JP4235487B2 - Voltage nonlinear resistor - Google Patents

Voltage nonlinear resistor Download PDF

Info

Publication number
JP4235487B2
JP4235487B2 JP2003135828A JP2003135828A JP4235487B2 JP 4235487 B2 JP4235487 B2 JP 4235487B2 JP 2003135828 A JP2003135828 A JP 2003135828A JP 2003135828 A JP2003135828 A JP 2003135828A JP 4235487 B2 JP4235487 B2 JP 4235487B2
Authority
JP
Japan
Prior art keywords
twenty
varistor
voltage
atomic
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003135828A
Other languages
Japanese (ja)
Other versions
JP2004342745A (en
Inventor
典之 神津
健二 矢澤
将典 長野
明久 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2003135828A priority Critical patent/JP4235487B2/en
Publication of JP2004342745A publication Critical patent/JP2004342745A/en
Application granted granted Critical
Publication of JP4235487B2 publication Critical patent/JP4235487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過電圧保護素子に好適な酸化亜鉛を主成分とする電圧非直線性抵抗体に関する。
【0002】
【従来の技術】
【特許文献1】
特開平1-25205号公報
【特許文献2】
特開平9-326305号公報
酸化亜鉛(ZnO)を主成分とした電圧非直線性抵抗体は、制限電圧が低く、電圧非直線係数が大きいという特徴を有している。そのため半導体素子のような過電流耐量の小さなものを含む機器の過電圧保護を目的とするバリスタとして広く用いられている。電圧非直線性抵抗体は、主成分としてのZnOと、特性改善用の副成分とから成る。例えば、前記特許文献1には、主成分としてのZnOに対して、副成分として
少なくとも1種類の希土類元素を総量で 0.08〜5.0at%
Coを 0.1〜10.0at%
Mg,Caの少なくとも1種類を 0.01〜5.0at%
K,Cs,Rbの少なくとも1種を総量で 0.01〜1.0at%
Crを 0.01〜1.0at%
Bを 0.0005〜0.1at%
Al,GA,Inの少なくとも1種を総量で 0.0001〜0.05at%
を添加した組成物、及び更にB(ホウ素)を添加した組成物が開示されている。なお、at%は原子%を示す。
【0003】
前記特許文献2には、主成分としてのZnOに対して副成分として
少なくとも1種の希土類元素を総量で 0.08〜5.0at%
Coを 0.1〜10.0at%
Caを 0.1〜0.5at%
K,Cs,Rbのうち少なくとも1種を 0.01〜1.0at%
Crを 0.1〜0.6at%
Al,Ga,Inのうち少なくとも1種を総量で0.0004〜0.03at%
を添加することが開示されている。
【0004】
【発明が解決しようとする課題】
ところで、前記特許文献1及び2等のようにK及びBを含む電圧非直線性抵抗体を製造する時に、K及びBはこれ等の酸化物で添加されるか、又は焼成過程で酸化物になる化合物で添加される。しかし、K及びBの酸化物の融点が低いので、K及びBは焼成時に飛散し易い。このため、同一特性の電圧非直線性抵抗体を歩留良く量産することが困難であった。
【0005】
そこで、本発明の目的は、飛散し易い添加成分を含まないにも拘らず、要求されたサージ耐量及び課電寿命特性を得ることができる電圧非直線性抵抗体を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決し、上記目的を達成するための本発明は、
酸化亜鉛(ZnO)から成る主成分と、この主成分に添加された副成分とから成り、前記副成分は、
0.05〜3.0原子%のPr(プラセオジム)と、
0.1〜5.0原子%のCo(コバルト)と、
0.01〜0.5原子%のMo(モリブデン)とV(バナジウム)との両方と、
0.001〜0.02原子%のAl(アルミニウム)と、
0.001〜0.5原子%のSi(シリコン)と、
0.01〜0.5原子%のMg(マグネシウム)とCa(カルシウム)とのいずれか一方又は両方と
から成り、且つNa(ナトリウム)、K(カリウム),Rb(ルビジウム)」及びCs(セリウム)を含んでいないことを特徴とする電圧非直線性抵抗体に係わるものである。
【0007】
【発明の作用及び効果】
本発明においては、Prと、Ca及びMgの一方又は両方と、Mo V との両方とが併用されている。これ等はサージ耐量及び課電寿命特性の向上に寄与し、信頼性の高い非直線性抵抗体を提供することができる。本発明で使用されるPr,Co,MoとVとの両方、Al,Si,MgとCaとの一方又は両方から成る副成分が、サージ耐量及び課電寿命特性の向上に寄与するメカニズムは正確には分っていない。しかし、Pr,Co,Mo V との両方,Si,Mg/Caの焼結体の3重点における偏析が認められている。従って、これ等の元素は粒内に入り難い元素であると考えられる。これ等の元素が粒界近傍に存在すると、格子間Znイオンのマイグレーションが抑制され、サージ耐量及び課電寿命特性が向上するものと考えられる。
また、本発明に従う電圧非直線性抵抗体には、B及びKのように飛散し易い副成分が添加されないので、焼成雰囲気の変動による特性のバラツキが生じ難く、電圧非直線性抵抗体の歩留を向上させることができる。
【0008】
【実施形態】
本発明に従う実施例及び比較例の電圧非直線性抵抗体即ちバリスタとしての試料を製造するために、主成分としてのZnOの粉末を用意すると共に、副成分としてのPr,Co,Mo,V,Al,Si,Ca,Mgを得るためのPr6O11,Co3O4,MoO3,V2O3,Al2O3,SiO2,CaCO3,MgOを用意した。次に、Pr6O11,Co3O4,MoO3,V2O3,Al2O3,SiO2,CaCO3,MgOを、表1の原子%即ちat%で示す副成分(Pr,Co,Mo,V,Al,Si,Ca,Mg)を得ることができる割合に秤量し、これを主成分としてZnOに加え、更に、有機バインダー,有機溶剤及び有機可塑剤を加え、ボールミルで24時間混合し、スラリーを作成した。
なお、表1及び表2の最も左側のNo.は試料番号を示している。また、表1において各副成分は原子%(at%)で示されている。また、表1には主成分としてのZnOが示されていないが、各試料には残部としてZnOが含まれている。従って、主成分と各副成分との合計の原子%は100%となる。また、*印の付いた試料No.は本発明の範囲外の比較例を示す。
【0009】
表1
No. Pr Co Mo V Al Si Ca Mg
1* 0.02 2.0 0.2 0.2 0.005 0.2 0.2 0.2
2 0.05 2.0 0.2 0.2 0.005 0.2 0.2 0.2
3 0.5 2.0 0.2 0.2 0.005 0.2 0.2 0.2
4 3.0 2.0 0.2 0.2 0.005 0.2 0.2 0.2
5* 5.0 2.0 0.2 0.2 0.005 0.2 0.2 0.2
6* 0.5 0.05 0.2 0.2 0.005 0.2 0.2 0.1
7 0.5 0.1 0.2 0.2 0.005 0.2 0.2 0.1
8 0.5 5.0 0.2 0.2 0.005 0.2 0.2 0.1
9* 0.5 7.0 0.2 0.2 0.005 0.2 0.2 0.1
10* 0.5 2.0 0.005 0 0.005 0.2 0.1 0.2
11 0.5 2.0 0.01 0 0.005 0.2 0.1 0.2
12 0.5 2.0 0.5 0 0.005 0.2 0.1 0.2
13* 0.5 2.0 0.7 0 0.005 0.2 0.1 0.2
14* 0.5 2.0 0 0.005 0.005 0.2 0.1 0.2
15 0.5 2.0 0 0.01 0.005 0.2 0.1 0.2
16 0.5 2.0 0 0.5 0.005 0.2 0.1 0.2
17* 0.5 2.0 0 0.7 0.005 0.2 0.1 0.2
18 0.5 2.0 0.025 0.025 0.005 0.2 0.1 0.2
19 0.5 2.0 0.1 0.1 0.005 0.2 0.1 0.2
20 0.5 2.0 0.2 0.2 0.005 0.2 0.1 0.2
21* 0.5 2.0 0.2 0.2 0.0005 0.2 0.3 0.05
22 0.5 2.0 0.2 0.2 0.001 0.2 0.3 0.05
23 0.5 2.0 0.2 0.2 0.02 0.2 0.3 0.05
24* 0.5 2.0 0.2 0.2 0.03 0.2 0.3 0.05
25* 0.5 2.0 0.2 0.2 0.005 0.0005 0.2 0.2
26 0.5 2.0 0.2 0.2 0.005 0.001 0.2 0.2
27 0.5 2.0 0.2 0.2 0.005 0.5 0.2 0.2
28* 0.5 2.0 0.2 0.2 0.005 0.7 0.2 0.2
29* 0.5 2.0 0.2 0.2 0.005 0.2 0.005 0
30 0.5 2.0 0.2 0.2 0.005 0.2 0.01 0
31 0.5 2.0 0.2 0.2 0.005 0.2 0.5 0
32* 0.5 2.0 0.2 0.2 0.005 0.2 0.7 0
33* 0.5 2.0 0.2 0.2 0.005 0.2 0 0.005
34 0.5 2.0 0.2 0.2 0.005 0.2 0 0.01
35 0.5 2.0 0.2 0.2 0.005 0.2 0 0.5
36* 0.5 2.0 0.2 0.2 0.005 0.2 0 0.7
37 0.5 2.0 0.2 0.2 0.005 0.2 0.025 0.025
38 0.5 2.0 0.2 0.2 0.005 0.2 0.1 0.1
39 0.5 2.0 0.2 0.2 0.005 0.2 0.2 0.2
【0010】
次に、各試料のスラリーを使用してドクターブレード法により厚さ30μmのセラミックグリーンシート即ち磁器生シートを作成した。次に、各セラミックグリーンシートを所望寸法に切断し、複数枚のグリーンシートを得た。複数枚のグリーンシートの1枚に図1の第1の内部電極2aを得るための例えばパラジウムペーストから成る導電性ペーストをスクリーン印刷で塗布し、別のグリーンシートの1枚に第2の内部電極2bを得るための例えばパラジウムペーストから成る導電性ペーストをスクリーン印刷で塗布した。
【0011】
次に、導電性ペーストが塗布された2枚のグリーンシートを積層し、更にこれ等の上下にダミーのグリーンシートを重ね、これ等を加熱,圧着して所定のチップ形状に切断してグリーンチップを得た。
【0012】
次に、このグリーンチップを300℃で3時間の条件で脱バインダーを行った後に1250℃で2時間焼成して図1に示す構成の焼結体1を得た。図1の焼結体1では、電圧非直線性抵抗体としてのセラミック層1aの上下に第1及び第2の内部電極2a,2bが配置され、第2の内部電極2bの下側にセラミック層1bが配置され、第1の内部電極2aの上側にセラミック層1cが配置されている。
【0013】
次に、焼結体1の両端面にAgを主成分とした電極ペーストを塗布し、800℃で焼き付けて第1及び第2の外部端子電極3,4を形成し、積層型バリスタを完成させた。なお、第1の外部電極3は第1の内部電極2aに接続され、第2の外部電極4は第2の内部電極2bに接続されている。
【0014】
各試料の積層型バリスタの非直線係数α、サージ耐量(A)、及び課電寿命特性を次のように測定した。
非直線係数αは、図1に示すように形成された各試料のバリスタに、1mAを流した時のセラミック層1aの1mm当りのバリスタ電圧V1mA[V/mm]と、10mAを流した時のセラミック層1aの1mm当りのバリスタ電圧V10mA[V/mm]とを求め、これを使用して、次式により計算した。
α=log(10/1)/log(V10mA/V1mA)
【0015】
サージ耐量は、図1のバリスタに5分間隔で2回、8/10μsecの衝撃電流を印加し、バリスタ電圧V1mAが±10%変化しない限界電流値(A)を測定した。
【0016】
課電寿命特性は、通電前後の正方向1mAにおけるバリスタ電圧の変化率+△V1mA(%)と、負方向1mAにおけるバリスタ電圧の変化率−△V1mA(%) とを求めることによって判定した。なお、正方向電流時のバリスタ電圧変化率+△V1mA(%)は、1mAのバリスタ電圧V1mAの90%にあたる直流定電圧を85℃の乾燥空気中に置かれたバリスタに500時間印加(通電)する前及び後においてバリスタに対して正方向1μAの電流を流した時の電極2a,2b間電圧を求め、通電前の電極間電圧をV1mAと通電後の電極間電圧V1mA´とから、次式によって求めた。
+△V1mA={(V1mA−V1mA´)/V1mA}×100(%)
負方向電流時のバリスタ電圧変化率−△V1mA(%)は、1mAの電流の方向を負方向に変更した他は正方向電流時のバリスタ電圧変化率+△V1mA(%)と同様な方法で求めた。
【0017】
表2は、試料No.1〜39の1mAのバリスタ電圧V1mA(V/mm)、非直線係数α、サージ耐量(A)、課電寿命特性を示す正方向電流時のバリスタ電圧変化率+△V1mA(%)及び負方向電流時のバリスタ電圧変化率−△V1mA(%)を示す。
【0018】
表2
No. V1mA α サージ耐量 +ΔV1 μ A −ΔV1 μ A
V/mm ( A) (%) ( %
1* 300 5 6 -35.0 -50.0
2 478 15 20 -5.0 -6.8
3 550 20 25 -2.1 -2.4
4 650 23 30 -4.3 -5.4
5* 715 9 6 -25.0 -40.0
6* 305 6 8 -25.0 -38.0
7 482 16 30 -2.5 -2.8
8 555 20 25 -5.1 -6.8
9* 604 9 8 -20.0 -30.0
10* 350 9 8 -30.0 -43.0
11 475 25 28 -3.1 -3.3
12 553 20 32 -5.0 -5.8
13* 380 8 8 -23.0 -35.0
14* 350 9 8 -35.0 -48.0
15 470 23 25 -5.6 -6.3
16 560 21 28 -7.0 -8.3
17* 400 7 10 -25.0 -35.0
18 483 25 28 -3.0 -3.3
19 530 27 25 -3.5 -3.7
20 540 23 25 -4.9 -5.3
21* 390 9 7 -21.0 -30.0
22 480 25 25 -2.5 -3.0
23 490 24 28 -5.6 -6.6
24* 430 10 9 -32.0 -40.0
25* 350 8 8 -27.0 -39.0
26 450 23 25 -3.0 -3.5
27 580 25 28 -4.3 -4.9
28* 308 10 5 -29.0 -40.0
29* 310 8 8 -32.0 -43.0
30 458 24 25 -3.5 -4.0
31 565 26 25 -5.6 -7.0
32* 320 9 8 -30.0 -44.0
33* 380 6 8 -30.0 -40.0
34 470 21 23 -3.9 -4.2
35 580 25 25 -6.0 -6.5
36* 350 6 10 -28.0 -38.0
37 480 23 28 -5.3 -5.6
38 520 25 25 -3.9 -4.3
39 560 25 25 -6.0 -6.3
【0019】
本実施形態では、非直線係数αの値が10以上、サージ耐量が10A以上、バリスタ電圧変化率+△V1mA及び−△V1mAの絶対値が10以下のものを良品とした。
表1及び表2の試料No.2〜4から明らかなように、Prが0.05〜3.0at%のバリスタは良品である。
また、試料No.7,8から明らかなように、Coが0.1〜5.0at%のバリスタは良品である。
また、試料No.11,12から明らかなように、Moが0.01〜0.5at%のバリスタは良品である。
また、試料No.15,16から明らかなように、Vが0.01〜0.5at%のバリスタは良品である。
なお、試料No.11,12,15,16,18,19,20から明らかなように、MoとVとのいずれか一方又は両方を0.01〜0.5at%の範囲内で添加しても良品が得られる。
また、試料No.22,23から明らかなように、Alが0.001〜0.02at%のバリスタは良品である。
また、試料No.26,27から明らかなように、Siが0.001〜0.5at%のバリスタは良品である。
また、試料No.30,31から明らかなように、Caが0.01〜0.5at%のバリスタは良品である。
また、試料No.34,35から明らかなように、Mgが0.01〜0.5at%のバリスタは良品である。
なお、試料No.30,31,34,35,37,38,39から明らかなように、CaとMgとのいずれか一方又は両方を0.01〜0.5at%の範囲内で添加しても良品が得られる。
【0020】
本発明の範囲に属する同一の試料番号のバリスタを多数個作り、同一試料内の表2の特性のバラツキを調べたところ、従来の副成分としてK又はBを含むバリスタよりはバラツキが小さかった。即ち、本発明に従う副成分には焼成時に飛散し易いK及びBが含まれていないので、量産時における特性バラツキが少なくなり、歩留が高くなる。
また、本実施形態によれば、バリスタの諸電気的特性を低下させずに、サージ耐量が大きく、且つ課電寿命特性における漏れ電流変化の変化が少なく非対称劣化の小さいバリスタを提供することができる。
【0021】
【変形例】
本発明は上述の実施形態に限定されるものでなく、例えば次の変形が可能なものである。
(1) 主成分を予め仮焼し、また複数の副成分の混合物も予め仮焼し、仮焼した主成分に仮焼した副成分を添加することができる。
(2) 副成分としてのPr,Co,Mo,V,Al,Si,Ca,Mgをこれ等の酸化物又は炭酸化物で添加する代りに、副成分の各元素又は他の化合物で添加することができる。
(3) 焼成温度を焼結可能な範囲内で変えることができる。
(4) 積層型セラミックバリスタを複数の第1及び第2の内部電極2a,2bを有する構成にすることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に従うバリスタの断面図である。
【符号の説明】
1 焼結体
1a,1b,1c セラミック層
2a,2b 第1及び第2の内部電極
3,4 第1及び第2の外部端子電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a voltage non-linear resistance body mainly composed of zinc oxide suitable for an overvoltage protection element.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 1-25205
[Patent Document 2]
Japanese Patent Laid-Open No. 9-326305
A voltage non-linear resistance body containing zinc oxide (ZnO) as a main component is characterized by a low limiting voltage and a large voltage non-linear coefficient. Therefore, it is widely used as a varistor for the purpose of overvoltage protection of equipment including a semiconductor element having a small overcurrent withstand capability. The voltage nonlinear resistor includes ZnO as a main component and a subcomponent for improving characteristics. For example, in Patent Document 1, as a subcomponent, ZnO as a main component is disclosed.
0.08 ~ 5.0at% of total amount of at least one rare earth element
Co 0.1 ~ 10.0at%
0.01-5.0at% of at least one of Mg and Ca
0.01-1.0at% in total of at least one of K, Cs, Rb
Cr 0.01 ~ 1.0at%
B 0.0005-0.1at%
At least one of Al, GA and In in a total amount of 0.0001 to 0.05 at%
And a composition to which B (boron) is further added. In addition, at% shows atomic%.
[0003]
In Patent Document 2, as a subcomponent with respect to ZnO as a main component.
0.08 ~ 5.0at% of total amount of at least one rare earth element
Co 0.1 ~ 10.0at%
Ca 0.1 ~ 0.5at%
0.01-1.0at% of at least one of K, Cs, Rb
Cr 0.1 ~ 0.6at%
At least one of Al, Ga, and In is 0.0004 to 0.03 at% in total
Is disclosed.
[0004]
[Problems to be solved by the invention]
By the way, when manufacturing a voltage non-linear resistor containing K and B as in Patent Documents 1 and 2, K and B are added as these oxides, or are added to the oxides during the firing process. Is added as a compound. However, since the melting points of the oxides of K and B are low, K and B are likely to be scattered during firing. For this reason, it has been difficult to mass-produce voltage nonlinear resistors having the same characteristics with high yield.
[0005]
Accordingly, an object of the present invention is to provide a voltage non-linear resistor capable of obtaining the required surge withstand capability and electric charging life characteristics even though it does not contain an additive component that easily scatters.
[0006]
[Means for Solving the Problems]
In order to solve the above problems and achieve the above object, the present invention provides:
It consists of a main component composed of zinc oxide (ZnO) and a subcomponent added to this main component,
0.05-3.0 atomic% Pr (praseodymium),
0.1-5.0 atomic% Co (cobalt),
0.01-0.5 atomic% Mo (molybdenum) and V (vanadium)And bothWhen,
0.001 to 0.02 atomic% Al (aluminum),
0.001 to 0.5 atomic% Si (silicon),
One or both of 0.01-0.5 atomic% Mg (magnesium) and Ca (calcium)
And it does not contain Na (sodium), K (potassium), Rb (rubidium) ”and Cs (cerium).
[0007]
[Action and effect of the invention]
In the present invention, Pr, one or both of Ca and Mg,Mo When V With bothAre used together. These contribute to the improvement of surge withstand capability and electrical charging life characteristics, and can provide a highly reliable non-linear resistor. Pr, Co, Mo and V used in the present inventionAnd bothHowever, the mechanism by which the subcomponent consisting of one or both of Al, Si, Mg and Ca contributes to the improvement of surge withstand capability and the service life characteristics is not accurately known. However, Pr, Co,Mo When V And both, Si, Mg / Ca sintered body segregation at the triple point is recognized. Therefore, these elements are considered to be elements that do not easily enter the grains. If these elements are present in the vicinity of the grain boundary, migration of interstitial Zn ions is suppressed, and it is considered that the surge withstand capability and the life performance are improved.
In addition, the voltage non-linear resistor according to the present invention is not added with an auxiliary component such as B and K, which is unlikely to be scattered. Can be improved.
[0008]
Embodiment
In order to produce samples as voltage non-linear resistors or varistors of Examples and Comparative Examples according to the present invention, ZnO powder as a main component was prepared, and Pr, Co, Mo, V, Pr to obtain Al, Si, Ca, Mg6O11, CoThreeOFour, MoOThree, V2OThree, Al2OThree, SiO2, CaCOThree, MgO was prepared. Next, Pr6O11, CoThreeOFour, MoOThree, V2OThree, Al2OThree, SiO2, CaCOThree, MgO are weighed to a ratio that can obtain the subcomponents (Pr, Co, Mo, V, Al, Si, Ca, Mg) shown in atomic%, that is, at% in Table 1, and this is used as a main component in ZnO. In addition, an organic binder, an organic solvent and an organic plasticizer were further added and mixed for 24 hours by a ball mill to prepare a slurry.
In Tables 1 and 2, the leftmost No. represents the sample number. In Table 1, each subcomponent is shown in atomic% (at%). Table 1 does not show ZnO as a main component, but each sample contains ZnO as the balance. Accordingly, the total atomic% of the main component and each subcomponent is 100%. Sample numbers marked with * are comparative examples outside the scope of the present invention.
[0009]
Table 1
No. Pr Co Mo V Al Si Ca Mg
1 * 0.02 2.0 0.2 0.2 0.005 0.2 0.2 0.2
2 0.05 2.0 0.2 0.2 0.005 0.2 0.2 0.2
Three 0.5 2.0 0.2 0.2 0.005 0.2 0.2 0.2
Four 3.0 2.0 0.2 0.2 0.005 0.2 0.2 0.2
Five* 5.0 2.0 0.2 0.2 0.005 0.2 0.2 0.2
6 * 0.5 0.05 0.2 0.2 0.005 0.2 0.2 0.1
7 0.5 0.1 0.2 0.2 0.005 0.2 0.2 0.1
8 0.5 5.0 0.2 0.2 0.005 0.2 0.2 0.1
9 * 0.5 7.0 0.2 0.2 0.005 0.2 0.2 0.1
Ten* 0.5 2.0 0.005 0 0.005 0.2 0.1 0.2
11 0.5 2.0 0.01 0 0.005 0.2 0.1 0.2
12 0.5 2.0 0.5 0 0.005 0.2 0.1 0.2
13* 0.5 2.0 0.7 0 0.005 0.2 0.1 0.2
14* 0.5 2.0 0 0.005 0.005 0.2 0.1 0.2
15 0.5 2.0 0 0.01 0.005 0.2 0.1 0.2
16 0.5 2.0 0 0.5 0.005 0.2 0.1 0.2
17 * 0.5 2.0 0 0.7 0.005 0.2 0.1 0.2
18 0.5 2.0 0.025 0.025 0.005 0.2 0.1 0.2
19 0.5 2.0 0.1 0.1 0.005 0.2 0.1 0.2
20 0.5 2.0 0.2 0.2 0.005 0.2 0.1 0.2
twenty one* 0.5 2.0 0.2 0.2 0.0005 0.2 0.3 0.05
twenty two 0.5 2.0 0.2 0.2 0.001 0.2 0.3 0.05
twenty three 0.5 2.0 0.2 0.2 0.02 0.2 0.3 0.05
twenty four* 0.5 2.0 0.2 0.2 0.03 0.2 0.3 0.05
twenty five* 0.5 2.0 0.2 0.2 0.005 0.0005 0.2 0.2
26 0.5 2.0 0.2 0.2 0.005 0.001 0.2 0.2
27 0.5 2.0 0.2 0.2 0.005 0.5 0.2 0.2
28 * 0.5 2.0 0.2 0.2 0.005 0.7 0.2 0.2
29 * 0.5 2.0 0.2 0.2 0.005 0.2 0.005 0
30 0.5 2.0 0.2 0.2 0.005 0.2 0.01 0
31 0.5 2.0 0.2 0.2 0.005 0.2 0.5 0
32 * 0.5 2.0 0.2 0.2 0.005 0.2 0.7 0
33 * 0.5 2.0 0.2 0.2 0.005 0.2 0 0.005
34 0.5 2.0 0.2 0.2 0.005 0.2 0 0.01
35 0.5 2.0 0.2 0.2 0.005 0.2 0 0.5
36 * 0.5 2.0 0.2 0.2 0.005 0.2 0 0.7
37 0.5 2.0 0.2 0.2 0.005 0.2 0.025 0.025
38 0.5 2.0 0.2 0.2 0.005 0.2 0.1 0.1
39 0.5 2.0 0.2 0.2 0.005 0.2 0.2 0.2
[0010]
Next, a ceramic green sheet, that is, a porcelain green sheet having a thickness of 30 μm was prepared by a doctor blade method using the slurry of each sample. Next, each ceramic green sheet was cut into a desired size to obtain a plurality of green sheets. A conductive paste made of, for example, palladium paste for obtaining the first internal electrode 2a of FIG. 1 is applied to one of the plurality of green sheets by screen printing, and the second internal electrode is applied to one of the other green sheets. A conductive paste made of, for example, palladium paste for obtaining 2b was applied by screen printing.
[0011]
Next, two green sheets coated with conductive paste are stacked, and dummy green sheets are stacked on top and bottom of these, and these are heated and pressed to be cut into a predetermined chip shape. Got.
[0012]
Next, the green chip was debindered at 300 ° C. for 3 hours, and then fired at 1250 ° C. for 2 hours to obtain a sintered body 1 having the structure shown in FIG. In the sintered body 1 in FIG. 1, first and second internal electrodes 2a and 2b are arranged above and below a ceramic layer 1a as a voltage nonlinear resistor, and a ceramic layer is disposed below the second internal electrode 2b. 1b is disposed, and the ceramic layer 1c is disposed on the upper side of the first internal electrode 2a.
[0013]
Next, an electrode paste containing Ag as a main component is applied to both end faces of the sintered body 1 and baked at 800 ° C. to form the first and second external terminal electrodes 3 and 4 to complete the multilayer varistor. It was. The first external electrode 3 is connected to the first internal electrode 2a, and the second external electrode 4 is connected to the second internal electrode 2b.
[0014]
The non-linear coefficient α, surge resistance (A), and electrical charging life characteristics of the laminated varistor of each sample were measured as follows.
The non-linear coefficient α is a varistor voltage V per 1 mm of the ceramic layer 1a when 1 mA is applied to each sample varistor formed as shown in FIG.1mA[V / mm] and varistor voltage V per mm of the ceramic layer 1a when 10 mA is applied10mA[V / mm] was calculated and used to calculate according to the following equation.
α = log (10/1) / log (V10mA/ V1mA)
[0015]
Surge resistance is applied to the varistor of Fig. 1 by applying an impact current of 8/10 µsec twice at 5 minute intervals, and the varistor voltage V1mAThe limit current value (A) at which the change does not change by ± 10% was measured.
[0016]
The service life characteristic is the rate of change of varistor voltage in the positive direction 1mA before and after energization + △ V1mA(%) And change rate of varistor voltage in negative direction 1mA-△ V1mA(%) And determined. In addition, varistor voltage change rate at the time of positive direction current + △ V1mA(%) Is 1mA varistor voltage V1mABetween the electrodes 2a and 2b when a positive current of 1 μA was applied to the varistor before and after applying a DC constant voltage equivalent to 90% of the varistor to the varistor placed in 85 ° C dry air for 500 hours. Obtain the voltage and calculate the voltage between the electrodes before energization as V1mAAnd interelectrode voltage V after energization1mAFrom ′, the following equation was obtained.
+ △ V1mA= {(V1mA-V1mA') / V1mA} × 100 (%)
Rate of change of varistor voltage at negative current -V1mA(%) Is the varistor voltage change rate at the time of positive current + △ V, except that the direction of 1mA current is changed to the negative direction.1mAIt calculated | required by the method similar to (%).
[0017]
Table 2 shows 1 mA varistor voltage V of sample Nos. 1 to 39.1mA(V / mm), non-linear coefficient α, surge resistance (A), rate of change in varistor voltage at positive current indicating the life characteristics of charging1mA(%) And rate of change of varistor voltage during negative current -V1mA(%).
[0018]
Table 2
No. V1mA    α Surge resistance + ΔV1 μ A  -ΔV1 μ A
( V / mm ) ( A) (%) (% )
1 * 300 Five 6 -35.0 -50.0
2 478 15 20 -5.0 -6.8
Three 550 20 twenty five -2.1 -2.4
Four 650 twenty three 30 -4.3 -5.4
Five* 715 9 6 -25.0 -40.0
6 * 305 6 8 -25.0 -38.0
7 482 16 30 -2.5 -2.8
8 555 20 twenty five -5.1 -6.8
9 * 604 9 8 -20.0 -30.0
Ten* 350 9 8 -30.0 -43.0
11 475 twenty five 28 -3.1 -3.3
12 553 20 32 -5.0 -5.8
13* 380 8 8 -23.0 -35.0
14* 350 9 8 -35.0 -48.0
15 470 twenty three twenty five -5.6 -6.3
16 560 twenty one 28 -7.0 -8.3
17 * 400 7 Ten -25.0 -35.0
18 483 twenty five 28 -3.0 -3.3
19 530 27 twenty five -3.5 -3.7
20 540 twenty three twenty five -4.9 -5.3
twenty one* 390 9 7 -21.0 -30.0
twenty two 480 twenty five twenty five -2.5 -3.0
twenty three 490 twenty four 28 -5.6 -6.6
twenty four* 430 Ten 9 -32.0 -40.0
twenty five* 350 8 8 -27.0 -39.0
26 450 twenty three twenty five -3.0 -3.5
27 580 twenty five 28 -4.3 -4.9
28 * 308 Ten Five -29.0 -40.0
29 * 310 8 8 -32.0 -43.0
30 458 twenty four twenty five -3.5 -4.0
31 565 26 twenty five -5.6 -7.0
32 * 320 9 8 -30.0 -44.0
33 * 380 6 8 -30.0 -40.0
34 470 twenty one twenty three -3.9 -4.2
35 580 twenty five twenty five -6.0 -6.5
36 * 350 6 Ten -28.0 -38.0
37 480 twenty three 28 -5.3 -5.6
38 520 twenty five twenty five -3.9 -4.3
39 560 twenty five twenty five -6.0 -6.3
[0019]
In this embodiment, the value of the nonlinear coefficient α is 10 or more, the surge resistance is 10 A or more, the varistor voltage change rate + ΔV1mAAnd-△ V1mAA product having an absolute value of 10 or less was regarded as a non-defective product.
As is clear from Sample Nos. 2 to 4 in Tables 1 and 2, a varistor having a Pr of 0.05 to 3.0 at% is a good product.
As is clear from Sample Nos. 7 and 8, a varistor with a Co of 0.1 to 5.0 at% is a good product.
Further, as is clear from Sample Nos. 11 and 12, a varistor having Mo of 0.01 to 0.5 at% is a good product.
As is clear from Sample Nos. 15 and 16, a varistor having a V of 0.01 to 0.5 at% is a good product.
As is clear from Sample Nos. 11, 12, 15, 16, 18, 19, and 20, good products can be obtained by adding either or both of Mo and V within a range of 0.01 to 0.5 at%. can get.
Further, as is clear from Sample Nos. 22 and 23, a varistor having an Al of 0.001 to 0.02 at% is a good product.
Further, as apparent from Sample Nos. 26 and 27, the varistors having Si of 0.001 to 0.5 at% are non-defective products.
Further, as is clear from sample Nos. 30 and 31, a varistor having a Ca of 0.01 to 0.5 at% is a good product.
Further, as is apparent from Sample Nos. 34 and 35, a varistor having an Mg of 0.01 to 0.5 at% is a good product.
As is clear from Sample Nos. 30, 31, 34, 35, 37, 38, and 39, good products can be obtained by adding either or both of Ca and Mg within the range of 0.01 to 0.5 at%. can get.
[0020]
When many varistors having the same sample number belonging to the scope of the present invention were prepared and the variation in the characteristics of Table 2 in the same sample was examined, the variation was smaller than that of a varistor containing K or B as a conventional subcomponent. That is, since the subcomponent according to the present invention does not contain K and B which are likely to be scattered during firing, there is less characteristic variation during mass production, and the yield is increased.
In addition, according to the present embodiment, it is possible to provide a varistor that has a large surge withstand and a small change in leakage current in the electric charging life characteristic and a small asymmetric deterioration without degrading various electrical characteristics of the varistor. .
[0021]
[Modification]
The present invention is not limited to the above-described embodiment, and for example, the following modifications are possible.
(1) The main component is calcined in advance, a mixture of a plurality of subcomponents is also calcined in advance, and the calcined subcomponent can be added to the calcined main component.
(2) Instead of adding Pr, Co, Mo, V, Al, Si, Ca, Mg as subcomponents with these oxides or carbonates, add them as subcomponent elements or other compounds. Can do.
(3) The firing temperature can be changed within a sinterable range.
(4) The multilayer ceramic varistor can be configured to have a plurality of first and second internal electrodes 2a, 2b.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a varistor according to an embodiment of the present invention.
[Explanation of symbols]
1 Sintered body
1a, 1b, 1c ceramic layer
2a, 2b first and second internal electrodes
3,4 First and second external terminal electrodes

Claims (1)

酸化亜鉛から成る主成分と、この主成分に添加された副成分とから成り、前記副成分は、
0.05〜3.0原子%のPrと、
0.1〜5.0原子%のCoと、
0.01〜0.5原子%のMoとVとの両方と、
0.001〜0.02原子%のAlと、
0.001〜0.5原子%のSiと、
0.01〜0.5原子%のMgとCaとのいずれか一方又は両方と
から成り、且つNa、K,Rb及びCsを含んでいないことを特徴とする電圧非直線性抵抗体。
It consists of a main component consisting of zinc oxide and a subcomponent added to this main component,
0.05-3.0 atomic% Pr,
0.1-5.0 atomic% Co,
Both 0.01-0.5 atomic percent Mo and V ;
0.001 to 0.02 atomic% Al,
0.001 to 0.5 atomic% Si,
A voltage non-linear resistance element characterized by being composed of either one or both of 0.01 to 0.5 atomic% of Mg and Ca and not containing Na, K, Rb and Cs.
JP2003135828A 2003-05-14 2003-05-14 Voltage nonlinear resistor Expired - Lifetime JP4235487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135828A JP4235487B2 (en) 2003-05-14 2003-05-14 Voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135828A JP4235487B2 (en) 2003-05-14 2003-05-14 Voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JP2004342745A JP2004342745A (en) 2004-12-02
JP4235487B2 true JP4235487B2 (en) 2009-03-11

Family

ID=33525974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135828A Expired - Lifetime JP4235487B2 (en) 2003-05-14 2003-05-14 Voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JP4235487B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411519B1 (en) * 2007-03-30 2014-06-24 티디케이가부시기가이샤 Voltage non-linear resistance ceramic composition and voltage non-linear resistance element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100856A (en) * 2006-10-17 2008-05-01 Koa Corp Method for producing zinc oxide laminated chip varistor
TW200903530A (en) 2007-03-30 2009-01-16 Tdk Corp Voltage non-linear resistance ceramic composition and voltage non-linear resistance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411519B1 (en) * 2007-03-30 2014-06-24 티디케이가부시기가이샤 Voltage non-linear resistance ceramic composition and voltage non-linear resistance element

Also Published As

Publication number Publication date
JP2004342745A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP3822798B2 (en) Voltage nonlinear resistor and porcelain composition
US7683753B2 (en) Voltage non-linear resistance ceramic composition and voltage non-linear resistance element
US9236170B2 (en) ZnO multilayer chip varistor with base metal inner electrodes and preparation method thereof
TWI285381B (en) Multilayer ceramic capacitor
JPS61170005A (en) Varistor
JP5163097B2 (en) Barista
US7507356B2 (en) Voltage non-linear resistance ceramic composition and voltage non-linear resistance element
JP4915153B2 (en) Multilayer varistor
JP4792900B2 (en) Porcelain composition for varistor and laminated varistor
JP3399349B2 (en) Laminated varistor and method of manufacturing the same
JP4235487B2 (en) Voltage nonlinear resistor
JP2004022976A (en) Stacked voltage nonlinear resistor and method of manufacturing the same
JP3878929B2 (en) Varistor and varistor manufacturing method
JP5833929B2 (en) Varistor ceramic, multilayer component including varistor ceramic, and method for producing varistor ceramic
JP2004031436A (en) Method for manufacturing varistor
JPH10229004A (en) Chip-type varistor
JP5264929B2 (en) Method for manufacturing voltage nonlinear resistor
KR102666011B1 (en) ZnO-BASED VARISTOR COMPOSITION AND MANUFACTURING METHOD AND VARISTOR THEREOF
JP5944123B2 (en) Method for manufacturing voltage nonlinear resistance element
JP4292801B2 (en) Manufacturing method of laminated varistor
JP2625178B2 (en) Varistor manufacturing method
JPH05283209A (en) Laminated varistor
TWI384500B (en) Composition of varistors and process for manufacturing varistors made from the same
JP5715961B2 (en) Varistor ceramic, multilayer component including varistor ceramic, and method for producing varistor ceramic
JP2016146380A (en) Voltage nonlinearity resistor composition, and varistor and laminate varistor that use the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4235487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term