JP3822798B2 - Voltage nonlinear resistor and porcelain composition - Google Patents

Voltage nonlinear resistor and porcelain composition Download PDF

Info

Publication number
JP3822798B2
JP3822798B2 JP2001040847A JP2001040847A JP3822798B2 JP 3822798 B2 JP3822798 B2 JP 3822798B2 JP 2001040847 A JP2001040847 A JP 2001040847A JP 2001040847 A JP2001040847 A JP 2001040847A JP 3822798 B2 JP3822798 B2 JP 3822798B2
Authority
JP
Japan
Prior art keywords
atomic
compound
converted
voltage
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001040847A
Other languages
Japanese (ja)
Other versions
JP2002246207A (en
Inventor
典之 神津
将典 長野
明久 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2001040847A priority Critical patent/JP3822798B2/en
Publication of JP2002246207A publication Critical patent/JP2002246207A/en
Application granted granted Critical
Publication of JP3822798B2 publication Critical patent/JP3822798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は過電圧保護素子用抵抗体として好適な酸化亜鉛(Zn0)を主成分とした電圧非直線性抵抗体及び抵抗体磁器組成物に関する。
【0002】
【従来の技術】
Zn0を主成分とした電圧非直線性抵抗体は、一般に制限電圧が低く、電圧比直線係数が大きいなどの特徴を有し、半導体素子のような過電流耐量の小さなもので構成される電子機器の過電圧保護を目的とするバリスタとして広く用いられている。
【0003】
Zn0を主成分とする電圧非直線性抵抗体には、特性改善のために種々の副成分が添加される。特公平1−25205号公報には、Zn0を主成分として、これに副成分として
少なくとも1種類の希土類元素を総量で 0.08〜5.0原子%、
Coを 0.1〜10.0原子%、
Mg,Caの少なくとも1種類を 0.01〜5.0原子%、
K,Cs,Rbの少なくとも1種類を総量で0.01〜1.0原子%、
Crを 0.01〜1.0原子%、
Bを 0.0005〜0.1原子%、
Al,GA,Inの少なくとも1種を総量で0.0001〜0.05原子%、
添加し、長波尾サージ耐量の改善を図ることが開示されている。
【0004】
また、特開平9−326305号公報には、Zn0を主成分とし、これに副成分として
少なくとも1種の希土類元素を総量で0.08〜5.0原子%、
Coを 0.1〜10.0原子%、
Caを 0.1〜0.5原子%、
K,Cs,Rbのうち少なくとも1種を 0.01〜1.0原子%、
Crを 0.1〜0.6原子%、
Al,Ga,Inのうち少なくとも1種を総量で0.0004〜0.03原子%、添加したもの及び上記成分に更にB(ボロン)を0.0005〜0.1原子%、添加し、許容電力の増大を図ることが開示されている。
【0005】
【発明が解決しようとする課題】
ところで、上記2つの公報に開示される副成分には、K(カリウム)及びB(ボロン)が含まれている。K及びBは、電圧非直線性抵抗体の製造時に、これ等の酸化物又は焼成過程で酸化物になることができる化合物で供給される。しかし、K及びBの酸化物は、融点が低いし、焼成工程中で飛散しやすいので、特性のバラツキが必然的に大きくなる。
【0006】
そこで、本発明の目的は、電気的特性のバラツキを抑えて製造することができ、且つ課電寿命特性における漏れ電流変化が少なく且つ非対称劣化が少ない電圧非直線抵抗体及びこのための磁器組成物を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決し、上記目的を達成するための本発明は、ZnO(酸化亜鉛)から成る主成分と、この主成分に添加された副成分とから成り、
前記副成分
Pr(プラセオジム)を0.05〜3.00原子%、
Co(コバルト)を0.1〜5.0原子%、
Cr(クロム)を0.01〜0.50原子%、
Al(アルミニウム)とGa(ガリウム)とIn(インジウム)との内の少なくとも1種を0.001〜0.020原子%、
Si(珪素)を0.001〜0.500原子%が、及び
Ca+Sr(但し、Ca/Srが0〜50)を0.01〜0.50原子%
とから成り、且つK(カリウム)及びB(ボロン)を含んでいないことを特徴とする電圧非直線抵抗体に係わるものである。
【0008】
上記抵抗体を得るための組成物は、ZnO(酸化亜鉛)から成る主成分と、この主成分に添加された副成分とから成り、
前記副成分
Pr化合物をPr(プラセオジム)に換算して0.05〜3.00原子%、
Co化合物をCo(コバルト)に換算して0.1〜5.0原子%、
Cr化合物をCr(クロム)に換算して0.01〜0.50原子%、
Al化合物とGa化合物とIn化合物との内の少なくとも1種をAl(アルミニウム)とGa(ガリウム)とIn(インジウム)とにそれぞれ換算して0.001〜0.020原子%、
Si化合物をSi(珪素)に換算して0.001〜0.500原子%が、及び
Ca化合物+Sr化合物をCa+Sr(但し、Ca/Srが0〜50)に換算して0.01〜0.50原子%
とから成り、且つK(カリウム)及びB(ボロン)を含んでいないことが望ましい。
【0009】
【発明の効果】
各請求項の発明は次の効果を有する。
(1) 飛散しやすいK(カリウム)及びB(ボロン)を含まないので、量産時における電圧非直線抵抗体の特性のバラツキを抑えることができる。
(2) K,Bを含まないが、Si及びM(Ca,Sr)を所定範囲で含むために諸電気特性の低下を防ぎ、且つ課電寿命特性における漏れ電流変化の抑制及び非対称劣化の抑制を達成することができる。本発明に従う副成分によって課電寿命特性が向上する理由は明確ではないが、本発明に従う副成分が焼結体の3重点に偏析していることが認められ、結晶粒内に入り難い元素であることに起因しているものと考えられる。このように副成分の元素が粒界近傍に存在すると、格子間Znイオンのマイグレーションが抑制されると考えられる。上記のマイグレーションは特性劣化に関与すると考えられるので、本発明によれば特性劣化が少なくなる。
【0010】
【実施形態及び実施例】
次に、表1〜表5及び図1を参照して本発明の実施形態及び実施例及び比較例を説明する。なお、各表には原子%で示された副成分の組成比と、CaとSrの比と、諸特性が示されている。なお、△V1 μ Aの欄の+は正方向時の特性、−は負方向時の特性を示す。
【0011】
本発明及び比較例に従う電圧非直線抵抗体を得るために、主成分としての酸化亜鉛Zn0粉末と、副成分としてのPr(プラセオジム)、Co(コバルト)、Cr(クロム)、Al(アルムニウム)又はGa(ガリウム)又はIn(インジウム)、Si(珪素)、Ca(カルシウム)、Sr(ストロンチウム)の各化合物を用意した。副成分の各化合物は、酸化プラセオジムPr611と、酸化コバルトCo34と、酸化クロムCr23と、酸化アルミニウムAl23又は酸化ガリウムGa23又は酸化インジウムIn23と、酸化珪素SiO2と、炭酸カルシウムCaCO3と、炭酸ストロンチウムSrCO3とした。即ち、本発明に従う非直線抵抗体を得るために主成分としてのZn0に、副成分としての
Pr611をPrに換算して0.05〜3.00原子%、
Co34をCoに換算して0.1〜5.0原子%、
Cr23をCrに換算して0.01〜0.50原子%、
Al23又はGa23又はIn23をAl又はGa又はInに換算して0.001〜0.020原子%、
SiO2をSiに換算して0.001〜0.500原子%、
CaCO3+SrCO3をCa+Srに換算して0.01〜0.50原子%
添加した多数の磁器組成物即ち磁器材料を表1〜表4に示すように用意した。また、表1〜表5に示す比較例の磁器材料も同様に用意した。
なお、表1〜表5における副成分の原子%(金属元素又はSiの百分率換算)は、Znの原子の数を100とし、このZnの原子の数に対するPr,Co、Cr、Al又はGa又はIn,Ca,Srの原子の数の比で示されている。例えば、試料番号2の金属元素及びSiの組成は、次の化学式即ち組成式で示すことができる。
Zn100Pr0.02Co2.0Cr0.2Al0.005Si0.2Ca0.2Sr0.2
表1〜表5の試料にはZn0が示されていないが、Znは100原子%である。
表1〜表5の*印が付けられている試料番号は比較例を示す。
【0012】
【表1】

Figure 0003822798
【0013】
【表2】
Figure 0003822798
【0014】
【表3】
Figure 0003822798
【0015】
【表4】
Figure 0003822798
【0016】
【表5】
Figure 0003822798
【0017】
次に、各試料の磁器材料に有機バインダー、有機溶剤及び有機可塑剤を加え、ボールミルで24時間混合し、スラリーを作成した。
次に、各スラリーを使用してドクタープレード法により厚さ30μmのセラミックグリーンシートを作成し、このシート上にパラジウムペーストから成る導電性ペーストをスクリーン印刷し、内部電極用導体層を形成した。次に、対の内部電極が得られるように2枚のグリーンシートを重ね、更に上下にダミーのグリーンシートを重ねた積層体を形成し、これらを加熱、圧着した後に所定のチップ形状になるように切断してグリーンチップとした。このグリーンチップを300℃で3時間の条件で脱バインダーを行った後に1200℃で2時間焼成し焼結体を得た。
図1は、第1、第2及び第3の層1,2,3で示されている焼結体と第1及び第2の内部電極4,5と第1及び第2の外部端子電極6,7とからなるバリスタ(電圧非直線抵抗体素子)を示す。第1及び第2の内部電極4,5間に配置された電圧非直線抵抗体から成る第1の層1は、第1及び第2の内部電極4,5に電圧が印加された時に非直線性抵抗を示す。この例では第2及び第3の層2,3も電圧非直線抵抗体であるが、これ等の一部又は全部を電圧非直線性を有さない磁器とすること、又は第2及び第3の層2,3を省くこともできる。
第1及び第2の外部端子電極6,7は各焼結体の端面にAgを主体とした電極ペーストを塗布し、800℃で焼き付けることによって形成されている。第1及び第2の外部端子電極6,7は第1及び第2の内部電極4,5に電気的に接続されている。
【0018】
本発明に従う焼結体は、Zn0に対して特許請求の範囲で特定した割合でPr、Co、Cr、Al又はGa又はIn、Si、Ca+Sr又はSrを含む磁器抵抗体である。なお、副成分の各元素は、焼成後の焼結体にそれぞれの酸化物の形で含まれている。
【0019】
各試料の特性は、図1に示すように構成された各試料のバリスタの外部電極6,7間に1mAを流した時の厚さ1mm当りのバリスタ電圧V1mA(V/mm)と、10mAを流した時の厚さ1mm当りのバリスタ電圧V10mA(V/mm)とを測定し、次式によって非直線係数αを求めた。
α=log(10/1)/log(V10mA/V1mA
【0020】
課電寿命特性を測定するために、各試料のバリスタに対してVlmAの90%にあたる直流定電圧を85℃の乾燥空気中で500時間通電し、通電前後で1μAの電流を流した時の電極間電圧Vl μ Aの変化率△Vl μ Aを求めた。なお、電流を正方向(+方向)に流した場合と、逆方向(−方向)に流した場合の両方での△Vl μ Aを求めた。
【0021】
表1〜表5から明らかなように、本発明に従う組成のバリスタは、非直線係数αが20以上、バリスタ電圧V1mAが400(V/mm)以上、課電寿命特性即ち漏れ電流変化率ΔV1 μ Aが+10%〜−10%内の目標特性を有する。また、本発明によれば、漏れ電流変化率ΔV1 μ Aの極性による差が小さくなる。即ち非対称劣化が小さくなる。また、量産時におけるバリスタ間の特性のバラツキが小さくなる。
【0022】
試料番号2〜4から明らかなように、Prが0.05〜3.0原子%の範囲であれば、上記目標特性が得られるが、試料番号1及び5に示すようにPrが0,02原子%及び4.0原子%になると、α及びΔV1 μ Aが目標特性から外れる。従って、Prの好ましい量は0.05〜3.0原子%である。
【0023】
試料番号7及び8から明らかなようにCoが0.1及び5.0原子%の場合には目標特性を得ることができるが、試料番号6及び9に示すようにCoが0.05及び6.0原子%となると、α及びΔV1 μ Aが目標特性から外れる。従って、Coの好ましい量は0.1〜5.0原子%である。
【0024】
試料番号11及び12から明らかなように、Crが0.01及び0.5原子%の場合には目標特性が得られるが、試料番号10及び13から明らかなようにCrが0.005及び0.6の場合はすべての項目を目標特性に収めることができない。従って、Crの好ましい量は0.01〜0.5原子%である。
【0025】
試料番号15、16、32、33、34、37、38,39から明らかなようにAl又はGa又はInが0.001〜0.02原子%の場合には、目標特性が得られるが、試料番号14,17,31,35,36,40から明らかなようにこれ等が0.0005及び0.003原子%の場合には、全ての項目を目標特性にすることができない。従って,Al,Ga又はInの好ましい量は0.001〜0.02原子%である。
【0026】
試料番号19,20から明らかなように、Siが0.001及び0.5原子%の場合には目標特性が得られるが、試料番号18,21に示すようにSiが0.0005及び0.6原子%になると全ての項目を目標特性に収めることができない。従って、Siの好ましい量は0.001〜0.5原子%である。
【0027】
試料番号23,24,25,26,27,28から明らかなように,Ca+Srが0.01〜0.5原子%であり、且つCaとSrとの比Ca/Srが50以下の場合には、目標特性を得ることができるが、試料番号22,29,30に示すように、上記条件を外れると全ての項目を目標特性に収めることができない。従って、Ca+Srの好ましい量は0.001〜0.5原子%である。
【0028】
上記表には示されていないが、試料番号16のAl0.02原子%の代りにAl0.005原子%+Ga0.005原子%+In0.005%とし、この他は試料番号16と同一にしたバリスタを作り、特性を測定したところ、資料番号16とほぼ同一の特性が得られた。また、AlとGaとInとの合計又はこれ等から任意に選択された2つの合計を0.001〜0.02原子%の範囲に収めたバリスタを作り、これ等の特性を測定したところ、目標特性が得られた。
また、同一組成の多数のバリスタを作り、特性のバラツキを求めたところ、本発明に従うもののバラツキは本発明の範囲外のものよりも小さかった。
【0029】
【変形例】
本発明は上述の実施形態に限定されるものではなく、例えば次の変形が可能なものである。
(1) 副成分を各元素の酸化物又は炭酸物とは別の化合物又は元素単体で供給することができる。
(2) バリスタの構造を図1とは異なる構造にすることができる。例えば板状の電圧非直線抵抗体の一方の主面と他方の主面に電極を設けてバリスタとすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に従うバリスタを示す断面図である。
【符号の説明】
1 電圧非直線抵抗体層
4,5 内部電極
6,7 外部端子電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a voltage nonlinear resistor and a resistor ceramic composition mainly composed of zinc oxide (Zn0) suitable as a resistor for an overvoltage protection element.
[0002]
[Prior art]
A voltage non-linear resistor mainly composed of Zn0 generally has a low limiting voltage, a large voltage ratio linear coefficient, and the like, and an electronic device configured with a low overcurrent withstand capability such as a semiconductor element It is widely used as a varistor for the purpose of overvoltage protection.
[0003]
Various subcomponents are added to the voltage nonlinear resistor mainly composed of Zn0 in order to improve the characteristics. In Japanese Patent Publication No. 1-25205, Zn0 is a main component, and at least one rare earth element as a subcomponent is added in a total amount of 0.08 to 5.0 atomic%,
0.1 to 10.0 atomic percent of Co,
0.01-5.0 atomic% of at least one of Mg and Ca,
0.01-1.0 atomic% in total of at least one kind of K, Cs, Rb,
0.01 to 1.0 atomic% of Cr,
B is 0.0005 to 0.1 atomic%,
0.0001 to 0.05 atomic% in total amount of at least one of Al, GA, and In,
It is disclosed that it is added to improve the long-wave tail surge resistance.
[0004]
Japanese Patent Application Laid-Open No. 9-326305 discloses that Zn0 is a main component and at least one rare earth element as a subcomponent is added in a total amount of 0.08 to 5.0 atomic%,
0.1 to 10.0 atomic percent of Co,
0.1 to 0.5 atomic% of Ca,
0.01 to 1.0 atomic% of at least one of K, Cs, and Rb,
0.1 to 0.6 atomic percent of Cr,
Add at least one of Al, Ga and In in a total amount of 0.0004 to 0.03 atomic%, and add 0.0005 to 0.1 atomic% of B (boron) to the above components, and allow It is disclosed to increase power.
[0005]
[Problems to be solved by the invention]
By the way, subcomponents disclosed in the above two publications include K (potassium) and B (boron). K and B are supplied with these oxides or compounds that can become oxides during the firing process during the manufacture of the voltage nonlinear resistor. However, since the oxides of K and B have a low melting point and are easily scattered during the firing process, the variation in characteristics inevitably increases.
[0006]
Accordingly, an object of the present invention is to provide a voltage non-linear resistor that can be manufactured while suppressing variations in electrical characteristics, has a small change in leakage current, and has little asymmetric deterioration in the electric charging life characteristics, and a porcelain composition therefor Is to provide.
[0007]
[Means for Solving the Problems]
The present invention for solving the above problems and achieving the above object comprises a main component composed of ZnO (zinc oxide) and a subcomponent added to the main component,
The accessory component is
Pr (praseodymium) 0.05 to 3.00 atomic%,
Co (cobalt) 0.1-5.0 atomic%,
0.01 to 0.50 atomic% of Cr (chromium),
0.001 to 0.020 atomic% of at least one of Al (aluminum), Ga (gallium), and In (indium),
0.001 to 0.500 atomic% for Si (silicon) and 0.01 to 0.50 atomic% for Ca + Sr (where Ca / Sr is 0 to 50)
And does not contain K (potassium) and B (boron), and is related to a voltage nonlinear resistor.
[0008]
The composition for obtaining the resistor comprises a main component composed of ZnO (zinc oxide) and a subcomponent added to the main component,
The accessory component is
0.05 to 3.00 atomic% in terms of Pr compound converted to Pr (praseodymium),
0.1 to 5.0 atomic% when the Co compound is converted to Co (cobalt),
0.01 to 0.50 atomic% in terms of Cr compound converted to Cr (chromium),
0.001 to 0.020 atomic% by converting at least one of the Al compound, Ga compound and In compound into Al (aluminum), Ga (gallium) and In (indium),
The Si compound is converted into Si (silicon), 0.001 to 0.500 atomic%, and the Ca compound + Sr compound is converted into Ca + Sr (where Ca / Sr is 0 to 50), 0.01 to 0.00. 50 atomic%
And does not contain K (potassium) and B (boron) .
[0009]
【The invention's effect】
The invention of each claim has the following effects.
(1) Since it does not contain K (potassium) and B (boron) that are likely to scatter, variation in the characteristics of the voltage nonlinear resistor during mass production can be suppressed.
(2) K and B are not included, but Si and M (Ca, Sr) are included in a predetermined range, so that deterioration of various electrical characteristics is prevented, and leakage current variation and asymmetric degradation are suppressed in the charging life characteristics. Can be achieved. The reason why the charging life characteristics are improved by the subcomponent according to the present invention is not clear, but it is recognized that the subcomponent according to the present invention is segregated at the triple point of the sintered body, and is an element that hardly enters the crystal grains. It is thought that this is due to something. Thus, it is considered that the migration of interstitial Zn ions is suppressed when the sub-component element exists in the vicinity of the grain boundary. Since the above migration is considered to be involved in characteristic deterioration, the present invention reduces characteristic deterioration.
[0010]
Embodiment and Examples
Next, embodiments, examples, and comparative examples of the present invention will be described with reference to Tables 1 to 5 and FIG. In each table, the composition ratio of subcomponents expressed in atomic%, the ratio of Ca and Sr, and various characteristics are shown. Incidentally, △ V 1 mu column of A + is characteristic during forward, - denotes the characteristic in the negative direction.
[0011]
In order to obtain a voltage nonlinear resistor according to the present invention and the comparative example, zinc oxide ZnO powder as a main component and Pr (praseodymium), Co (cobalt), Cr (chromium), Al (aluminum) as subcomponents or Each compound of Ga (gallium) or In (indium), Si (silicon), Ca (calcium), and Sr (strontium) was prepared. Each of the subcomponent compounds is composed of praseodymium oxide Pr 6 O 11 , cobalt oxide Co 3 O 4 , chromium oxide Cr 2 O 3 , aluminum oxide Al 2 O 3 or gallium oxide Ga 2 O 3, or indium oxide In 2 O. 3 , silicon oxide SiO 2 , calcium carbonate CaCO 3, and strontium carbonate SrCO 3 . That is, the Zn0 as the main component to obtain a non-linear resistor according to the present invention, the Pr 6 O 11 as a secondary component in terms of Pr from .05 to 3.00 atomic%,
Co 3 O 4 is converted to Co, 0.1 to 5.0 atomic%,
0.01 to 0.50 atomic% in terms of Cr 2 O 3 converted to Cr,
Al 2 O 3 or a Ga 2 O 3 or In 2 O 3 in terms of Al or Ga, or an In 0.001 to 0.020 atomic%,
0.001 to 0.500 atomic% in terms of SiO 2 converted to Si,
CaCO 3 + SrCO 3 in terms of Ca + Sr is 0.01 to 0.50 atomic%
Many added porcelain compositions, ie porcelain materials, were prepared as shown in Tables 1 to 4. Moreover, the porcelain material of the comparative example shown in Table 1-Table 5 was prepared similarly.
In addition, the atomic% of the subcomponent in Table 1 to Table 5 (converted as a percentage of the metal element or Si) is defined such that the number of Zn atoms is 100, and Pr, Co, Cr, Al or Ga or the number of Zn atoms is It is shown by the ratio of the number of atoms of In, Ca, Sr. For example, the composition of the metal element and Si of sample number 2 can be expressed by the following chemical formula, that is, the composition formula.
Zn 100 Pr 0.02 Co 2.0 Cr 0.2 Al 0.005 Si 0.2 Ca 0.2 Sr 0.2
Zn0 is not shown in the samples of Tables 1 to 5, but Zn is 100 atomic%.
Sample numbers marked with * in Tables 1 to 5 indicate comparative examples.
[0012]
[Table 1]
Figure 0003822798
[0013]
[Table 2]
Figure 0003822798
[0014]
[Table 3]
Figure 0003822798
[0015]
[Table 4]
Figure 0003822798
[0016]
[Table 5]
Figure 0003822798
[0017]
Next, an organic binder, an organic solvent, and an organic plasticizer were added to the porcelain material of each sample and mixed for 24 hours by a ball mill to prepare a slurry.
Next, using each slurry, a ceramic green sheet having a thickness of 30 μm was prepared by a doctor blade method, and a conductive paste made of palladium paste was screen-printed on this sheet to form a conductor layer for internal electrodes. Next, two green sheets are stacked so that a pair of internal electrodes can be obtained, and a dummy green sheet is stacked on top and bottom to form a laminate, and these are heated and pressed to form a predetermined chip shape. Into green chips. The green chip was debindered at 300 ° C. for 3 hours and then fired at 1200 ° C. for 2 hours to obtain a sintered body.
FIG. 1 shows a sintered body represented by first, second and third layers 1, 2, 3, first and second internal electrodes 4, 5 and first and second external terminal electrodes 6. , 7 is a varistor (voltage non-linear resistance element). The first layer 1 made of a voltage nonlinear resistor disposed between the first and second internal electrodes 4 and 5 is non-linear when a voltage is applied to the first and second internal electrodes 4 and 5. Shows sexual resistance. In this example, the second and third layers 2 and 3 are also voltage non-linear resistors, but some or all of them are made of porcelain having no voltage non-linearity, or the second and third layers. The layers 2 and 3 can also be omitted.
The first and second external terminal electrodes 6 and 7 are formed by applying an electrode paste mainly composed of Ag to the end face of each sintered body and baking at 800 ° C. The first and second external terminal electrodes 6 and 7 are electrically connected to the first and second internal electrodes 4 and 5.
[0018]
The sintered body according to the present invention is a porcelain resistor containing Pr, Co, Cr, Al or Ga or In, Si, Ca + Sr or Sr at a ratio specified in the claims with respect to Zn0. In addition, each element of a subcomponent is contained in the sintered compact after baking in the form of each oxide.
[0019]
The characteristics of each sample are as follows: varistor voltage V 1mA (V / mm) per 1 mm thickness when 1 mA is passed between the external electrodes 6 and 7 of the varistor of each sample configured as shown in FIG. Was measured, and the varistor voltage V 10 mA (V / mm) per 1 mm thickness was measured, and the non-linear coefficient α was obtained by the following equation.
α = log (10/1) / log ( V10mA / V1mA )
[0020]
In order to measure the service life characteristics, a dc constant voltage corresponding to 90% of V lmA was applied to the varistor of each sample for 500 hours in dry air at 85 ° C., and a current of 1 μA was applied before and after the application . the rate of change of the inter-electrode voltage V l μ a △ sought V l μ a. Incidentally, in the case where a current flows in the positive direction (+ direction), backward - was determined both in passing (direction) of △ V l μ A.
[0021]
As is apparent from Tables 1 to 5, the varistor having the composition according to the present invention has a nonlinear coefficient α of 20 or more, a varistor voltage V 1mA of 400 (V / mm) or more, a charging life characteristic, that is, a leakage current change rate ΔV. 1 mu a has the target properties of + 10%-10%. Further, according to the present invention, the difference due to the polarity of the leakage current change rate [Delta] V 1 mu A is reduced. That is, asymmetric deterioration is reduced. In addition, variation in characteristics between varistors during mass production is reduced.
[0022]
As is clear from Sample Nos. 2 to 4, the above target characteristics can be obtained when Pr is in the range of 0.05 to 3.0 atomic%, but as shown in Sample Nos. 1 and 5, Pr is 0.02 It becomes atomic% and 4.0 atomic%, alpha and [Delta] V 1 mu a deviates from the target characteristics. Therefore, the preferred amount of Pr is 0.05 to 3.0 atomic%.
[0023]
As is clear from Sample Nos. 7 and 8, the target characteristics can be obtained when Co is 0.1 and 5.0 atomic%, but as shown in Sample Nos. 6 and 9, Co is 0.05 and 6 When the 2.0 atomic%, alpha and [Delta] V 1 mu a deviates from the target characteristics. Accordingly, the preferred amount of Co is 0.1 to 5.0 atomic percent.
[0024]
As is clear from sample numbers 11 and 12, the target characteristics are obtained when Cr is 0.01 and 0.5 atomic%, but as is clear from sample numbers 10 and 13, Cr is 0.005 and 0. In the case of .6, not all items can fit in the target characteristics. Therefore, the preferable amount of Cr is 0.01 to 0.5 atomic%.
[0025]
As is clear from sample numbers 15, 16, 32, 33, 34, 37, 38, and 39, when Al, Ga, or In is 0.001 to 0.02 atomic%, target characteristics are obtained. As apparent from the numbers 14, 17, 31, 35, 36, and 40, when these are 0.0005 and 0.003 atomic%, not all items can be set as the target characteristics. Therefore, the preferred amount of Al, Ga or In is 0.001 to 0.02 atomic%.
[0026]
As is clear from sample numbers 19 and 20, the target characteristics can be obtained when Si is 0.001 and 0.5 atomic%, but as shown in sample numbers 18 and 21, Si is 0.0005 and 0. At 6 atomic%, all items cannot be included in the target characteristics. Accordingly, the preferred amount of Si is 0.001 to 0.5 atomic percent.
[0027]
As is clear from sample numbers 23, 24, 25, 26, 27, and 28, when Ca + Sr is 0.01 to 0.5 atomic% and the ratio Ca / Sr of Ca to Sr is 50 or less, Although the target characteristics can be obtained, as shown in sample numbers 22, 29, and 30, all items cannot be included in the target characteristics if the above conditions are not met. Therefore, the preferable amount of Ca + Sr is 0.001 to 0.5 atomic%.
[0028]
Although not shown in the above table, instead of Al 0.02 atomic% of sample number 16, Al 0.005 atomic% + Ga 0.005 atomic% + In 0.005%, and other varistors identical to sample number 16 were used. As a result of making and measuring the characteristics, almost the same characteristics as the material number 16 were obtained. Moreover, when the varistor which made the total of Al, Ga, and In or two total arbitrarily selected from these fall in the range of 0.001-0.02 atomic%, and measured these characteristics, The target characteristics were obtained.
Further, when many varistors having the same composition were prepared and the variation in characteristics was determined, the variation according to the present invention was smaller than that outside the scope of the present invention.
[0029]
[Modification]
The present invention is not limited to the above-described embodiment, and for example, the following modifications are possible.
(1) The subcomponent can be supplied as a compound or elemental element different from the oxide or carbonate of each element.
(2) The varistor structure can be different from that shown in FIG. For example, an electrode may be provided on one main surface and the other main surface of a plate-shaped voltage nonlinear resistor to form a varistor.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a varistor according to an embodiment of the present invention.
[Explanation of symbols]
1 Voltage Nonlinear Resistance Layers 4, 5 Internal Electrodes 6, 7 External Terminal Electrodes

Claims (2)

ZnO(酸化亜鉛)から成る主成分と、この主成分に添加された副成分とから成り、
前記副成分
Pr(プラセオジム)を0.05〜3.00原子%、
Co(コバルト)を0.1〜5.0原子%、
Cr(クロム)を0.01〜0.50原子%、
Al(アルミニウム)とGa(ガリウム)とIn(インジウム)との内の少なくとも1種を0.001〜0.020原子%、
Si(珪素)を0.001〜0.500原子%が、及び
Ca+Sr(但し、Ca/Srが0〜50)を0.01〜0.50原子%
とから成り、且つK(カリウム)及びB(ボロン)を含んでいないことを特徴とする電圧非直線抵抗体。
It consists of a main component made of ZnO (zinc oxide) and a subcomponent added to this main component,
The accessory component is
Pr (praseodymium) 0.05 to 3.00 atomic%,
Co (cobalt) 0.1-5.0 atomic%,
0.01 to 0.50 atomic% of Cr (chromium),
0.001 to 0.020 atomic% of at least one of Al (aluminum), Ga (gallium), and In (indium),
0.001 to 0.500 atomic% for Si (silicon) and 0.01 to 0.50 atomic% for Ca + Sr (where Ca / Sr is 0 to 50)
And a non-linear resistor having no K (potassium) and B (boron) .
ZnO(酸化亜鉛)から成る主成分と、この主成分に添加された副成分とから成り、
前記副成分
Pr化合物をPr(プラセオジム)に換算して0.05〜3.00原子%、
Co化合物をCo(コバルト)に換算して0.1〜5.0原子%、
Cr化合物をCr(クロム)に換算して0.01〜0.50原子%、
Al化合物とGa化合物とIn化合物との内の少なくとも1種をAl(アルミニウム)とGa(ガリウム)とIn(インジウム)とにそれぞれ換算して0.001〜0.020原子%、
Si化合物をSi(珪素)に換算して0.001〜0.500原子%が、及び
Ca化合物+Sr化合物をCa+Sr(但し、Ca/Srが0〜50)に換算して0.01〜0.50原子%
とから成り、且つK(カリウム)及びB(ボロン)を含んでいないことを特徴とする電圧非直線抵抗体磁器組成物。
It consists of a main component made of ZnO (zinc oxide) and a subcomponent added to this main component,
The accessory component is
0.05 to 3.00 atomic% in terms of Pr compound converted to Pr (praseodymium),
0.1 to 5.0 atomic% when the Co compound is converted to Co (cobalt),
0.01 to 0.50 atomic% in terms of Cr compound converted to Cr (chromium),
0.001 to 0.020 atomic% by converting at least one of the Al compound, Ga compound and In compound into Al (aluminum), Ga (gallium) and In (indium),
The Si compound is converted into Si (silicon), 0.001 to 0.500 atomic%, and the Ca compound + Sr compound is converted into Ca + Sr (where Ca / Sr is 0 to 50), 0.01 to 0.00. 50 atomic%
And a non-linear resistor-resistor ceramic composition characterized by not containing K (potassium) and B (boron) .
JP2001040847A 2001-02-16 2001-02-16 Voltage nonlinear resistor and porcelain composition Expired - Fee Related JP3822798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040847A JP3822798B2 (en) 2001-02-16 2001-02-16 Voltage nonlinear resistor and porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040847A JP3822798B2 (en) 2001-02-16 2001-02-16 Voltage nonlinear resistor and porcelain composition

Publications (2)

Publication Number Publication Date
JP2002246207A JP2002246207A (en) 2002-08-30
JP3822798B2 true JP3822798B2 (en) 2006-09-20

Family

ID=18903371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040847A Expired - Fee Related JP3822798B2 (en) 2001-02-16 2001-02-16 Voltage nonlinear resistor and porcelain composition

Country Status (1)

Country Link
JP (1) JP3822798B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705708B2 (en) 2005-04-01 2010-04-27 Tdk Corporation Varistor and method of producing the same
JP4074299B2 (en) 2005-04-14 2008-04-09 Tdk株式会社 Multilayer chip varistor
US7639470B2 (en) 2005-12-14 2009-12-29 Tdk Corporation Varistor element
JP2007165639A (en) * 2005-12-14 2007-06-28 Tdk Corp Varistor and method of manufacturing varistor
US7361847B2 (en) 2005-12-30 2008-04-22 Motorola, Inc. Capacitance laminate and printed circuit board apparatus and method
JP4577250B2 (en) 2006-03-27 2010-11-10 Tdk株式会社 Varistor and light emitting device
JP4487963B2 (en) 2006-03-27 2010-06-23 Tdk株式会社 Varistor and light emitting device
JP4867511B2 (en) * 2006-07-19 2012-02-01 Tdk株式会社 Varistor and light emitting device
JP4893371B2 (en) 2007-03-02 2012-03-07 Tdk株式会社 Varistor element
US7932806B2 (en) 2007-03-30 2011-04-26 Tdk Corporation Varistor and light emitting device
TW200903530A (en) 2007-03-30 2009-01-16 Tdk Corp Voltage non-linear resistance ceramic composition and voltage non-linear resistance element
US7683753B2 (en) 2007-03-30 2010-03-23 Tdk Corporation Voltage non-linear resistance ceramic composition and voltage non-linear resistance element
JP2008311362A (en) 2007-06-13 2008-12-25 Tdk Corp Ceramic electronic component
JP4888260B2 (en) 2007-07-10 2012-02-29 Tdk株式会社 Voltage nonlinear resistor ceramic composition, electronic component, and multilayer chip varistor
JP5088029B2 (en) * 2007-07-19 2012-12-05 Tdk株式会社 Barista
JP5163097B2 (en) 2007-12-20 2013-03-13 Tdk株式会社 Barista
JP5032351B2 (en) 2008-01-25 2012-09-26 Tdk株式会社 Barista
JP5163228B2 (en) 2008-03-28 2013-03-13 Tdk株式会社 Barista
JP2010073759A (en) 2008-09-16 2010-04-02 Tdk Corp Laminated chip varistor and electronic component
DE102009023847A1 (en) * 2009-02-03 2010-08-12 Epcos Ag Varistor ceramic, multilayer component comprising the varistor ceramic, manufacturing method for the varistor ceramic
DE102009023846B4 (en) * 2009-02-03 2024-02-01 Tdk Electronics Ag Varistor ceramic, multilayer component comprising the varistor ceramic, manufacturing process for the varistor ceramic
JP5594462B2 (en) * 2010-04-05 2014-09-24 Tdk株式会社 Voltage nonlinear resistor ceramic composition and electronic component
JP5637017B2 (en) * 2010-04-05 2014-12-10 Tdk株式会社 Voltage nonlinear resistor ceramic composition and electronic component
US9242902B2 (en) 2010-04-05 2016-01-26 Tdk Corporation Nonlinear resistor ceramic composition and electronic component
US8508325B2 (en) 2010-12-06 2013-08-13 Tdk Corporation Chip varistor and chip varistor manufacturing method
JP5799672B2 (en) 2011-08-29 2015-10-28 Tdk株式会社 Chip varistor
JP5696623B2 (en) 2011-08-29 2015-04-08 Tdk株式会社 Chip varistor
JP5652465B2 (en) 2012-12-17 2015-01-14 Tdk株式会社 Chip varistor

Also Published As

Publication number Publication date
JP2002246207A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
JP3822798B2 (en) Voltage nonlinear resistor and porcelain composition
TW200849287A (en) Voltage non-linear resistance ceramic composition and voltage on-linear resistance element
JPH11340009A (en) Nonlinear resistor
KR20090006017A (en) Voltage nonlinear resistor porcelain composition, electronic component and laminated chip varistor
CN100472673C (en) Multilayer chip varistor
JP2007099532A (en) Ceramic composition for varistor and laminated varistor
JP2004022976A (en) Stacked voltage nonlinear resistor and method of manufacturing the same
JP4184172B2 (en) Voltage nonlinear resistor ceramic composition, electronic component and multilayer chip varistor
JP4235487B2 (en) Voltage nonlinear resistor
JP4292057B2 (en) Thermistor composition and thermistor element
JP3757794B2 (en) Semiconductor porcelain for thermistor and chip type thermistor using the same
JPS644651B2 (en)
JP3823876B2 (en) Voltage-dependent nonlinear resistor
JPH05283209A (en) Laminated varistor
JP2016146380A (en) Voltage nonlinearity resistor composition, and varistor and laminate varistor that use the same
JP4183100B2 (en) Voltage Nonlinear Resistor Porcelain Composition
KR0153126B1 (en) Voltage nonlinearity resistance and manufacture method thereof
JP2540048B2 (en) Voltage nonlinear resistor porcelain composition
JP3840917B2 (en) Voltage-dependent nonlinear resistor
JP2774029B2 (en) Ceramic linear resistor and circuit breaker using it
KR20230097845A (en) ZnO-BASED VARISTOR COMPOSITION AND VARISTOR INCLUDING THE SAME AND MANUFACTURING METHOD THEREOF
JP2580916B2 (en) Porcelain composition and method for producing the same
JP3711916B2 (en) Voltage-dependent nonlinear resistor
JP2644731B2 (en) Method of manufacturing voltage-dependent nonlinear resistor
JPH0373121B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees