By the way, in recent years, electronic parts are required to be made into chips and surface mounting (hereinafter referred to as SMD).
There is a demand for downsizing, weight reduction, and height reduction. However, as shown in FIG. 4, in the conventional negative characteristic thermistor, it is difficult to reduce the height because of the structure having the terminals.
Further, since the spinel oxide-based semiconductor ceramic has a large specific resistance at room temperature, its shape must be increased in order to reduce the resistance. Therefore, common chip parts,
For example, a small element such as a ceramic capacitor could not be manufactured.

【0005】また、負特性サーミスタをSMD化して用
いた場合、負特性サーミスタ動作時の自己発熱により、
回路基板の温度が上昇するため、定常通電時における負
特性サーミスタの自己発熱を抑える必要があるが、従来
のスピネル酸化物系からなる負特性サーミスタのB定数
は3000と小さく、昇温状態での抵抗値を十分小さく
できず、動作時に自己発熱が大きくなり、回路基板の温
度が高くなるという不都合も有していた。
Further, when the negative characteristic thermistor is used in the form of SMD, self-heating during operation of the negative characteristic thermistor causes
Since the temperature of the circuit board rises, it is necessary to suppress the self-heating of the negative characteristic thermistor during steady energization. However, the B constant of the conventional negative characteristic thermistor made of spinel oxide is as small as 3000, and the There is also a disadvantage that the resistance value cannot be reduced sufficiently, self-heating increases during operation, and the temperature of the circuit board rises.

【0006】そこで、比抵抗の小さくなるセラミックと
してVO2系セラミックを負特性サーミスタに用いる
と、80℃での比抵抗が10〜0.01Ω・cmに低下す
る抵抗値急変特性を示すことから、突入電流防止用とし
て優れていることがわかった。しかし、このVO2系負
特性サーミスタは、セラミックが不安定であり、また還
元焼成後急冷して製造することから、その形状はビード
状に限定されるという問題点があった。さらに、許容電
流値が数十mAと小さいことから、スイッチング電源など
の大電流が流れる箇所においては使用することができな
かった。
Therefore, when a VO 2 -based ceramic is used for a negative characteristic thermistor as a ceramic having a small specific resistance, it exhibits a sudden change in the resistance value that the specific resistance at 80 ° C. decreases to 10 to 0.01 Ω · cm. It was found to be excellent for preventing inrush current. However, this VO 2 -based negative characteristic thermistor has a problem that the ceramic is unstable and the shape thereof is limited to a bead shape because it is manufactured by rapid cooling after reduction firing. Further, since the allowable current value is as small as several tens of mA, it cannot be used in a place where a large current flows, such as a switching power supply.

【0007】また、B定数が大きくなる負特性サーミス
タとして、BaTiO3にLi23を20mol%添加した
ものも提案されている(特公昭48−6352)が、こ
の負特性サーミスタでは比抵抗が大きいためSMD化の
負特性サーミスタを作製することはできなかった。
Further, as a negative characteristic thermistor for increasing the B constant, one in which 20 mol% of Li 2 O 3 is added to BaTiO 3 has been proposed (Japanese Patent Publication No. 48-6352), but this negative characteristic thermistor has a specific resistance. Since it is large, it was not possible to manufacture an SMD type negative characteristic thermistor.

【0008】[0008]

【発明が解決しようとする課題】上記課題を解決するた
め、負の抵抗温度特性を有する半導体セラミック材料
で、その比抵抗がSMD化でき、かつ負特性サーミスタ
の自己発熱が抑制できるB定数の大きな電流制御に適し
た負特性サーミスタ材料の負特性サーミスタ素子を鋭意
検討した。
In order to solve the above-mentioned problems, a semiconductor ceramic material having a negative resistance temperature characteristic, the specific resistance thereof can be SMD, and the self-heating of the negative characteristic thermistor can be suppressed, and the B constant is large. The negative characteristic thermistor element of the negative characteristic thermistor material suitable for current control was earnestly studied.

【0009】その結果、田口、島田らが燃料電池の電極
材料として研究し、J.SolidState Che
m..63.290(1986)で記載している、YC
aMn系酸化物からなるセラミックがあるが、この発明
の発明者らはこのセラミックが比抵抗1Ω・cm以下で、
B定数4000以上を有し、かつ電流制御用としての実
用試験、例えば繰り返し通電試験を行っても特性変化し
ない優れた特性であることを見いだした。
As a result, Taguchi, Shimada et al. Studied as an electrode material for fuel cells, and J. SolidState Che
m. . 63.290 (1986), YC
There is a ceramic made of aMn-based oxide, but the inventors of the present invention have a specific resistance of 1 Ω · cm or less,
It has been found that the B constant is 4000 or more, and the characteristics are excellent even if a practical test for current control, for example, a repeated energization test is performed.

【0010】この発明の目的は、比抵抗が小さく、B定
数が大きい負の抵抗温度特性を有する半導体セラミック
材料を用いることで、小型化、低背化でき、SMD化で
き、昇温状態での抵抗値を小さくして発熱を抑えるとと
もに、大電流にも対応可能なる電流制御用の負の抵抗温
度特性を有する半導体セラミックと半導体セラミック部
品を提供することである。
It is an object of the present invention to use a semiconductor ceramic material having a low specific resistance and a large B constant and a negative resistance temperature characteristic, whereby the size and height can be reduced, the SMD can be realized, and the temperature can be raised. It is an object of the present invention to provide a semiconductor ceramic and a semiconductor ceramic component having a negative resistance temperature characteristic for current control that can reduce a resistance value to suppress heat generation and can handle a large current.

【0011】[0011]

【課題を解決するための手段】請求項1に係る発明は、
YCaMn系酸化物セラミックからなる負特性サーミス
タである。
The invention according to claim 1 is
It is a negative characteristic thermistor made of a YCaMn-based oxide ceramic.

【0012】請求項2に係る発明は、YCaMn系酸化
物セラミックが、一般式Y1-xCaxMnO3(x=0.
2〜0.6)であらわされる負特性サーミスタである。
According to a second aspect of the present invention, the YCaMn-based oxide ceramic has the general formula Y 1-x Ca x MnO 3 (x = 0.
2 to 0.6), which is a negative characteristic thermistor.

【0013】請求項3に係る発明は、セラミック素体
と、セラミック素体に形成される電極とからなり、セラ
ミック素体がYCaMn系酸化物セラミックからなる半
導体セラミック部品である。
The invention according to claim 3 is a semiconductor ceramic component comprising a ceramic body and an electrode formed on the ceramic body, the ceramic body being made of a YCaMn-based oxide ceramic.

【0014】請求項4に係る発明は、YCaMn系酸化
物セラミックが、一般式Y1-xCaxMnO3(x=0.
2〜0.6)であらわされる半導体セラミック部品であ
る。
According to a fourth aspect of the present invention, the YCaMn-based oxide ceramic has a general formula Y 1-x Ca x MnO 3 (x = 0.
2 to 0.6), which is a semiconductor ceramic component.

【0015】請求項2および4において、その組成範囲
に限定したのは次の理由による。つまり、比抵抗が1以
下で、B定数が4000以上の条件を満足するxの組成
範囲は0.2〜0.6である。
The reason why the composition range is limited in claims 2 and 4 is as follows. That is, the composition range of x satisfying the condition that the specific resistance is 1 or less and the B constant is 4000 or more is 0.2 to 0.6.

【0016】[0016]

【作用】この発明による負特性サーミスタは、YCaM
n系酸化物からなり、比抵抗が小さく、B定数が大き
い。特に、一般式Y1-xCaxMnO3(x=0.2〜
0.6)であらわされる負特性サーミスタは、比抵抗が
1Ω・cm以下になり、しかもB定数が4000以上の特
性を示す。
The negative characteristic thermistor according to the present invention is the YCaM
It is made of an n-type oxide, has a small specific resistance, and has a large B constant. In particular, the general formula Y 1-x Ca x MnO 3 (x = 0.2 to
The negative characteristic thermistor represented by 0.6) has a specific resistance of 1 Ω · cm or less and a B constant of 4000 or more.

【0017】この発明による半導体セラミック部品によ
れば、YCaMn系酸化物組成を用いることで比抵抗が
小さく、B定数が大きい部品が得られる。特に、一般式
1-xCaxMnO3(x=0.2〜0.6)であらわさ
れるセラミック素体を用いた半導体セラミック部品は、
比抵抗が1Ω・cm以下になり、しかもB定数が4000
以上、かつ電流制御用としての実用試験、例えば繰り返
し通電試験を行っても特性変化しない優れた特性を持
つ。
According to the semiconductor ceramic component of the present invention, a component having a small specific resistance and a large B constant can be obtained by using the YCaMn-based oxide composition. In particular, a semiconductor ceramic component using a ceramic body represented by the general formula Y 1-x Ca x MnO 3 (x = 0.2 to 0.6) is
The specific resistance is less than 1 Ω · cm and the B constant is 4000.
Further, it has excellent characteristics that the characteristics do not change even if a practical test for current control, for example, a repeated energization test is performed.

【0018】[0018]

【実施例】以下、この発明を実施例により詳細に説明す
る。図1は、この発明の半導体セラミック部品の外観図
であり、負の抵抗温度特性を有する半導体セラミック素
体1の両端部に電極2a,2bを形成している。
EXAMPLES The present invention will be described in detail below with reference to examples. FIG. 1 is an external view of a semiconductor ceramic component of the present invention, in which electrodes 2a and 2b are formed on both ends of a semiconductor ceramic body 1 having a negative resistance temperature characteristic.

【0019】まず、Y23,CaCO3,Mn23の原
料を準備し、表1に示す組成となるように秤量する。こ
の粉末を純水、及びジルコニアボールとともにポリエチ
レン製ポットで7時間湿式混合した後、乾燥させて10
00℃で2時間仮焼する。得られた仮焼粉に有機バイン
ダ、溶剤、分散剤とポリスチレン粒子を加え、再度ポリ
ポットで5時間湿式混合し、スラリーを得る。このスラ
リーで、厚さ50μmのセラミックグリーンシートを形
成し、このグリーンシートを所定の寸法に切断、積層、
圧着を行い、最終的に抵抗値が8Ωになる大きさに成形
する。
First, raw materials of Y 2 O 3 , CaCO 3 and Mn 2 O 3 are prepared and weighed so as to have the composition shown in Table 1. This powder was wet-mixed with pure water and zirconia balls in a polyethylene pot for 7 hours, then dried to 10
Calcination at 00 ° C for 2 hours. An organic binder, a solvent, a dispersant and polystyrene particles are added to the obtained calcined powder, and the mixture is wet-mixed again in a polypot for 5 hours to obtain a slurry. With this slurry, a ceramic green sheet having a thickness of 50 μm is formed, and this green sheet is cut into a predetermined size, laminated,
Crimping is performed, and finally, the resistance value is formed into a size of 8Ω.

【0020】[0020]

【表1】 [Table 1]

【0021】次に、この成形体を焼成さやに重ならない
ように一面に分散させ、400℃で脱脂した後、酸素分
圧0.5MPa以上の雰囲気中で1400℃で焼成を行
い、セラミック素体を得る。得られたセラミック素体を
バレル研磨で面取りを行い、セラミック素体端部にAg
を主成分とする導電性粉末を混合した電極ペーストを塗
布、800℃で焼き付け、半導体セラミック部品の電極
を形成する。
Next, this molded body is dispersed over one surface so as not to overlap the firing sheath, degreased at 400 ° C., and then fired at 1400 ° C. in an atmosphere having an oxygen partial pressure of 0.5 MPa or more to obtain a ceramic body. To get The obtained ceramic body is chamfered by barrel polishing and Ag is attached to the end of the ceramic body.
An electrode paste mixed with a conductive powder containing as a main component is applied and baked at 800 ° C. to form an electrode of a semiconductor ceramic component.

【0022】また、実施例の比較のため、図4に示す従
来例の半導体セラミック部品も作成した。これはCo3
4,Mn34,CuCO3それぞれを重量比で6:3:
1の割合で秤量し、これにバインダーを加えてジルコニ
アボールの入ったポリエチレン製のポットで7時間湿式
混合粉砕し、乾燥後、室温抵抗が8Ωになるように円板
状に成形し、大気中1250℃で2時間焼成する。得ら
れた円板状セラミック素体の両主面に電極の焼き付けを
行い、この電極に端子を半田付けし、さらに外表面を樹
脂で被覆した。
For comparison of the examples, a conventional semiconductor ceramic component shown in FIG. 4 was also prepared. This is Co 3
The weight ratio of O 4 , Mn 3 O 4 , and CuCO 3 is 6: 3:
Weighed at a ratio of 1 and added a binder to this, wet mixed and pulverized in a polyethylene pot containing zirconia balls for 7 hours, dried, and then molded into a disk shape with a room temperature resistance of 8Ω, and in the air Bake at 1250 ° C. for 2 hours. Electrodes were baked on both principal surfaces of the obtained disk-shaped ceramic body, terminals were soldered to the electrodes, and the outer surface was covered with resin.

【0023】図2は、通電試験の結果を示すグラフであ
り、縦軸に半導体セラミック部品の表面温度(℃)、横
軸に通電電流値(A)として、実線が実施例、破線が従
来例の曲線を示している。この図2から明らかなよう
に、この発明にかかる半導体セラミック部品の自己発熱
が従来例と比較して小さく低減されていることが分か
る。
FIG. 2 is a graph showing the results of the energization test, in which the vertical axis represents the surface temperature (° C.) of the semiconductor ceramic component and the horizontal axis represents the energization current value (A), where the solid line is the example and the broken line is the conventional example. Shows the curve. As is apparent from FIG. 2, it is understood that the self-heating of the semiconductor ceramic component according to the present invention is reduced to a small extent as compared with the conventional example.

【0024】図3は、断続通電試験の結果を示すグラフ
であり、縦軸に抵抗変化率、横軸に回数として、実施例
の試料に5Aの電流を1分間ON、5分間OFFの断続
通電を10000回行い、その結果を示したものであ
る。グラフのデータは、実施例で得られた試料20個を
測定し、平均値と最大値、最小値を示している。このグ
ラフから10000回断続通電を行っても、抵抗変化
率、およびばらつきは全く見られず、電流制御素子とし
て十分適用できることが確認できた。
FIG. 3 is a graph showing the results of the intermittent energization test, in which the vertical axis represents the rate of change in resistance and the horizontal axis represents the number of times, and the samples of the examples were intermittently energized with a current of 5 A for 1 minute and 5 minutes off. Is performed 10,000 times and the result is shown. The data in the graph shows the average value, the maximum value, and the minimum value obtained by measuring 20 samples obtained in the examples. From this graph, it was confirmed that the resistance change rate and the variation were not observed at all even after the intermittent energization was performed 10,000 times, and that the current control element can be sufficiently applied.

【0025】なお実施例では、Ag電極を用いたが、P
t,Pd,Rh、あるいはそれらの合金などにおいても
同様な特性が得られる。
Although the Ag electrode is used in the embodiment, P
Similar characteristics can be obtained with t, Pd, Rh, or alloys thereof.

【0026】[0026]

【発明の効果】この発明の負の抵抗温度特性を有する半
導体セラミックによれば、YCaMn系酸化物セラミッ
クからなり、比抵抗が小さく、かつ温度上昇によるB定
数が大きい負特性を有している。特に、Y1-xCaxMn
3(x=0.2〜0.6)系セラミックは比抵抗が1
Ω・cm以下と小さく、かつ温度上昇によるB定数が40
00以上と大きい負特性を顕著に示す。
According to the semiconductor ceramic having a negative resistance temperature characteristic of the present invention, it is made of a YCaMn-based oxide ceramic, has a low specific resistance, and has a large B constant due to temperature rise. In particular, Y 1-x Ca x Mn
O 3 (x = 0.2 to 0.6) ceramic has a specific resistance of 1
Small as Ω · cm or less, and B constant of 40 due to temperature rise
A large negative characteristic of not less than 00 is remarkably exhibited.

【0027】この発明の半導体セラミック部品によれ
ば、該セラミック素体をYCaMn系酸化物で構成した
ので、比抵抗が小さく、かつ温度上昇によるB定数が大
きい負の抵抗温度特性が得られ、電流制御用の半導体セ
ラミック部品のSMD化を可能とし、さらに回路定常通
電時における素子の自己発熱を抑え基板温度の低減をは
かれる効果を得ることが可能となった。また、特に、Y
1-xCaxMnO3(x=0.2〜0.6)系セラミック
は、比抵抗が1Ω・cm以下と小さく、かつ温度上昇によ
るB定数が4000以上と大きい負特性を顕著に示す。
According to the semiconductor ceramic component of the present invention, since the ceramic body is made of the YCaMn-based oxide, a negative resistance-temperature characteristic having a small specific resistance and a large B constant due to temperature rise is obtained, The semiconductor ceramic parts for control can be made SMD, and further, it is possible to obtain the effect of suppressing the self-heating of the element when the circuit is steadily energized and reducing the substrate temperature. Also, in particular, Y
The 1-x Ca x MnO 3 (x = 0.2 to 0.6) ceramics have a large negative characteristic, which has a small specific resistance of 1 Ω · cm or less and a large B constant of 4000 or more due to temperature rise.

【0028】上記のことより、小型で低背化が可能な表
面実装型の半導体セラミックおよび半導体セラミック部
品を得ることができる。
From the above, it is possible to obtain a surface-mount type semiconductor ceramic and a semiconductor ceramic component which are small in size and can be made low in height.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の半導体セラミック部品の斜視図を示
す。
FIG. 1 shows a perspective view of a semiconductor ceramic component of the present invention.

【図2】この発明の実施例と従来例の通電試験結果を示
す曲線図である。
FIG. 2 is a curve diagram showing a result of an energization test of an example of the present invention and a conventional example.

【図3】この発明の実施例の断続通電試験の結果を示す
特性図である。
FIG. 3 is a characteristic diagram showing the results of an intermittent current test of an example of the present invention.

【図4】従来の負特性サーミスタの外観図を示す。FIG. 4 shows an external view of a conventional negative characteristic thermistor.

【符号の説明】[Explanation of symbols]

1 負の抵抗温度特性を有する半導体セラミック素
体 2 電極
1 Semiconductor ceramic body having negative resistance temperature characteristics 2 Electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 YCaMn系酸化物セラミックからなる
ことを特徴とする負の抵抗温度特性を有する半導体セラ
ミック。
1. A semiconductor ceramic having a negative resistance-temperature characteristic, which is made of a YCaMn-based oxide ceramic.
【請求項2】 前記YCaMn系酸化物セラミックは、
一般式Y1-xCaxMnO3(x=0.2〜0.6)であ
らわされることを特徴とする請求項1に記載の負の抵抗
温度特性を有する半導体セラミック。
2. The YCaMn-based oxide ceramic comprises:
The semiconductor ceramic having a negative resistance temperature characteristic according to claim 1, which is represented by a general formula Y 1-x Ca x MnO 3 (x = 0.2 to 0.6).
【請求項3】 セラミック素体と、前記セラミック素体
に形成される電極とからなり、前記セラミック素体はY
CaMn系酸化物セラミックからなることを特徴とする
半導体セラミック部品。
3. A ceramic body and electrodes formed on the ceramic body, wherein the ceramic body is Y
A semiconductor ceramic component comprising a CaMn-based oxide ceramic.
【請求項4】 前記YCaMn系酸化物セラミックは、
一般式Y1-xCaxMnO3(x=0.2〜0.6)であ
らわされることを特徴とする請求項3に記載の半導体セ
ラミック部品。
4. The YCaMn-based oxide ceramic is
The semiconductor ceramic component according to claim 3, which is represented by the general formula Y 1-x Ca x MnO 3 (x = 0.2 to 0.6).
JP07005870A 1995-01-18 1995-01-18 Semiconductor ceramic having negative resistance-temperature characteristics and semiconductor ceramic parts using the same Expired - Fee Related JP3141719B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP07005870A JP3141719B2 (en) 1995-01-18 1995-01-18 Semiconductor ceramic having negative resistance-temperature characteristics and semiconductor ceramic parts using the same
TW085100527A TW293183B (en) 1995-01-18 1996-01-17
KR1019960000887A KR960030454A (en) 1995-01-18 1996-01-17 Semiconductor ceramics having negative resistance temperature characteristics and semiconductor ceramic parts using the same
EP96100708A EP0723276A3 (en) 1995-01-18 1996-01-18 Semiconductor ceramic having negative resistance/temperature characteristics and semiconductor ceramic component utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07005870A JP3141719B2 (en) 1995-01-18 1995-01-18 Semiconductor ceramic having negative resistance-temperature characteristics and semiconductor ceramic parts using the same

Publications (2)

Publication Number Publication Date
JPH08198674A true JPH08198674A (en) 1996-08-06
JP3141719B2 JP3141719B2 (en) 2001-03-05

Family

ID=11622977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07005870A Expired - Fee Related JP3141719B2 (en) 1995-01-18 1995-01-18 Semiconductor ceramic having negative resistance-temperature characteristics and semiconductor ceramic parts using the same

Country Status (4)

Country Link
EP (1) EP0723276A3 (en)
JP (1) JP3141719B2 (en)
KR (1) KR960030454A (en)
TW (1) TW293183B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195065A1 (en) * 2015-06-04 2016-12-08 株式会社村田製作所 Ceramic material and resistive element
JPWO2018235432A1 (en) * 2017-06-20 2019-06-27 株式会社芝浦電子 Thermistor sintered body and thermistor element
CN115925418A (en) * 2022-12-14 2023-04-07 肇庆市金龙宝电子有限公司 Low-temperature NTC thermistor ceramic and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879750A (en) * 1996-03-29 1999-03-09 Denso Corporation Method for manufacturing thermistor materials and thermistors
WO1997049104A1 (en) * 1996-06-17 1997-12-24 Thermometrics, Inc. Sensors and methods of making wafer sensors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733667B2 (en) * 1988-07-14 1998-03-30 ティーディーケイ株式会社 Semiconductor porcelain composition
JP3084884B2 (en) * 1992-02-19 2000-09-04 株式会社村田製作所 Method for firing Mn3O4-based porcelain
JPH05258906A (en) * 1992-03-13 1993-10-08 Tdk Corp Chip type thermistor
JP3121982B2 (en) * 1994-03-11 2001-01-09 京セラ株式会社 Conductive ceramics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195065A1 (en) * 2015-06-04 2016-12-08 株式会社村田製作所 Ceramic material and resistive element
JPWO2016195065A1 (en) * 2015-06-04 2018-03-29 株式会社村田製作所 Ceramic material and resistance element
US10134512B2 (en) 2015-06-04 2018-11-20 Murata Manufacturing Co., Ltd. Ceramic material and resistive element
JPWO2018235432A1 (en) * 2017-06-20 2019-06-27 株式会社芝浦電子 Thermistor sintered body and thermistor element
US10643768B2 (en) 2017-06-20 2020-05-05 Shibaura Electronics Co., Ltd. Thermistor sintered body and thermistor element
CN115925418A (en) * 2022-12-14 2023-04-07 肇庆市金龙宝电子有限公司 Low-temperature NTC thermistor ceramic and preparation method thereof

Also Published As

Publication number Publication date
EP0723276A2 (en) 1996-07-24
EP0723276A3 (en) 1997-06-18
KR960030454A (en) 1996-08-17
JP3141719B2 (en) 2001-03-05
TW293183B (en) 1996-12-11

Similar Documents

Publication Publication Date Title
WO1990010941A1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
US5504371A (en) Semiconductor ceramic device having a ceramic element with negative temperature coefficient of resistance
JP5418323B2 (en) Dielectric porcelain composition and electronic component
WO2012056797A1 (en) Semiconductor ceramic and resistive element
JP3141719B2 (en) Semiconductor ceramic having negative resistance-temperature characteristics and semiconductor ceramic parts using the same
US9030288B2 (en) Semiconductor ceramic and resistive element
JPH06151103A (en) Laminated semiconductor porcelain composition
JPH03155352A (en) Small direct current motor
JP2005150289A (en) Composition for thermistor, and thermistor element
JPS6257241B2 (en)
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP4029160B2 (en) Varistor manufacturing method
JPH0737705A (en) Semiconductor ceramic element
JP2725357B2 (en) Ceramic capacitor and method of manufacturing the same
JP2006245111A (en) Bismuth-based zinc oxide varistor
JP3239719B2 (en) Method for manufacturing voltage non-linear resistor
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same
JP2024030943A (en) Thermistor element and method for producing the same
JPS6146003A (en) Composite function element
JP3334264B2 (en) Semiconductor ceramic element
JPH07176406A (en) Negative resistance temp. coefficient semiconductor ceramics, rush current-blocking element and motor start delaying element
JP2646734B2 (en) Ceramic capacitor and method of manufacturing the same
JP3000670B2 (en) Thermistor device
JPH07230902A (en) Semiconductor ceramic element
JPH04367559A (en) Nonreducible dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees