JP2005150289A - Composition for thermistor, and thermistor element - Google Patents

Composition for thermistor, and thermistor element Download PDF

Info

Publication number
JP2005150289A
JP2005150289A JP2003383720A JP2003383720A JP2005150289A JP 2005150289 A JP2005150289 A JP 2005150289A JP 2003383720 A JP2003383720 A JP 2003383720A JP 2003383720 A JP2003383720 A JP 2003383720A JP 2005150289 A JP2005150289 A JP 2005150289A
Authority
JP
Japan
Prior art keywords
oxide
thermistor
terms
weight
excluding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003383720A
Other languages
Japanese (ja)
Other versions
JP4292057B2 (en
Inventor
Goro Takeuchi
吾郎 武内
Hiroyuki Sato
弘幸 佐藤
Hirokazu Kobayashi
寛和 小林
Kazuyuki Saito
和志 齋藤
Hiroshi Saito
洋 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003383720A priority Critical patent/JP4292057B2/en
Publication of JP2005150289A publication Critical patent/JP2005150289A/en
Application granted granted Critical
Publication of JP4292057B2 publication Critical patent/JP4292057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for a thermistor which has a small change in resistance under the use in high temperature and high humidity environment and can be adjusted for a B constant over a wide range on the low temperature side (for example, 25° to -40°C). <P>SOLUTION: The composition for a thermistor comprises a manganese oxide, a nickel oxide, an iron oxide, and a zirconium oxide. The composite for a thermistor is mainly made of (a) mol %. The reference symbol ((a) is a number between 45 and 95 excluding 45 and 95) of the manganese oxide in terms of Mn and (100-a) mol % of the nickel oxide in terms of Ni, and contains the iron oxide of 0-55 wt.% (excluding 0 wt.% and 55 wt.%) in terms of Fe<SB>2</SB>O<SB>3</SB>and the zirconium oxide of 0-15 wt.% (excluding 0 wt.% and 15 wt.%) in terms of ZrO<SB>2</SB>, with respect to the main components being 100 wt.%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、サーミスタ層などとして用いるサーミスタ用組成物と、該組成物で構成されるサーミスタ層を有するサーミスタ素子とに関する。   The present invention relates to a thermistor composition used as a thermistor layer or the like, and a thermistor element having a thermistor layer composed of the composition.

従来、酸化マンガンを主成分とする酸化物半導体からなるサーミスタ用組成物として、マンガン、ニッケル、銅を含有する酸化物に酸化ジルコニウムを微量含有させることで、高温高湿雰囲気に置かれる前後の抵抗値の変化(以下、高温高湿使用下の抵抗変化率という)を小さくする技術が提案されている(特許文献1参照)。   Conventionally, as a composition for a thermistor composed of an oxide semiconductor mainly composed of manganese oxide, resistance before and after being placed in a high-temperature and high-humidity atmosphere by adding a small amount of zirconium oxide to an oxide containing manganese, nickel, and copper. There has been proposed a technique for reducing a change in value (hereinafter referred to as resistance change rate under use of high temperature and high humidity) (see Patent Document 1).

しかしながら、特許文献1に記載の技術では、高温高湿使用下の抵抗変化率を小さくできるものの、たとえば25℃〜−40℃といった低温側におけるB定数の値を広範囲に調整することはできなかった。B定数の値を広範囲に調整可能であると、幅広い要求の回路設計に対応可能となるメリットがある。
特開平5−82313号公報
However, with the technique described in Patent Document 1, although the rate of change in resistance under the use of high temperature and high humidity can be reduced, the value of the B constant on the low temperature side such as 25 ° C. to −40 ° C. cannot be adjusted over a wide range. . If the value of the B constant can be adjusted in a wide range, there is a merit that it is possible to cope with a wide range of circuit designs.
JP-A-5-82313

本発明の目的は、高温高湿使用下の抵抗変化率が小さく、しかも低温側(たとえば25℃〜−40℃)でのB定数を広範囲に調整できるサーミスタ用組成物と、該組成物で構成されるサーミスタ層を有するサーミスタ素子とを提供することである。   An object of the present invention is a composition for a thermistor that has a small resistance change rate under the use of high temperature and high humidity and that can adjust a B constant on a low temperature side (for example, 25 ° C. to −40 ° C.) over a wide range, and the composition. And a thermistor element having a thermistor layer.

上記目的を達成するために、本発明によれば、
マンガン酸化物、ニッケル酸化物、鉄酸化物及びジルコニウム酸化物を含むサーミスタ用組成物であって、
Mn換算でaモル%(但し、aは45〜95であって45と95を除く)のマンガン酸化物と、Ni換算で(100−a)モル%のニッケル酸化物とを主成分とし、
該主成分を100重量%としたときの各成分の比率が、
鉄酸化物:Fe換算で0〜55重量%(但し、0重量%と55重量%を除く)、
ジルコニウム酸化物:ZrO換算で0〜15重量%(但し、0重量%と15重量%を除く)、であるサーミスタ用組成物が提供される。
In order to achieve the above object, according to the present invention,
A thermistor composition comprising manganese oxide, nickel oxide, iron oxide and zirconium oxide,
The main component is manganese oxide of a mol% (where a is 45 to 95 and excluding 45 and 95) in terms of Mn, and (100-a) mol% of nickel oxide in terms of Ni,
The ratio of each component when the main component is 100% by weight,
Iron oxide: Fe 2 O 3 in terms of at 0 to 55 wt% (excluding 0 wt% and 55 wt%),
There is provided a thermistor composition that is zirconium oxide: 0 to 15 wt% (excluding 0 wt% and 15 wt%) in terms of ZrO 2 .

好ましくは、添加成分として銅酸化物をさらに有し、該銅酸化物の比率が前記主成分100重量%に対して、CuO換算で45重量%未満である。   Preferably, it further has a copper oxide as an additive component, and the ratio of the copper oxide is less than 45% by weight in terms of CuO with respect to 100% by weight of the main component.

本発明によれば、上記何れかのサーミスタ用組成物で構成されているサーミスタ層を有するサーミスタ素子が提供される。   According to this invention, the thermistor element which has the thermistor layer comprised with the composition for any of the above-mentioned thermistors is provided.

本発明によれば、上記何れかのサーミスタ用組成物で構成されているサーミスタ層と内部電極とが交互に複数配置された素子本体を有するサーミスタ素子が提供される。   According to the present invention, there is provided a thermistor element having an element body in which a plurality of thermistor layers and internal electrodes composed of any of the above thermistor compositions are alternately arranged.

サーミスタ素子としては、単層型サーミスタ、積層型サーミスタなどが例示され、たとえば電池パックの温度センシングやRFモジュール回路の温度補償などに使用される。   Examples of the thermistor element include a single-layer thermistor and a laminated thermistor, and are used for temperature sensing of battery packs and temperature compensation of RF module circuits, for example.

本発明によれば、高温高湿使用下の抵抗変化率が小さく、しかも低温側(たとえば25℃〜−40℃)でのB定数を広範囲に調整できるサーミスタ用組成物と、該組成物で構成されるサーミスタ層を有するサーミスタ素子とを提供することができる。   According to the present invention, a composition for the thermistor having a small resistance change rate under use at high temperature and high humidity and capable of adjusting a B constant on a low temperature side (for example, 25 ° C. to −40 ° C.) over a wide range, and the composition And a thermistor element having a thermistor layer.

以下に、本発明の実施形態を図面に基づいて説明する。ここにおいて、図1は本発明の一実施形態に係る積層型サーミスタ素子を示す概略断面図である。   Embodiments of the present invention will be described below with reference to the drawings. Here, FIG. 1 is a schematic sectional view showing a laminated thermistor element according to an embodiment of the present invention.

本実施形態では、サーミスタ層を有するサーミスタ素子として、サーミスタ層を多層で形成する積層型サーミスタを例示して説明する。   In the present embodiment, as a thermistor element having a thermistor layer, a laminated thermistor in which thermistor layers are formed in multiple layers will be described as an example.

図1に示すように、本実施形態に係る積層型サーミスタ2は、素子本体4を有する。素子本体4の形状に特に制限はないが、通常、直方体状とされる。また、その寸法にも特に制限はなく、用途に応じて適当な寸法とすればよい。通常、縦(0.4〜2mm)×横(0.2〜1.25mm)×高さ(0.2〜1mm)程度である。   As shown in FIG. 1, the laminated thermistor 2 according to this embodiment has an element body 4. Although there is no restriction | limiting in particular in the shape of the element main body 4, Usually, it is set as a rectangular parallelepiped shape. Moreover, there is no restriction | limiting in particular also in the dimension, What is necessary is just to set it as a suitable dimension according to a use. Usually, it is about vertical (0.4-2 mm) × horizontal (0.2-1.25 mm) × height (0.2-1 mm).

素子本体4の一端部外側には第1外部端子電極6が形成してあり、素子本体4の他端部外側には第2外部端子電極8が形成してある。   A first external terminal electrode 6 is formed outside one end of the element body 4, and a second external terminal electrode 8 is formed outside the other end of the element body 4.

素子本体4は、サーミスタ層10と、第1内部電極層12及び第2内部電極層14とが交互に複数配置してある多層構造を持つ。   The element body 4 has a multilayer structure in which a thermistor layer 10, a plurality of first internal electrode layers 12 and second internal electrode layers 14 are alternately arranged.

本実施形態では、第1内部電極層12は、第1外部端子電極6の内側に対して電気的に接続される一端を持つ第1引き出し電極部122と、この第1引き出し電極部122に対して同一平面上で絶縁され、第2外部端子電極8の内側に対して電気的に接続される一端を持つ第2引き出し電極部124とで、構成されている。   In the present embodiment, the first internal electrode layer 12 includes a first lead electrode portion 122 having one end electrically connected to the inside of the first external terminal electrode 6, and the first lead electrode portion 122. The second lead electrode portion 124 is insulated on the same plane and has one end electrically connected to the inside of the second external terminal electrode 8.

また、第2内部電極層14は、第1外部端子電極6の内側に対して電気的に接続される一端を持つ第1補助電極部142と、第2外部端子電極8の内側に対して電気的に接続される一端を持つ第2補助電極部144と、該第1補助電極部142及び第2補助電極部144の双方に対して同一平面上で絶縁され、かつ第1外部端子電極6及び第2外部端子電極8のいずれの内側に対しても電気的に接続されない状態で配置される中間電極部146とで、構成されている。   The second internal electrode layer 14 is electrically connected to the first auxiliary electrode part 142 having one end electrically connected to the inside of the first external terminal electrode 6 and the inside of the second external terminal electrode 8. A second auxiliary electrode part 144 having one end connected to each other, insulated from the first auxiliary electrode part 142 and the second auxiliary electrode part 144 on the same plane, and the first external terminal electrode 6 and The intermediate electrode portion 146 is arranged in a state where it is not electrically connected to any inner side of the second external terminal electrode 8.

第1補助電極部142は、その一端が第1引き出し電極部122の一端よりも第1外部端子電極6側に配置されている。第2補助電極部144は、その一端が第2引き出し電極部124の一端よりも第2外部端子電極8側に配置されている。   One end of the first auxiliary electrode portion 142 is disposed closer to the first external terminal electrode 6 side than one end of the first lead electrode portion 122. One end of the second auxiliary electrode portion 144 is disposed closer to the second external terminal electrode 8 than one end of the second lead electrode portion 124.

サーミスタ層10は、本発明のサーミスタ用組成物で構成されている。本発明のサーミスタ用組成物は、マンガン酸化物、ニッケル酸化物、鉄酸化物、ジルコニウム酸化物を含んで構成される。   The thermistor layer 10 is composed of the thermistor composition of the present invention. The thermistor composition of the present invention comprises manganese oxide, nickel oxide, iron oxide, and zirconium oxide.

本実施形態では、マンガン酸化物及びニッケル酸化物を主成分とし、その他の成分を添加物と称することもある。   In the present embodiment, manganese oxide and nickel oxide are the main components, and other components may be referred to as additives.

主成分中のマンガン酸化物とニッケル酸化物の割合は、マンガン酸化物がMn換算で、45〜95モル%(但し、45モル%と95モル%を除く)、好ましくは50〜90モル%であり、ニッケル酸化物がNi換算で、5〜55モル%(但し、5モル%と55モル%を除く)、好ましくは10〜50モル%である。両者の合計を100モル%に調整する。マンガン酸化物が多すぎてニッケル酸化物が少なすぎても、また前者が少なすぎて後者が多すぎても高温高湿使用下の抵抗変化率が大きく、実用性に乏しくなる。   The ratio of manganese oxide to nickel oxide in the main component is 45 to 95 mol% (except 45 mol% and 95 mol%), preferably 50 to 90 mol%, in terms of Mn. Yes, nickel oxide is 5 to 55 mol% (except 5 mol% and 55 mol%), preferably 10 to 50 mol% in terms of Ni. The total of both is adjusted to 100 mol%. If the manganese oxide is too much and the nickel oxide is too little, or if the former is too little and the latter is too much, the rate of resistance change under high temperature and high humidity use is large and the practicality becomes poor.

添加物としての鉄酸化物とジルコニウム酸化物の含有量は、上記主成分を100重量%としたときの比率で、鉄酸化物:Fe換算で0〜55重量%(但し、0重量%と55重量%を除く)、好ましくは0.1〜50重量%であり、ジルコニウム酸化物:ZrO換算で0〜15重量%(但し、0重量%と15重量%を除く)、好ましくは0.005〜10重量%である。鉄酸化物の含有量が多すぎても少なすぎても、高温高湿使用下の抵抗変化率が大きく、実用性に乏しくなる。ジルコニウム酸化物の含有量が多すぎても少なすぎても、高温高湿使用下の抵抗変化率が大きく、実用性に乏しくなる。 The content of iron oxide and zirconium oxide as additives is a ratio when the main component is 100% by weight, and is 0 to 55% by weight in terms of iron oxide: Fe 2 O 3 (however, 0% by weight) % And 55% by weight), preferably 0.1 to 50% by weight, zirconium oxide: 0 to 15% by weight in terms of ZrO 2 (except 0% and 15% by weight), preferably 0.005 to 10% by weight. If the content of iron oxide is too much or too little, the rate of change in resistance under high-temperature and high-humidity use is large, making it impractical. If the content of zirconium oxide is too much or too little, the rate of change in resistance under high temperature and high humidity use is large and the practicality becomes poor.

本発明では、添加物として銅酸化物をさらに含有させてもよい。この銅酸化物を含有させることで、B定数を大きく変化させるなどのメリットがある。この場合の銅酸化物の比率は、主成分(マンガン酸化物とニッケル酸化物の合計)100重量%に対して、CuO換算で、好ましくは45重量%未満、より好ましくは40重量%未満とする。銅酸化物の含有量が多くなりすぎると高温高湿使用下の抵抗変化率が大きくなる傾向がある。   In the present invention, a copper oxide may be further added as an additive. By including this copper oxide, there are merits such as greatly changing the B constant. In this case, the ratio of the copper oxide is preferably less than 45% by weight and more preferably less than 40% by weight in terms of CuO with respect to 100% by weight of the main component (total of manganese oxide and nickel oxide). . If the copper oxide content is too high, the resistance change rate under high temperature and high humidity use tends to increase.

第1内部電極層12及び第2内部電極層14は、たとえば、Ag、Ag−Pd、Pd、Au、Pt等の貴金属やCu、Ni等の卑金属などで構成される。   The first internal electrode layer 12 and the second internal electrode layer 14 are made of, for example, a noble metal such as Ag, Ag-Pd, Pd, Au, or Pt, or a base metal such as Cu or Ni.

第1外部端子電極6及び第2外部端子電極8は、たとえば、Ag、Ag−Pd、Pd、Au、Pt等の貴金属や、Cu、Ni等の卑金属、またはこれらを組合せた金属などで構成される。なお、さらに、外側に上記各種金属のメッキ層が形成してあってもよい。   The first external terminal electrode 6 and the second external terminal electrode 8 are made of, for example, a noble metal such as Ag, Ag-Pd, Pd, Au, or Pt, a base metal such as Cu or Ni, or a metal that is a combination thereof. The Furthermore, the above various metal plating layers may be formed on the outside.

次に、本実施形態に係る積層型サーミスタ2の製造方法の一例を説明する。以下の説明では、シート法を用いる場合を例示する。   Next, an example of a method for manufacturing the laminated thermistor 2 according to this embodiment will be described. In the following description, a case where the sheet method is used will be exemplified.

まず、一面上に第1内部電極層12を形成することとなる所定パターンの電極ペーストが形成されたグリーンシートと、一面上に第2内部電極層14を形成することとなる所定パターンの電極ペーストが形成されたグリーンシートと、第1〜2内部電極層12,14を持たないグリーンシートとを、用意する。   First, a green sheet on which an electrode paste having a predetermined pattern for forming the first internal electrode layer 12 is formed on one surface, and an electrode paste having a predetermined pattern for forming the second internal electrode layer 14 on the one surface. And a green sheet not having the first and second internal electrode layers 12 and 14 are prepared.

グリーンシートは、上述したサーミスタ用組成物を形成することとなる材料によって構成される。なお、この種の材料には、Si、Na、Caなどの不可避的不純物が0.1重量%程度以下、含まれていてもよい。
そして、このような材料を用い、公知の技術によってグリーンシートを製造する。具体的には、たとえば、まず上述したサーミスタ用組成物を形成することとなる材料を湿式混合等の手段によって均一に混合した後、乾燥させ、更に適切に選定された焼成条件で仮焼成し、仮焼粉を湿式粉砕する。次に、粉砕された仮焼粉末にバインダを加えてスラリー化する。次に、スラリーをドクターブレード法またはスクリーン印刷法等の手段によってシート化し、その後に乾燥させてグリーンシートを得る。
A green sheet is comprised with the material which will form the composition for the thermistors mentioned above. Note that this type of material may contain inevitable impurities such as Si, Na, and Ca in an amount of about 0.1% by weight or less.
And a green sheet is manufactured by a well-known technique using such a material. Specifically, for example, after first uniformly mixing the material that will form the thermistor composition described above by means of wet mixing or the like, it is dried, and further calcined under appropriately selected firing conditions, The calcined powder is wet pulverized. Next, a binder is added to the pulverized calcined powder to form a slurry. Next, the slurry is formed into a sheet by means such as a doctor blade method or a screen printing method, and then dried to obtain a green sheet.

電極ペーストは、上述した各種金属を含む。この電極ペーストを印刷法等の手段によって、グリーンシートの上に塗布することで、所定パターンの電極ペーストが形成されたグリーンシートが得られる。   The electrode paste includes the various metals described above. By applying this electrode paste onto the green sheet by means such as a printing method, a green sheet on which an electrode paste having a predetermined pattern is formed is obtained.

次に、これらのグリーンシートを重ね合せ、圧力を加えて圧着し、乾燥工程等の必要な工程を経た後、切断し、グリーン状態の素子本体4を取出す。切断は、ダイシングソー等を用いて行なうことができる。   Next, these green sheets are superposed, pressure is applied and pressure-bonded, and after necessary steps such as a drying step, the green sheets are cut and the green element body 4 is taken out. Cutting can be performed using a dicing saw or the like.

次に、取出されたグリーン状態の素子本体4を所定条件で焼成した後、素子本体4の端面に第1〜2外部端子電極6,8を形成することで、図1に示す積層型サーミスタ2が得られる。   Next, after the green element body 4 taken out is fired under a predetermined condition, the first and second external terminal electrodes 6 and 8 are formed on the end surface of the element body 4, so that the laminated thermistor 2 shown in FIG. Is obtained.

以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, in the range which does not deviate from the summary of this invention, it can implement in various aspects. .

次に、本発明の実施の形態をより具体化した実施例を挙げ、本発明をさらに詳細に説明する。但し、本発明は、これらの実施例のみに限定されるものではない。   Next, the present invention will be described in more detail with reference to examples that further embody the embodiment of the present invention. However, the present invention is not limited to these examples.

まず、出発材料として、市販の四三酸化マンガン(Mn)、酸化ニッケル、酸化鉄、酸化銅及び酸化ジルコニウムを、焼成後の組成が表1の試料番号1〜51に示す組成比(但し、表1中、主成分を構成するMn酸化物及びNi酸化物のモル%は、それぞれMn換算及びNi換算でのモル%を示している。添加物としての酸化鉄、酸化銅及び酸化ジルコニウムは、前記主成分を100重量%としたときの、Fe換算、CuO換算、ZrO換算での添加量(重量%)を示している。)になるように秤量配合し、ボールミルで16時間湿式混合した。なお、これらの出発原料中には、不可避的不純物が0.1重量%程度含まれている。 First, as a starting material, commercially available trimanganese tetroxide (Mn 3 O 4 ), nickel oxide, iron oxide, copper oxide, and zirconium oxide, the composition ratio after firing shown in sample numbers 1 to 51 in Table 1 ( In Table 1, mol% of Mn oxide and Ni oxide constituting the main component indicates mol% in terms of Mn and Ni, respectively, and iron oxide, copper oxide and zirconium oxide as additives. Shows the added amount (wt%) in terms of Fe 2 O 3 , CuO and ZrO 2 when the main component is 100% by weight.) Wet mixed for 16 hours. These starting materials contain about 0.1% by weight of inevitable impurities.

次に、湿式混合後の出発原料を、脱水乾燥し、乳鉢、乳棒を用いて粉体にした。   Next, the starting material after the wet mixing was dehydrated and dried, and powdered using a mortar and pestle.

次に、得られた粉体をアルミナこう鉢に入れ、800〜1200℃で2時間仮焼成した。   Next, the obtained powder was put into an alumina pot and pre-baked at 800 to 1200 ° C. for 2 hours.

次に、得られた仮焼き済み粉体を、ボールミルにより微粉砕した後、脱水乾燥して、サーミスタ用組成物原料とした。   Next, the obtained calcined powder was finely pulverized by a ball mill and then dehydrated and dried to obtain a composition material for the thermistor.

次に、得られたサーミスタ用組成物原料100重量部に対して、ポリビニルアルコール1.5重量部(固形分)を加え、乳鉢、乳棒で顆粒に造粒したのち、直径16mm、厚さ2.5mmの円板状に加圧成形して成形体を得た。   Next, 1.5 parts by weight (solid content) of polyvinyl alcohol is added to 100 parts by weight of the obtained composition material for thermistor, and the mixture is granulated into granules with a mortar and pestle. A molded body was obtained by pressure forming into a 5 mm disk shape.

次に、この成形体を、大気中で600℃で2時間加熱して、脱バインダ処理した後、大気中で900〜1300℃で2時間本焼成して焼結体を得た。   Next, this molded body was heated in air at 600 ° C. for 2 hours to remove the binder, and then sintered in the air at 900 to 1300 ° C. for 2 hours to obtain a sintered body.

次に、得られた焼結体の両面に、銀ペーストをスクリーン印刷し、800℃で焼き付けて、電極を形成して、サーミスタ試料を得た。   Next, a silver paste was screen-printed on both surfaces of the obtained sintered body and baked at 800 ° C. to form electrodes, whereby a thermistor sample was obtained.

得られたサーミスタ試料を、直流4端子法を用いて、25℃の抵抗値(R25)、−40℃の抵抗値(R−40 )および85℃の抵抗値(R85)を測定し、下記式1を用いてB定数(B25/−40)Yを算出し、下記式2を用いてB定数(B25/85 )Xを算出した(B定数を広範囲に調整可能か否かの評価)。本実施例では、(B25/85 )値Xと(B25/−40)値Yとの差(X−Y)が100以上である場合を良好とした。 The obtained thermistor sample was measured for the resistance value (R 25 ) at 25 ° C., the resistance value (R −40 ) at −40 ° C., and the resistance value (R 85 ) at 85 ° C. using the direct current four-terminal method. The following formula 1 was used to calculate the B constant (B 25 / -40 ) Y, and the following formula 2 was used to calculate the B constant (B 25/85 ) X (whether the B constant can be adjusted over a wide range). Evaluation). In this example, the case where the difference (X−Y) between the (B 25/85 ) value X and the (B 25 / −40 ) value Y was 100 or more was considered good.

また、得られたサーミスタ試料を、100℃の沸騰純水中に入れ、50時間煮沸後に抵抗値(R25’ )を測定し、下記式3を用いて25℃での初期抵抗値(R25)との抵抗変化率(ΔR25)を算出した(高温高湿使用下の抵抗変化率の評価)。本実施例では、ΔR25の値が5.0%以下である場合を良好とした。結果を表1に示す。 Further, a thermistor samples obtained, placed in boiling pure water of 100 ° C., the resistance value after boiling 50 hours (R 25 ') is measured, the initial resistance at 25 ° C. using the following equation 3 (R 25 ) And the resistance change rate (ΔR 25 ) was calculated (evaluation of the resistance change rate under high temperature and high humidity use). In this example, the case where the value of ΔR 25 was 5.0% or less was considered good. The results are shown in Table 1.

式1
25/−40(K)=(2.3026×log(R25/R−40 ))/((1/(273.15+25))−(1/(273.15−40)))
Formula 1
B 25 / −40 (K) = (2.3026 × log (R 25 / R −40 )) / ((1 / (273.15 + 25)) − (1 / (273.15-40)))

但し、式1中、B25/−40:B定数(K)、R25:25℃での抵抗値(Ω)、R−40 :−40℃での抵抗値(Ω)である。 However, in Equation 1, B 25 / -40: B constant (K), R 25: the resistance value at 25 ℃ (Ω), R -40 : the resistance value at -40 ℃ (Ω).

式2
25/85 (K)=(2.3026×log(R25/R85))/((1/(273.15+25))−(1/(273.15+85)))
Formula 2
B 25/85 (K) = (2.3026 × log (R 25 / R 85 )) / ((1 / (273.15 + 25)) − (1 / (273.15 + 85)))

但し、式2中、B25/85 :B定数(K)、R25:25℃での抵抗値(Ω)、R85:85℃での抵抗値(Ω)である。 However, in Formula 2, B 25/85 : B constant (K), R 25 : Resistance value (Ω) at 25 ° C., R 85 : Resistance value (Ω) at 85 ° C.

式3
△R25=((R25’ −R25)/R25)×100
Formula 3
ΔR 25 = ((R 25 ′ −R 25 ) / R 25 ) × 100

但し、式3中、△R25:煮沸試験後の抵抗変化率(%)、R25’ :煮沸試験後の抵抗値(Ω)、R25:煮沸試験前の抵抗値(Ω)である。 However, in Formula 3, ΔR 25 : resistance change rate (%) after boiling test, R 25 ′ : resistance value (Ω) after boiling test, R 25 : resistance value (Ω) before boiling test.

Figure 2005150289
Figure 2005150289

表1から以下のことが理解される。   From Table 1, the following can be understood.

まず、主成分中のマンガン酸化物とニッケル酸化物の割合が本発明の範囲を外れる試料1,51では、高温高湿使用下の抵抗変化率が大きい。また、添加物としての酸化鉄の割合が本発明の範囲を外れる試料2,7,18,24,35,40と、添加物としての酸化ジルコニウムの割合が本発明の範囲を外れる試料13,17,30,34,46,50についても同様である。また、試料12,19,29,45のように、添加物としての酸化銅の割合が45重量%と多すぎると、高温高湿使用下の抵抗変化率が悪化する傾向にある。   First, in Samples 1 and 51 in which the ratio of manganese oxide and nickel oxide in the main component is outside the range of the present invention, the resistance change rate under high temperature and high humidity use is large. Samples 2, 7, 18, 24, 35, and 40 in which the ratio of iron oxide as an additive falls outside the scope of the present invention, and samples 13 and 17 in which the ratio of zirconium oxide as an additive falls outside the scope of the present invention. , 30, 34, 46, 50 are the same. Moreover, when the ratio of the copper oxide as an additive is too large at 45% by weight as in Samples 12, 19, 29, and 45, the resistance change rate under use at high temperature and high humidity tends to deteriorate.

これに対して、主成分中のマンガン酸化物とニッケル酸化物の割合と、添加物としての酸化鉄、酸化ジルコニウムの割合とが本発明の範囲内にある残りの試料については、低温側(25/−40)でのB定数の温度特性を任意に変化させても、高温高湿使用下の抵抗変化率が小さく、安定したサーミスタ用組成物が得られている。その結果、回路設計の容易性および低コスト化等の種々の要求に対応可能である。   On the other hand, for the remaining samples in which the ratio of manganese oxide and nickel oxide in the main component and the ratio of iron oxide and zirconium oxide as additives are within the scope of the present invention, the low temperature side (25 / -40) Even if the temperature characteristic of the B constant is arbitrarily changed, the resistance change rate under the use of high temperature and high humidity is small, and a stable thermistor composition is obtained. As a result, it is possible to meet various requirements such as ease of circuit design and cost reduction.

また、添加物としての酸化鉄の割合が本発明の範囲を外れる試料2,18,35では、B定数(B25/85 )XとB定数(B25/−40)Yとの差(X−Y)が50程度と小さく、−85℃〜25℃の温度特性とほとんど変わらない。このため、低温側(25℃〜−40℃)でのB定数の温度特性を広範囲に調整しにくい。 Further, in the samples 2, 18, and 35 in which the ratio of iron oxide as an additive is outside the scope of the present invention, the difference between the B constant (B 25/85 ) X and the B constant (B 25 / -40 ) Y (X -Y) is as small as about 50, and is hardly different from the temperature characteristics of -85 ° C to 25 ° C. For this reason, it is difficult to adjust the temperature characteristic of the B constant on the low temperature side (25 ° C. to −40 ° C.) over a wide range.

これに対して、本発明の範囲内にある試料については、X−Yの値が100以上であり、たとえば試料20〜23のように添加物としての酸化鉄の割合が増えるに従って、X−Yの値を大きくすることができる。このため、低温側(25〜−40℃)でのB定数の温度特性を適宜に変化選択しやすい。その結果、幅広い要求の回路設計に対応可能となり、極めて有用である。   On the other hand, for samples within the scope of the present invention, the value of XY is 100 or more. For example, as the proportion of iron oxide as an additive increases as in samples 20 to 23, XY The value of can be increased. For this reason, it is easy to appropriately change and select the temperature characteristic of the B constant on the low temperature side (25 to -40 ° C.). As a result, it is possible to cope with a wide range of circuit designs and is extremely useful.

図1は本発明の一実施形態に係る積層型サーミスタを示す概略断面図である。FIG. 1 is a schematic sectional view showing a laminated thermistor according to an embodiment of the present invention.

符合の説明Explanation of sign

2… 積層型サーミスタ
4… 素子本体
6… 第1外部端子電極
8… 第2外部端子電極
10… サーミスタ層
12… 第1内部電極層
122… 第1引き出し電極部
124… 第2引き出し電極部
14… 第2内部電極層
142… 第1補助電極部
144… 第2補助電極部
146… 中間電極部
DESCRIPTION OF SYMBOLS 2 ... Stack type thermistor 4 ... Element main body 6 ... 1st external terminal electrode 8 ... 2nd external terminal electrode 10 ... Thermistor layer 12 ... 1st internal electrode layer 122 ... 1st extraction electrode part 124 ... 2nd extraction electrode part 14 ... 2nd internal electrode layer 142 ... 1st auxiliary electrode part 144 ... 2nd auxiliary electrode part 146 ... Intermediate electrode part

Claims (4)

マンガン酸化物、ニッケル酸化物、鉄酸化物及びジルコニウム酸化物を含むサーミスタ用組成物であって、
Mn換算でaモル%(但し、aは45〜95であって45と95を除く)のマンガン酸化物と、Ni換算で(100−a)モル%のニッケル酸化物とを主成分とし、
該主成分を100重量%としたときの各成分の比率が、
鉄酸化物:Fe換算で0〜55重量%(但し、0重量%と55重量%を除く)、
ジルコニウム酸化物:ZrO換算で0〜15重量%(但し、0重量%と15重量%を除く)、であるサーミスタ用組成物。
A thermistor composition comprising manganese oxide, nickel oxide, iron oxide and zirconium oxide,
The main component is manganese oxide of a mol% (where a is 45 to 95 and excluding 45 and 95) in terms of Mn, and (100-a) mol% of nickel oxide in terms of Ni,
The ratio of each component when the main component is 100% by weight,
Iron oxide: Fe 2 O 3 in terms of at 0 to 55 wt% (excluding 0 wt% and 55 wt%),
Zirconium oxide: A thermistor composition that is 0 to 15 wt% (excluding 0 wt% and 15 wt%) in terms of ZrO 2 .
添加成分として銅酸化物をさらに有し、該銅酸化物の比率が前記主成分100重量%に対して、CuO換算で45重量%未満である、請求項1に記載のサーミスタ用組成物。 The thermistor composition according to claim 1, further comprising a copper oxide as an additive component, wherein the ratio of the copper oxide is less than 45% by weight in terms of CuO with respect to 100% by weight of the main component. サーミスタ層を有するサーミスタ素子であって、
前記サーミスタ層が、サーミスタ用組成物で構成されており、
前記サーミスタ用組成物が、マンガン酸化物、ニッケル酸化物、鉄酸化物及びジルコニウム酸化物を含み、
Mn換算でaモル%(但し、aは45〜95であって45と95を除く)のマンガン酸化物と、Ni換算で(100−a)モル%のニッケル酸化物とを主成分とし、
該主成分を100重量%としたときの各成分の比率が、
鉄酸化物:Fe換算で0〜55重量%(但し、0重量%と55重量%を除く)、
ジルコニウム酸化物:ZrO換算で0〜15重量%(但し、0重量%と15重量%を除く)、であるサーミスタ素子。
A thermistor element having a thermistor layer,
The thermistor layer is composed of a thermistor composition;
The thermistor composition includes manganese oxide, nickel oxide, iron oxide and zirconium oxide,
The main component is manganese oxide of a mol% (where a is 45 to 95 and excluding 45 and 95) in terms of Mn, and (100-a) mol% of nickel oxide in terms of Ni,
The ratio of each component when the main component is 100% by weight,
Iron oxide: Fe 2 O 3 in terms of at 0 to 55 wt% (excluding 0 wt% and 55 wt%),
Zirconium oxide: a thermistor element of 0 to 15% by weight (excluding 0% and 15% by weight) in terms of ZrO 2 .
サーミスタ層と内部電極とが交互に複数配置された素子本体を有するサーミスタ素子であって、
前記サーミスタ層が、サーミスタ用組成物で構成されており、
前記サーミスタ用組成物が、マンガン酸化物、ニッケル酸化物、鉄酸化物及びジルコニウム酸化物を含み、
Mn換算でaモル%(但し、aは45〜95であって45と95を除く)のマンガン酸化物と、Ni換算で(100−a)モル%のニッケル酸化物とを主成分とし、
該主成分を100重量%としたときの各成分の比率が、
鉄酸化物:Fe換算で0〜55重量%(但し、0重量%と55重量%を除く)、
ジルコニウム酸化物:ZrO換算で0〜15重量%(但し、0重量%と15重量%を除く)、であるサーミスタ素子。
A thermistor element having an element body in which a plurality of thermistor layers and internal electrodes are alternately arranged,
The thermistor layer is composed of a thermistor composition;
The thermistor composition includes manganese oxide, nickel oxide, iron oxide and zirconium oxide,
The main component is manganese oxide of a mol% (where a is 45 to 95 and excluding 45 and 95) in terms of Mn, and (100-a) mol% of nickel oxide in terms of Ni,
The ratio of each component when the main component is 100% by weight,
Iron oxide: Fe 2 O 3 in terms of at 0 to 55 wt% (excluding 0 wt% and 55 wt%),
Zirconium oxide: a thermistor element of 0 to 15% by weight (excluding 0% by weight and 15% by weight) in terms of ZrO 2 .
JP2003383720A 2003-11-13 2003-11-13 Thermistor composition and thermistor element Expired - Lifetime JP4292057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383720A JP4292057B2 (en) 2003-11-13 2003-11-13 Thermistor composition and thermistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383720A JP4292057B2 (en) 2003-11-13 2003-11-13 Thermistor composition and thermistor element

Publications (2)

Publication Number Publication Date
JP2005150289A true JP2005150289A (en) 2005-06-09
JP4292057B2 JP4292057B2 (en) 2009-07-08

Family

ID=34692358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383720A Expired - Lifetime JP4292057B2 (en) 2003-11-13 2003-11-13 Thermistor composition and thermistor element

Country Status (1)

Country Link
JP (1) JP4292057B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192845A (en) * 2009-02-20 2010-09-02 Tdk Corp Thermistor element
US8115587B2 (en) 2008-03-28 2012-02-14 Murata Manufacturing Co., Ltd. NTC thermistor ceramic, method for producing NTC thermistor ceramic, and NTC thermistor
US8258915B2 (en) 2006-09-29 2012-09-04 Murata Manufacturing Co., Ltd. NTC thermistor ceramic and NTC thermistor using the same
US8547198B2 (en) 2010-01-12 2013-10-01 Murata Manufacturing Co., Ltd. Semiconductor ceramic composition for NTC thermistors and NTC thermistor
US8840302B2 (en) 2012-02-09 2014-09-23 Hyundai Motor Company Composite material for a temperature sensor, and a method of manufacturing a temperature sensor using the same
WO2020002336A1 (en) * 2018-06-27 2020-01-02 Tdk Electronics Ag Ntc compound, thermistor and method for producing the thermistor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097601A (en) * 1983-11-01 1985-05-31 松下電器産業株式会社 Oxide semiconductor porcelain for thermistor
JPS62137804A (en) * 1985-12-12 1987-06-20 株式会社村田製作所 Laminated chip thermistor
JPH0541304A (en) * 1990-08-16 1993-02-19 Korea Advanced Inst Of Sci Technol Metallic oxide group thermistor material
JPH06263518A (en) * 1993-02-05 1994-09-20 Siemens Matsushita Components Gmbh & Co Kg Sintering ceramics for high-temperature stable thermistor and its preparation
JP2000068110A (en) * 1998-08-19 2000-03-03 Tdk Corp Compound for thermistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097601A (en) * 1983-11-01 1985-05-31 松下電器産業株式会社 Oxide semiconductor porcelain for thermistor
JPS62137804A (en) * 1985-12-12 1987-06-20 株式会社村田製作所 Laminated chip thermistor
JPH0554681B2 (en) * 1985-12-12 1993-08-13 Murata Manufacturing Co
JPH0541304A (en) * 1990-08-16 1993-02-19 Korea Advanced Inst Of Sci Technol Metallic oxide group thermistor material
JPH06263518A (en) * 1993-02-05 1994-09-20 Siemens Matsushita Components Gmbh & Co Kg Sintering ceramics for high-temperature stable thermistor and its preparation
JP2000068110A (en) * 1998-08-19 2000-03-03 Tdk Corp Compound for thermistor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258915B2 (en) 2006-09-29 2012-09-04 Murata Manufacturing Co., Ltd. NTC thermistor ceramic and NTC thermistor using the same
US8115587B2 (en) 2008-03-28 2012-02-14 Murata Manufacturing Co., Ltd. NTC thermistor ceramic, method for producing NTC thermistor ceramic, and NTC thermistor
JP2010192845A (en) * 2009-02-20 2010-09-02 Tdk Corp Thermistor element
CN102522174A (en) * 2009-02-20 2012-06-27 Tdk株式会社 Thermistor device
US8547198B2 (en) 2010-01-12 2013-10-01 Murata Manufacturing Co., Ltd. Semiconductor ceramic composition for NTC thermistors and NTC thermistor
US8840302B2 (en) 2012-02-09 2014-09-23 Hyundai Motor Company Composite material for a temperature sensor, and a method of manufacturing a temperature sensor using the same
US9404805B2 (en) 2012-02-09 2016-08-02 Hyundai Motor Company Composite material for a temperature sensor, and a method of manufacturing a temperature sensor using the same
WO2020002336A1 (en) * 2018-06-27 2020-01-02 Tdk Electronics Ag Ntc compound, thermistor and method for producing the thermistor
CN112334430A (en) * 2018-06-27 2021-02-05 Tdk电子股份有限公司 NTC material, thermistor and method for producing the thermistor
US11929193B2 (en) 2018-06-27 2024-03-12 Tdk Electronics Ag NTC compound, thermistor and method for producing the thermistor

Also Published As

Publication number Publication date
JP4292057B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4726890B2 (en) Surface mount negative thermistor
JP3822798B2 (en) Voltage nonlinear resistor and porcelain composition
JP6356821B2 (en) NTC device and method for its manufacture
CN104282438A (en) Ceramic electronic component and method for manufacturing the same
JPWO2008041481A1 (en) NTC thermistor porcelain and NTC thermistor using it
JP5678520B2 (en) Thermistor element
WO2011086850A1 (en) Semiconductor ceramic composition for ntc thermistor and ntc thermistor
JP5418323B2 (en) Dielectric porcelain composition and electronic component
CN107001145B (en) Conductive oxide sintered body, conductive member, gas sensor, piezoelectric element, and method for manufacturing piezoelectric element
JP4292057B2 (en) Thermistor composition and thermistor element
JP4780306B2 (en) Multilayer thermistor and manufacturing method thereof
JP2007055828A (en) Dielectric ceramic composition and electronic component produced using the same
JP2005197281A (en) Laminated chip varistor
JP2016054225A (en) Semiconductor ceramic composition for negative characteristic thermistor, and negative characteristic thermistor
JP4888264B2 (en) Multilayer thermistor and manufacturing method thereof
JP3606127B2 (en) Method for producing ferrite sintered body
JP5309586B2 (en) Thermistor composition
JP2008205343A (en) Manufacturing method of laminated type thermistor
JP4492234B2 (en) Thermistor composition and thermistor element
JP6020068B2 (en) Dielectric porcelain composition and electronic component
JP4492235B2 (en) Thermistor composition and thermistor element
JP2016146380A (en) Voltage nonlinearity resistor composition, and varistor and laminate varistor that use the same
JP2008060612A (en) Surface mounting-type negative temperature coefficient thermistor
JP4492598B2 (en) NTC composition and NTC element
JP4655053B2 (en) Thermistor element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Ref document number: 4292057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

EXPY Cancellation because of completion of term