JP5944123B2 - Method for manufacturing voltage nonlinear resistance element - Google Patents

Method for manufacturing voltage nonlinear resistance element Download PDF

Info

Publication number
JP5944123B2
JP5944123B2 JP2011161890A JP2011161890A JP5944123B2 JP 5944123 B2 JP5944123 B2 JP 5944123B2 JP 2011161890 A JP2011161890 A JP 2011161890A JP 2011161890 A JP2011161890 A JP 2011161890A JP 5944123 B2 JP5944123 B2 JP 5944123B2
Authority
JP
Japan
Prior art keywords
functional film
oxide
insulating substrate
rare earth
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011161890A
Other languages
Japanese (ja)
Other versions
JP2013026545A (en
Inventor
恵輔 大坪
恵輔 大坪
智英 増山
智英 増山
嘉之 高野
嘉之 高野
村田 良一
良一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TATEYAMA KAGAKU DEVICE TECHNOLOGY CO., LTD.
Original Assignee
TATEYAMA KAGAKU DEVICE TECHNOLOGY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TATEYAMA KAGAKU DEVICE TECHNOLOGY CO., LTD. filed Critical TATEYAMA KAGAKU DEVICE TECHNOLOGY CO., LTD.
Priority to JP2011161890A priority Critical patent/JP5944123B2/en
Publication of JP2013026545A publication Critical patent/JP2013026545A/en
Application granted granted Critical
Publication of JP5944123B2 publication Critical patent/JP5944123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、印加電圧により抵抗値が非直線性を有して変化する、厚膜構造の抵抗体から成るバリスタ素子等の電圧非直線性抵抗素子製造方法に関する。 The present invention, the resistance value by the applied voltage changes with a non-linearity, a method of manufacturing a nonlinear resistor element, such as a varistor element comprising a resistor thick film structure.

従来、サージ電圧を吸収するいわゆるバリスタ素子または保護素子として、例えば特許献1,2,3に開示されているようないわゆる厚膜構造の素子があった。この素子は、セラミックス等の絶縁基板上に、酸化亜鉛(ZnO)を主成分として、Mn・Co・Bi・Sb等の酸化物のいずれかを副成分として含む機能膜が、塗布又は印刷工程及び焼成工程等を経て設けられている。   Conventionally, as a so-called varistor element or protection element that absorbs a surge voltage, there has been an element having a so-called thick film structure as disclosed in Patent Documents 1, 2, and 3, for example. In this element, a functional film containing zinc oxide (ZnO) as a main component and any of oxides such as Mn, Co, Bi, and Sb as an auxiliary component on an insulating substrate such as ceramics is applied or printed. It is provided through a firing process and the like.

このような電圧非直線性抵抗素子の構造は、例えば図7に示すように、アルミナのセラミック基板1の表面に、一対の内部電極2が形成され、この内部電極2の対向する端部同士のギャップ2a及び内部電極2を覆うようにバリスタ機能膜3が形成されているものである。バリスタ機能膜3は、ガラス等の保護層4により被覆されている。さらに、内部電極2の両端部は、セラミック基板1の両端部及び裏面に設けられた外部電極5に接続されている。   For example, as shown in FIG. 7, a pair of internal electrodes 2 is formed on the surface of an alumina ceramic substrate 1, and the opposing ends of the internal electrodes 2 are arranged between the opposing ends of the voltage nonlinear resistance element. A varistor function film 3 is formed so as to cover the gap 2 a and the internal electrode 2. The varistor function film 3 is covered with a protective layer 4 such as glass. Furthermore, both end portions of the internal electrode 2 are connected to the external electrodes 5 provided on both end portions and the back surface of the ceramic substrate 1.

特開2007−266479号公報JP 2007-266479 A 特開2004−40023号公報Japanese Patent Laid-Open No. 2004-40023 特開2004−6594号公報JP 2004-6594 A

上記のような電圧非直線性素子を製造する際に、セラミック基板1と機能膜3を密着させるためには、機能膜3を形成する成分のペーストを内部電極2上に印刷形成した後、特許文献3に開示されているようなプレス工程が必要であった。しかし、機能膜3の印刷形成後にプレス工程を行うことは、製造工程が増加しコストがかかることから、これを省略した製造方法も行われている。   In order to make the ceramic substrate 1 and the functional film 3 adhere to each other when the voltage non-linear element as described above is manufactured, the paste of the component forming the functional film 3 is printed on the internal electrode 2 and then patented. A pressing process as disclosed in Document 3 was necessary. However, performing the pressing process after the formation of the functional film 3 increases the manufacturing process and increases the cost, and therefore, a manufacturing method in which this is omitted is also performed.

プレス工程を省略してセラミック基板1と機能膜3を緊密に密着させるには、1000℃以上の高温で焼成し、機能膜3の材料中の結晶粒成長を促進すれば良い。しかし、このような高温で焼成する場合に、一般的な純度96%のアルミナ基板をセラミック基板1として用いると、セラミック基板1中の不純物であるMg、Ca、Na等が内部電極2や機能膜3中に析出して、内部電極2の表面や機能膜3を浸食し、内部電極2や機能膜3の電気抵抗を増加させ電気的特性を低下させるという問題があった。   In order to close the ceramic substrate 1 and the functional film 3 in close contact with each other by omitting the pressing step, it is only necessary to promote the growth of crystal grains in the material of the functional film 3 by baking at a high temperature of 1000 ° C. or higher. However, in the case of firing at such a high temperature, when an alumina substrate having a general purity of 96% is used as the ceramic substrate 1, impurities such as Mg, Ca, Na, etc. in the ceramic substrate 1 are converted into the internal electrode 2 and the functional film. 3, the surface of the internal electrode 2 and the functional film 3 are eroded, and the electrical resistance of the internal electrode 2 and the functional film 3 is increased to deteriorate the electrical characteristics.

そこで、1000℃未満で焼成しても強固な密着性を得るために、機能膜3を形成する材料中にガラス材料を混合し、低温焼成によってもセラミックス基板1と機能膜3との隙間を埋め密着性を高める製造方法が一般的に用いられている。   Therefore, in order to obtain strong adhesion even when firing at less than 1000 ° C., a glass material is mixed into the material forming the functional film 3 and the gap between the ceramic substrate 1 and the functional film 3 is filled also by low-temperature firing. A production method for improving the adhesion is generally used.

しかし、機能膜3の材料としてガラス成分を添加することにより、機能膜3に高電圧が印加された際に、機能膜3が発熱し機能膜3自身が破壊する恐れがあった。   However, by adding a glass component as a material of the functional film 3, when a high voltage is applied to the functional film 3, the functional film 3 may generate heat and the functional film 3 itself may be destroyed.

一方、高温で焼成しても不純物の析出のない高純度のアルミナセラミックスの基板を用いることもできるが、高純度のアルミナセラミック基板は硬度が高く加工しにくく、コストもかかるものであった。   On the other hand, a high-purity alumina ceramic substrate that does not precipitate impurities even when fired at a high temperature can be used. However, a high-purity alumina ceramic substrate has high hardness and is difficult to process, and costs are high.

この発明は、上記背景技術の問題点に鑑みて成されたもので、簡単な構成で、機能膜とセラミック基板との密着性が良く、製造も容易でありコストも掛からない電圧非直線性抵抗素子製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the background art, and has a simple structure, good adhesion between the functional film and the ceramic substrate, easy manufacturing, and low cost non-linear resistance. and to provide a manufacturing method for the device.

この発明は、絶縁基板上に、酸化亜鉛を主成分とし酸化プラセオジム等の希土類酸化物を含む添加物から成る機能膜組成物のペーストを所定パターンで印刷し、前記機能膜組成物のペーストが印刷された前記絶縁基板を、1000℃〜1400℃の温度で焼成して、前記絶縁基板上に、前記酸化亜鉛を主成分とし前記希土類酸化物を含む添加物から成る機能膜を形成するとともに、前記絶縁基板表面と前記機能膜との境界の前記機能膜中に、前記希土類酸化物の化合物層を形成し、前記絶縁基板の両端部から前記機能膜表面にかけて、電極ペーストを所定形状に印刷し、800℃〜900℃の範囲で焼付けて一対の内部電極を形成し、前記機能膜表面及び前記機能膜上の前記内部電極を覆うように、保護層を印刷形成し、500℃〜650℃の範囲で焼付けする電圧非直線性抵抗素子の製造方法である。 According to the present invention, a functional film composition paste made of an additive containing zinc oxide as a main component and a rare earth oxide such as praseodymium oxide is printed in a predetermined pattern, and the functional film composition paste is printed. The insulating substrate thus formed is baked at a temperature of 1000 ° C. to 1400 ° C., and a functional film made of an additive containing the zinc oxide as a main component and the rare earth oxide is formed on the insulating substrate. Forming the rare earth oxide compound layer in the functional film at the boundary between the insulating substrate surface and the functional film , printing the electrode paste in a predetermined shape from both ends of the insulating substrate to the functional film surface , baked at a range of 800 ° C. to 900 ° C. to form a pair of internal electrodes, so as to cover the internal electrodes on the functional layer surface and the functional layer, a protective layer formed by printing, 500 ° C. to 650 ° C. A method of manufacturing the nonlinear resistor element baked in the range.

前記機能膜組成物は、前記希土類酸化物に、酸化コバルト、酸化マンガン、酸化ニッケル、酸化クロムのうち少なくとも1種類を含む添加物Xを、下記のmol%及び質量比の範囲で含み、
80.0mol%≦a≦99.0mol%、1.0mol%≦b≦20.0mol%、0.01≦P/X≦3.5
a:酸化亜鉛、b:希土類酸化物と添加物Xの混合物、P:希土類酸化物、X:添加物X、
ガラス成分を有せず、前記ペーストは、前記機能膜組成物の粉末に有機成分を混合して成り、前記ペーストを前記絶縁基板上に所定のパターンで印刷して形成するものである。
The functional film composition includes an additive X containing at least one of cobalt oxide, manganese oxide, nickel oxide, and chromium oxide in the rare earth oxide in the following mol% and mass ratio ranges,
80.0mol% ≦ a ≦ 99.0mol%, 1.0mol% ≦ b ≦ 20.0mol%, 0.01 ≦ P / X ≦ 3.5
a: zinc oxide, b: mixture of rare earth oxide and additive X, P: rare earth oxide, X: additive X,
The paste does not have a glass component, and the paste is formed by mixing an organic component with the powder of the functional film composition, and is formed by printing the paste in a predetermined pattern on the insulating substrate.

前記希土類酸化物は、例えば、酸化プラセオジムである。また、前記希土類酸化物の化合物は、前記絶縁基板中の不純物との化合物である。The rare earth oxide is, for example, praseodymium oxide. The rare earth oxide compound is a compound with impurities in the insulating substrate.

前記機能膜中に形成される前記化合物層は、前記機能膜を焼成して形成する際に、前記機能膜の組成中の主成分の結晶粒界から前記酸化プラセオジムが移動するとともに、前記絶縁基板中の前記不純物が前記機能膜中に侵入して前記酸化プラセオジムと反応して形成されるものである。When the functional layer is formed by baking the functional film, the compound layer formed in the functional film moves the praseodymium oxide from the crystal grain boundary of the main component in the composition of the functional film, and the insulating substrate. The impurities therein are formed by intruding into the functional film and reacting with the praseodymium oxide.

この発明の電圧非直線性抵抗素子の製造方法による素子は、厚膜構造の電圧非直線性抵抗素子により、機能膜や内部電極へのセラミック基板からの不純物の析出が阻止され、電気的特性が良好であり、機能膜とセラミック基板との密着性も高い良いものである。これにより、使用中に素子が破壊することが防止され、耐久性の高い素子を提供することができ、安全性も高いものとすることができる。
特に、希土類酸化物を酸化プラセオジムとすることにより、高性能電圧非直線性抵抗素子を高品質に製造することができる。
The element according to the method for manufacturing a voltage non-linear resistance element according to the present invention has a thick-film voltage non-linear resistance element that prevents precipitation of impurities from the ceramic substrate on the functional film and the internal electrode, and has an electrical characteristic. It is good, and the adhesion between the functional film and the ceramic substrate is also good. As a result, the device is prevented from being destroyed during use, a highly durable device can be provided, and safety can be improved.
In particular, by using praseodymium oxide as the rare earth oxide, a high-performance voltage nonlinear resistance element can be manufactured with high quality.

さらに、この発明の電圧非直線性抵抗素子の製造方法によれば、機能膜とセラミック基板との密着性が良い電圧非直線性抵抗素子を、コストをかけずに高品質で製造することができる。特に、高温焼成により機能膜の製造が可能となり、絶縁基板と機能膜との密着性が高いものを容易に製造することができる。厚膜構造の電圧非直線性抵抗素子を高品質に製造することができ、機能膜や内部電極へのセラミック基板からの不純物の析出が阻止され、電気的特性が良好であり、機能膜とセラミック基板との密着性も高い良い素子を容易に製造することができる。さらに、内部電極は、機能膜の焼成後に形成するため、絶縁基板中の不純物が内部電極へ侵入することがない。また、機能膜中にガラス材料を設けないことにより、機能膜に高電圧が印加された際も機能膜が発熱して破壊することがなく、耐久性が高く安全性も高いものとすることができ、電気的特性の劣化もない素子を提供することができる。 Furthermore, according to the method for manufacturing a voltage non-linear resistance element of the present invention, a voltage non-linear resistance element having good adhesion between the functional film and the ceramic substrate can be manufactured with high quality without cost. . In particular, the functional film can be manufactured by high-temperature baking, and a high adhesion between the insulating substrate and the functional film can be easily manufactured. Thick film voltage non-linear resistance elements can be manufactured with high quality, the precipitation of impurities from the ceramic substrate to the functional film and internal electrodes is prevented, and the electrical characteristics are good, and the functional film and ceramic A good element with high adhesion to the substrate can be easily manufactured. Furthermore, since the internal electrode is formed after the functional film is fired, impurities in the insulating substrate do not enter the internal electrode. In addition, by not providing a glass material in the functional film, the functional film will not generate heat and be destroyed even when a high voltage is applied to the functional film, making it durable and highly safe. It is possible to provide an element that does not deteriorate in electrical characteristics.

この発明の一実施形態の電圧非直線性抵抗素子の平面図である。It is a top view of the voltage nonlinear resistance element of one Embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. この発明の一実施形態の電圧非直線性抵抗素子を説明する断面の模式図である。It is a schematic diagram of the cross section explaining the voltage nonlinear resistance element of one Embodiment of this invention. この発明の一実施形態の電圧非直線性抵抗素子の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the voltage nonlinear resistance element of one Embodiment of this invention. この発明の電圧非直線性抵抗素子の一実施例の部分縦断面写真である。It is a partial longitudinal cross-sectional photograph of one Example of the voltage nonlinear resistance element of this invention. この発明の他の実施形態の電圧非直線性抵抗素子の縦断面図である。It is a longitudinal cross-sectional view of the voltage nonlinear resistance element of other embodiment of this invention. 従来の電圧非直線性抵抗素子を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional voltage nonlinear resistance element.

以下、この発明の実施の形態について説明する。図1〜図5は、この発明の一実施形態の電圧非直線性抵抗素子10を示す。この電圧非直線性抵抗素子10は、表面実装型のチップ型バリスタ素子であって、酸化亜鉛(ZnO)を主成分とし、酸化プラセオジムと添加物Xを含む組成物粉末から形成されたバリスタ特性を有する機能膜12が、例えば純度96%アルミナセラミックス等の汎用の絶縁基板14上に形成されている。一対の内部電極16は、Ag、Pd、Pt、Auのうち少なくとも1種類を含むペースト化した導電性塗料を用いて、スクリーン印刷により棒状や櫛形、その他所定の形状に形成されている。   Embodiments of the present invention will be described below. 1 to 5 show a voltage non-linear resistance element 10 according to one embodiment of the present invention. This voltage non-linear resistance element 10 is a surface-mount type chip varistor element, and has a varistor characteristic formed of a composition powder containing zinc oxide (ZnO) as a main component and containing praseodymium oxide and an additive X. The functional film 12 is formed on a general-purpose insulating substrate 14 made of, for example, 96% purity alumina ceramics. The pair of internal electrodes 16 are formed in a rod shape, comb shape, or other predetermined shape by screen printing using a conductive conductive paste containing at least one of Ag, Pd, Pt, and Au.

長方形の絶縁基板14の一対の両端部から機能膜12上にかけて、一対の内部電極16が形成されている。一対の内部電極16の対向する端面は、所定の間隔のギャップ16aを開けて設けられている。   A pair of internal electrodes 16 are formed from a pair of both ends of the rectangular insulating substrate 14 to the functional film 12. Opposing end faces of the pair of internal electrodes 16 are provided with a gap 16a at a predetermined interval.

絶縁基板14上の機能膜12は、酸化亜鉛を主成分とした組成物粉末に、酸化プラセオジムと添加物X(酸化コバルト、酸化マンガン、酸化ニッケル、酸化クロムのうち少なくとも1種類から成る添加物)を下記のmol%及び質量比の範囲で含む。
80.0mol%≦a≦99.0mol% 、 1.0mol%≦b≦20.0mol% 、 0.01≦P/X≦3.5
好ましくは、0.1≦P/X≦1.0
ここで、a:酸化亜鉛、b:酸化プラセオジムと添加物Xの混合物、P:酸化プラセオジム、X:添加物X、である。
The functional film 12 on the insulating substrate 14 is composed of a composition powder containing zinc oxide as a main component, praseodymium oxide and an additive X (an additive composed of at least one of cobalt oxide, manganese oxide, nickel oxide and chromium oxide). In the range of the following mol% and mass ratio.
80.0mol% ≦ a ≦ 99.0mol%, 1.0mol% ≦ b ≦ 20.0mol%, 0.01 ≦ P / X ≦ 3.5
Preferably, 0.1 ≦ P / X ≦ 1.0
Here, a: zinc oxide, b: a mixture of praseodymium oxide and additive X, P: praseodymium oxide, X: additive X.

上記範囲の機能膜成分は、有機バインダ等の有機成分を、機能膜成分50%〜85%、有機成分50%〜15%から成るバインダを加えて、ペースト化したものを、スクリーン印刷により絶縁基板14上に印刷して形成されている。   The functional film component in the above range is obtained by adding an organic component such as an organic binder to a binder composed of 50% to 85% of a functional film component and 50% to 15% of an organic component, and pasting it into an insulating substrate by screen printing. 14 is formed by printing.

機能膜12と、内部電極16のギャップ16aを覆うように、ガラス及び樹脂から成る保護層18が設けられている。保護層18は、SiO2、Bi2O3、B2O3、ZnO、BaOのいずれか2種類以上からなるガラスセラミックスである。 A protective layer 18 made of glass and resin is provided so as to cover the functional film 12 and the gap 16 a of the internal electrode 16. The protective layer 18 is a glass ceramic composed of two or more of SiO 2 , Bi 2 O 3 , B 2 O 3 , ZnO, and BaO.

また、絶縁基板14の端面には、内部電極16の端部と接するようにして、各々Ni、Snを用いて電解メッキ法にて形成された外部電極20が設けられている。外部電極20は、電圧非直線性抵抗素子10が面実装可能に、絶縁基板14の表面側から端面及び裏面の端部にまたがって形成されている。   Further, on the end surface of the insulating substrate 14, an external electrode 20 formed by electrolytic plating using Ni and Sn is provided so as to be in contact with the end of the internal electrode 16. The external electrode 20 is formed from the front surface side of the insulating substrate 14 to the end surface and the back surface end portion so that the voltage non-linear resistance element 10 can be surface-mounted.

この実施形態の電圧非直線性抵抗素子10の機能膜12には、図3の模式図及び図5の顕微鏡写真に示すように、機能膜12と絶縁基板14の境界14a上の機能膜12内に、酸化プラセオジム化合物層22が形成されている。この酸化プラセオジム化合物層22は、機能膜12を焼成して形成する際に、機能膜12の組成中の主成分である酸化亜鉛の結晶粒界から酸化プラセオジムが移動するとともに、絶縁基板14中の不純物14bが機能膜12中に侵入して酸化プラセオジムと反応し、境界14a上の機能膜12中に酸化プラセオジム化合物が形成されるものである。絶縁基板14中の不純物としては、Mg、Ca、Na等がある。   As shown in the schematic diagram of FIG. 3 and the micrograph of FIG. 5, the functional film 12 of the voltage non-linear resistance element 10 of this embodiment has an inside of the functional film 12 on the boundary 14 a between the functional film 12 and the insulating substrate 14. In addition, a praseodymium oxide compound layer 22 is formed. When this functional praseodymium compound layer 22 is formed by firing the functional film 12, the praseodymium oxide moves from the crystal grain boundary of zinc oxide, which is the main component in the composition of the functional film 12, and in the insulating substrate 14. The impurity 14b penetrates into the functional film 12 and reacts with praseodymium oxide, and a praseodymium oxide compound is formed in the functional film 12 on the boundary 14a. Examples of impurities in the insulating substrate 14 include Mg, Ca, and Na.

次に、この実施形態の電圧非直線性抵抗素子10の製造方法について、図4に基づいて説明する。まず、酸化亜鉛の粉末に、上記所定量の酸化プラセオジムの粉末と添加物Xの粉末を添加し、混合する(S1)。次に、有機バインダを上記の割合で加えて混合し、スクリーン印刷が可能な粘度に調整し、機能膜印刷用の機能膜組成物のペーストを作成する(S2)。この機能膜組成物は、機能膜12の成分割合と同様のもので、酸化亜鉛を主成分とした組成物粉末に、酸化プラセオジムと添加物X(酸化コバルト、酸化マンガン、酸化ニッケル、酸化クロムのうち少なくとも1種類から成る添加物)を、下記のmol%及び質量比の範囲で含む。
80.0mol%≦a≦99.0mol%、 1.0mol%≦b≦20.0mol%、 0.01≦P/X≦3.5
好ましくは、0.1≦P/X≦1.0
ここで、a:酸化亜鉛、b:酸化プラセオジムと添加物Xの混合物、P:酸化プラセオジム、X:添加物X、である。
Next, the manufacturing method of the voltage nonlinear resistance element 10 of this embodiment is demonstrated based on FIG. First, the predetermined amount of praseodymium oxide powder and additive X powder are added to and mixed with zinc oxide powder (S1). Next, an organic binder is added and mixed in the above ratio to adjust the viscosity to enable screen printing, and a functional film composition paste for functional film printing is prepared (S2). This functional film composition is the same as the component ratio of the functional film 12, and is composed of praseodymium oxide and additive X (cobalt oxide, manganese oxide, nickel oxide, chromium oxide) in a composition powder mainly composed of zinc oxide. An additive comprising at least one of them) in the following mol% and mass ratio range.
80.0mol% ≦ a ≦ 99.0mol%, 1.0mol% ≦ b ≦ 20.0mol%, 0.01 ≦ P / X ≦ 3.5
Preferably, 0.1 ≦ P / X ≦ 1.0
Here, a: zinc oxide, b: a mixture of praseodymium oxide and additive X, P: praseodymium oxide, X: additive X.

この後、スクリーン印刷により、純度96%のアルミナ基板である絶縁基板14上に、機能膜組成物のペーストを印刷形成する(S3)。そして、機能膜組成物のペーストが印刷された絶縁基板14を、1000℃〜1400℃、より好ましくは1050℃〜1250℃の範囲で焼成し、機能膜12を形成する(S4)。次に、機能膜12の上部に一対の内部電極16を形成する。内部電極16も、電極ペーストをスクリーン印刷により所定形状に形成し、800℃〜900℃の範囲で焼付けする(S5)。この後、機能膜12及び機能膜12上の内部電極16を覆うように保護層18を印刷形成し、500℃〜650℃の範囲で焼付けする(S6)。さらに、焼成した多数個取りの絶縁基板14について、所定の単位に分割した後、Ni、Snの電解メッキを施し、外部電極20を形成して、チップ型バリスタ素子である電圧非直線性抵抗素子10を形成する(S7)。   Thereafter, a paste of the functional film composition is printed and formed on the insulating substrate 14 which is an alumina substrate having a purity of 96% by screen printing (S3). Then, the insulating substrate 14 on which the functional film composition paste is printed is baked in the range of 1000 ° C. to 1400 ° C., more preferably 1050 ° C. to 1250 ° C. to form the functional film 12 (S4). Next, a pair of internal electrodes 16 is formed on the functional film 12. Also for the internal electrode 16, an electrode paste is formed into a predetermined shape by screen printing and baked in the range of 800 ° C. to 900 ° C. (S5). Thereafter, the protective layer 18 is printed and formed so as to cover the functional film 12 and the internal electrode 16 on the functional film 12, and is baked in the range of 500 ° C. to 650 ° C. (S6). Further, the fired multi-piece insulating substrate 14 is divided into predetermined units, and then Ni and Sn are electroplated to form external electrodes 20 to form a voltage non-linear resistance element which is a chip type varistor element. 10 is formed (S7).

この実施形態の電圧非直線性抵抗素子10は、上記組成物による機能膜12を印刷形成して絶縁基板14上に焼成することにより、図3に示す模式図、及び図5に示す実施例の顕微鏡写真のように、機能膜12と絶縁基板14の境界14a上の機能膜12中には、酸化プラセオジム化合物層22が形成されるので、機能膜12を1000℃を超える高温で焼成しても、機能膜12の全体に絶縁基板14中の不純物が析出することはなく、機能膜12の電気的特性の劣化が生じない。しかも高温で焼成するので、機能膜12の絶縁基板14への密着性も良い。内部電極16は、機能膜12の焼成後に形成するため、絶縁基板14中の不純物が内部電極16へ侵入することもなく、内部電極16の電気的特性の劣化もない。また、絶縁基板14との密着性を上げるために、機能膜12にガラスを添加する必要がないので、高電圧が印加された際にも発熱しにくく破壊することもない。その他、絶縁基板14として汎用のアルミナ基板を用いることができ、高純度のアルミナ基板を用いる必要がないので、コストも抑えることができる。   The voltage non-linear resistance element 10 of this embodiment is formed by printing the functional film 12 made of the above composition and firing it on the insulating substrate 14, so that the schematic diagram shown in FIG. 3 and the example shown in FIG. As shown in the micrograph, since the praseodymium oxide compound layer 22 is formed in the functional film 12 on the boundary 14a between the functional film 12 and the insulating substrate 14, even if the functional film 12 is baked at a high temperature exceeding 1000 ° C. Impurities in the insulating substrate 14 are not deposited on the entire functional film 12, and the electrical characteristics of the functional film 12 are not deteriorated. Moreover, since the baking is performed at a high temperature, the adhesion of the functional film 12 to the insulating substrate 14 is also good. Since the internal electrode 16 is formed after the functional film 12 is baked, impurities in the insulating substrate 14 do not enter the internal electrode 16 and the electrical characteristics of the internal electrode 16 are not deteriorated. Further, since it is not necessary to add glass to the functional film 12 in order to improve the adhesion with the insulating substrate 14, it is difficult to generate heat and is not destroyed even when a high voltage is applied. In addition, a general-purpose alumina substrate can be used as the insulating substrate 14, and it is not necessary to use a high-purity alumina substrate, so that the cost can be reduced.

なお、この発明の電圧非直線性抵抗素子は上記実施形態に限定されるものではなく、図6に示すように、内部電極16が機能膜12を挟んで対面した構成の電圧非直線性抵抗素子10にも適用できるものである。この場合、絶縁基板14表面に形成された一方の内部電極16には、絶縁基板14中の不純物14bの影響を受けるが、機能膜12には、酸化プラセオジム化合物層22が絶縁基板14との境界14aに形成されるので、機能膜12の電気的特性の劣化は生じない。また、内部電極16への影響も、一方の電極のみであり、良好なバリスタ特性を得ることができる。   The voltage non-linear resistance element of the present invention is not limited to the above-described embodiment. As shown in FIG. 6, the voltage non-linear resistance element having a configuration in which the internal electrodes 16 face each other with the functional film 12 interposed therebetween. 10 is also applicable. In this case, one internal electrode 16 formed on the surface of the insulating substrate 14 is affected by the impurity 14 b in the insulating substrate 14, but the functional film 12 has a praseodymium oxide compound layer 22 on the boundary with the insulating substrate 14. Therefore, the electrical characteristics of the functional film 12 are not deteriorated. Also, the influence on the internal electrode 16 is only one of the electrodes, and good varistor characteristics can be obtained.

また、機能膜に添加する酸化プラセオジムは、他の希土類元素であるランタンやイットリウムに置き換えても良い。絶縁基板は、アルミナセラミックス以外にアルミナと二酸化珪素の化合物であるムライトや、アルミナと酸化マグネシウム、二酸化珪素から成るコージュライト等のセラミックス材料の基板を用いても良い。酸化プラセオジム等の希土類酸化物と機能膜中で反応する物質は、絶縁基板中の不純物の他、希土類酸化物と反応させるために絶縁基板中又は表面にMg、Ca、Na等が存在するように絶縁基板を製造したものでも良い。   The praseodymium oxide added to the functional film may be replaced with lanthanum or yttrium, which are other rare earth elements. As the insulating substrate, a substrate made of a ceramic material such as mullite which is a compound of alumina and silicon dioxide, cordierite made of alumina, magnesium oxide and silicon dioxide may be used in addition to the alumina ceramic. Substances that react with rare earth oxides such as praseodymium oxide in the functional film so that, in addition to impurities in the insulating substrate, Mg, Ca, Na, etc. exist in or on the insulating substrate in order to react with the rare earth oxide. An insulating substrate may be manufactured.

10 電圧非直線性抵抗素子
12 機能膜
14 絶縁基板
14a 境界
16 内部電極
18 保護層
20 外部電極
22 酸化プラセオジム化合物層
DESCRIPTION OF SYMBOLS 10 Voltage nonlinear resistance element 12 Functional film 14 Insulating substrate 14a Boundary 16 Internal electrode 18 Protective layer 20 External electrode 22 Praseodymium oxide compound layer

Claims (5)

絶縁基板上に、酸化亜鉛を主成分とし希土類酸化物を含む添加物から成る機能膜組成物のペーストを所定パターンで印刷し、
前記機能膜組成物のペーストが印刷された前記絶縁基板を、1000℃〜1400℃の温度で焼成して、前記絶縁基板上に、前記酸化亜鉛を主成分とし前記希土類酸化物を含む添加物から成る機能膜を形成するとともに、前記絶縁基板表面と前記機能膜との境界の前記機能膜中に、前記希土類酸化物の化合物層を形成し、
前記絶縁基板の両端部から前記機能膜表面にかけて、電極ペーストを所定形状に印刷し、800℃〜900℃の範囲で焼付けて一対の内部電極を形成し、
前記機能膜表面及び前記機能膜上の前記内部電極を覆うように、保護層を印刷形成し、500℃〜650℃の範囲で焼付けすることを特徴とする電圧非直線性抵抗素子の製造方法。
On the insulating substrate, a functional film composition paste composed of an additive containing zinc oxide as a main component and a rare earth oxide is printed in a predetermined pattern,
The insulating substrate on which the paste of the functional film composition is printed is baked at a temperature of 1000 ° C. to 1400 ° C., and an additive containing the zinc oxide as a main component and the rare earth oxide is formed on the insulating substrate. Forming the functional film, and forming the rare earth oxide compound layer in the functional film at the boundary between the insulating substrate surface and the functional film,
From both ends of the insulating substrate to the functional film surface, an electrode paste is printed in a predetermined shape and baked in a range of 800 ° C. to 900 ° C. to form a pair of internal electrodes,
A method for producing a voltage non-linear resistance element, comprising printing a protective layer so as to cover the surface of the functional film and the internal electrode on the functional film, and baking it in a range of 500 ° C to 650 ° C.
前記機能膜組成物は、前記希土類酸化物に、酸化コバルト、酸化マンガン、酸化ニッケル、酸化クロムのうち少なくとも1種類から成る添加物Xを、下記のmol%及び質量比の範囲で含み、ガラス成分を有せず、
80.0mol%≦a≦99.0mol%、1.0mol%≦b≦20.0mol%、0.01≦P/X≦3.5
a:酸化亜鉛、b:希土類酸化物と添加物Xの混合物、P:希土類酸化物、X:添加物X、
前記ペーストは、前記機能膜組成物の粉末に有機成分を混合して成り、
前記ペーストを前記絶縁基板上に所定のパターンで印刷して形成する請求項1記載の電圧非直線性抵抗素子の製造方法。
The functional film composition includes an additive X composed of at least one of cobalt oxide, manganese oxide, nickel oxide, and chromium oxide in the rare earth oxide in the following mol% and mass ratio ranges, and a glass component: Without
80.0mol% ≦ a ≦ 99.0mol%, 1.0mol% ≦ b ≦ 20.0mol%, 0.01 ≦ P / X ≦ 3.5
a: zinc oxide, b: mixture of rare earth oxide and additive X, P: rare earth oxide, X: additive X,
The paste is formed by mixing an organic component with the powder of the functional film composition,
The method of manufacturing a voltage non-linear resistance element according to claim 1, wherein the paste is formed by printing a predetermined pattern on the insulating substrate.
前記希土類酸化物は、酸化プラセオジムである請求項2記載の電圧非直線性抵抗素子の製造方法。   The method for manufacturing a voltage nonlinear resistance element according to claim 2, wherein the rare earth oxide is praseodymium oxide. 前記希土類酸化物の化合物は、前記絶縁基板中の不純物との化合物である請求項3記載の電圧非直線性抵抗素子の製造方法。The method of manufacturing a voltage nonlinear resistance element according to claim 3, wherein the rare earth oxide compound is a compound with an impurity in the insulating substrate. 前記機能膜中に形成される前記化合物層は、前記機能膜を焼成して形成する際に、前記機能膜の組成中の主成分の結晶粒界から前記酸化プラセオジムが移動するとともに、前記絶縁基板中の前記不純物が前記機能膜中に侵入して前記酸化プラセオジムと反応して形成される請求項4記載の電圧非直線性抵抗素子の製造方法。When the functional layer is formed by baking the functional film, the compound layer formed in the functional film moves the praseodymium oxide from the crystal grain boundary of the main component in the composition of the functional film, and the insulating substrate. The method of manufacturing a voltage non-linear resistance element according to claim 4, wherein the impurity therein is formed by intruding into the functional film and reacting with the praseodymium oxide.
JP2011161890A 2011-07-25 2011-07-25 Method for manufacturing voltage nonlinear resistance element Active JP5944123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011161890A JP5944123B2 (en) 2011-07-25 2011-07-25 Method for manufacturing voltage nonlinear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011161890A JP5944123B2 (en) 2011-07-25 2011-07-25 Method for manufacturing voltage nonlinear resistance element

Publications (2)

Publication Number Publication Date
JP2013026545A JP2013026545A (en) 2013-02-04
JP5944123B2 true JP5944123B2 (en) 2016-07-05

Family

ID=47784506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161890A Active JP5944123B2 (en) 2011-07-25 2011-07-25 Method for manufacturing voltage nonlinear resistance element

Country Status (1)

Country Link
JP (1) JP5944123B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113539594B (en) * 2021-06-18 2022-08-02 翔声科技(厦门)有限公司 Low-resistance negative temperature coefficient thermistor and manufacturing process thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498071A (en) * 1982-09-30 1985-02-05 Dale Electronics, Inc. High resistance film resistor
JP4915153B2 (en) * 2005-07-07 2012-04-11 株式会社村田製作所 Multilayer varistor
CN101401172B (en) * 2006-03-10 2011-01-26 卓英社有限公司 Ceramic component element and ceramic component and method for the same
KR100807217B1 (en) * 2006-07-28 2008-02-28 조인셋 주식회사 Ceramic component and Method for the same
TW200903530A (en) * 2007-03-30 2009-01-16 Tdk Corp Voltage non-linear resistance ceramic composition and voltage non-linear resistance element

Also Published As

Publication number Publication date
JP2013026545A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP2556151B2 (en) Stacked Varistor
WO2011086850A1 (en) Semiconductor ceramic composition for ntc thermistor and ntc thermistor
JP4915153B2 (en) Multilayer varistor
US20130229256A1 (en) Semiconductor ceramic composition for ntc thermistors
JP4618010B2 (en) Manufacturing method of ceramic electronic component
JP3039224B2 (en) Varistor manufacturing method
JP5221794B1 (en) Electrostatic protection element and manufacturing method thereof
US11136257B2 (en) Thick-film resistive element paste and use of thick-film resistive element paste in resistor
JP5944123B2 (en) Method for manufacturing voltage nonlinear resistance element
CN100472673C (en) Multilayer chip varistor
JP3399349B2 (en) Laminated varistor and method of manufacturing the same
JP2004022976A (en) Stacked voltage nonlinear resistor and method of manufacturing the same
JP3832071B2 (en) Multilayer varistor
JP2016054225A (en) Semiconductor ceramic composition for negative characteristic thermistor, and negative characteristic thermistor
JP4710560B2 (en) Manufacturing method of multilayer chip varistor
JP4235487B2 (en) Voltage nonlinear resistor
JP6828256B2 (en) NTC thermistor element
JP5282332B2 (en) Manufacturing method of zinc oxide laminated chip varistor
JP4070780B2 (en) Multilayer chip varistor
JP2666605B2 (en) Stacked varistor
US11387021B2 (en) Ceramic member and electronic device
JP3090563B2 (en) Stacked voltage non-linear resistor
JP4710654B2 (en) Manufacturing method of multilayer chip varistor
JP5715961B2 (en) Varistor ceramic, multilayer component including varistor ceramic, and method for producing varistor ceramic
JP4492234B2 (en) Thermistor composition and thermistor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160525

R150 Certificate of patent or registration of utility model

Ref document number: 5944123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250