JP5282332B2 - Manufacturing method of zinc oxide laminated chip varistor - Google Patents

Manufacturing method of zinc oxide laminated chip varistor Download PDF

Info

Publication number
JP5282332B2
JP5282332B2 JP2008113291A JP2008113291A JP5282332B2 JP 5282332 B2 JP5282332 B2 JP 5282332B2 JP 2008113291 A JP2008113291 A JP 2008113291A JP 2008113291 A JP2008113291 A JP 2008113291A JP 5282332 B2 JP5282332 B2 JP 5282332B2
Authority
JP
Japan
Prior art keywords
oxide
varistor
zinc oxide
mol
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008113291A
Other languages
Japanese (ja)
Other versions
JP2009266976A (en
Inventor
洋二 五味
達也 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2008113291A priority Critical patent/JP5282332B2/en
Publication of JP2009266976A publication Critical patent/JP2009266976A/en
Application granted granted Critical
Publication of JP5282332B2 publication Critical patent/JP5282332B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a zinc oxide laminated chip varistor having an excellent impulse resistance characteristic and capable of reducing characteristic dispersion. <P>SOLUTION: In the method for manufacturing the zinc oxide laminated chip varistor, a varistor raw material containing zinc oxide, bismuth oxide, antimony oxide, cobalt oxide or manganese oxide, chromium oxide, boric acid, silicon dioxide, and aluminum oxide is prepared, slurry is produced by adding a dispersant to the varistor raw material, a green sheet is produced by using the slurry, a green chip is produced by laminating the green sheets, and the green chip is heated up to a predetermined temperature to burn the green chip. In the burning, the temperature of the green chip is increased up to the predetermined temperature at a temperature rising speed of &ge;400&deg;C/hr. It is preferable to use copolymer of &alpha;-olefin and maleic anhydride as the dispersant. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、各種電気・電子機器において、ロードダンプサージ、イグニッションサージ、雷サージ、静電気放電サージ(ESD)、スイッチングサージなどから、上記機器に搭載した半導体素子などを保護するためのバリスタ素子に係り、特に表面実装が可能なチップ型の酸化亜鉛積層チップバリスタの製造方法に関する。   The present invention relates to a varistor element for protecting a semiconductor element and the like mounted on the above equipment from load dump surge, ignition surge, lightning surge, electrostatic discharge surge (ESD), switching surge, etc. in various electric / electronic devices. In particular, the present invention relates to a method of manufacturing a chip-type zinc oxide laminated chip varistor capable of surface mounting.

携帯電話などの電気・電子機器においては、近年の急激な高周波化、大容量化に伴い、各種サージやパルス性ノイズ、静電気放電(ESD)等から回路を保護して動作の安定性を確保し、また、ノイズ規制への対応をする為に、より高性能な過電圧保護素子であるバリスタへのニーズが高まっている。また、機器の小型化から、リード付きディスクバリスタよりも小型であり表面実装が可能な酸化亜鉛積層チップバリスタが用いられることが多い。特に、自動車の分野では急速に電子化が進み、車載電子機器においては、半導体素子が搭載されているが、ロードダンプサージ、スイッチングオフサージ、イグニッションサージなどから、サージに対して脆弱な半導体素子を保護する必要がある。   In electrical and electronic devices such as mobile phones, with the rapid increase in frequency and capacity in recent years, the circuit is protected from various surges, pulse noise, electrostatic discharge (ESD), etc., and operation stability is ensured. In addition, there is a growing need for a varistor that is a higher performance overvoltage protection element in order to comply with noise regulations. Also, due to the downsizing of devices, zinc oxide multilayer chip varistors that are smaller than leaded disk varistors and can be surface mounted are often used. In particular, in the field of automobiles, the digitization has progressed rapidly, and in-vehicle electronic devices are equipped with semiconductor elements. However, semiconductor elements that are vulnerable to surges can be obtained from load dump surges, switching off surges, ignition surges, etc. It needs to be protected.

一般に酸化亜鉛バリスタは、酸化亜鉛(ZnO)を主成分とし、酸化亜鉛の粒成長を促進する酸化ビスマス(Bi2O3)や粒成長を抑制する酸化アンチモン(Sb2O3)が添加され、また、焼結助剤として各種ガラス等が添加される。特許文献1には、酸化亜鉛(ZnO)を主成分とし、酸化ビスマス(Bi2O3)と、酸化アンチモン(Sb2O3)と、酸化錫(SnO2)等を副成分として含むバリスタが開示されている。
特開平3−211705号公報
In general, zinc oxide varistors are mainly composed of zinc oxide (ZnO) and added with bismuth oxide (Bi 2 O 3 ) that promotes grain growth of zinc oxide and antimony oxide (Sb 2 O 3 ) that suppresses grain growth. Various glasses and the like are added as a sintering aid. Patent Document 1 discloses a varistor including zinc oxide (ZnO) as a main component and bismuth oxide (Bi 2 O 3 ), antimony oxide (Sb 2 O 3 ), tin oxide (SnO 2 ), and the like as auxiliary components. It is disclosed.
JP-A-3-217055

しかしながら、特許文献1はディスクタイプの大型のバリスタを前提としており、本発明の対象である積層チップタイプバリスタの場合、寸法が例えば5.7mm×5.0mm(5750型)と小さく、且つ薄いセラミックスシートを複数層積層した構造であることから、グレインの粒子の状態が特性に大きく影響し、例えば上記車載電子機器などに搭載された半導体素子保護用のバリスタとして、十分な特性が得られるものではない。   However, Patent Document 1 is premised on a disk-type large varistor, and in the case of the multilayer chip type varistor which is the subject of the present invention, a thin ceramic sheet having a small size of, for example, 5.7 mm × 5.0 mm (5750 type) is used. Since the structure is formed by laminating a plurality of layers, the state of the grain particles greatly affects the characteristics, and for example, sufficient characteristics cannot be obtained as a varistor for protecting a semiconductor element mounted on the above-mentioned in-vehicle electronic device.

本発明は上述した事情に基づいてなされたもので、車載電子機器などに搭載されるバリスタとして要求されるインパルス耐量特性に優れ、且つ特性のバラツキを低減することができる酸化亜鉛積層チップバリスタの製造方法を提供することを目的とする。   The present invention has been made on the basis of the above-described circumstances, and it is possible to manufacture a zinc oxide multilayer chip varistor that is excellent in impulse withstand characteristics required as a varistor mounted on an in-vehicle electronic device and can reduce variation in characteristics. It aims to provide a method.

本発明の酸化亜鉛積層チップバリスタの製造方法は、酸化亜鉛と、酸化ビスマスと、酸化アンチモンと、酸化コバルトまたは酸化マンガンと、酸化クロムと、ホウ酸と、二酸化ケイ素と、酸化アルミニウムと、を含むバリスタ原料を準備し、上記バリスタ原料に希釈溶剤と分散剤を加えてスラリーを作成し、上記スラリーを用いてグリーンシートを作成し、上記グリーンシートを積層してグリーンチップを作成し、上記グリーンチップを、所定温度まで加熱して焼成する酸化亜鉛積層チップバリスタの製造方法であって、上記分散剤は、α−オレフィンと無水マレイン酸の共重合体を使用し、上記焼成は、500℃/hr以上の昇温速度で、上記所定温度まで昇温させることを特徴とするものである。 The method for producing a zinc oxide multilayer chip varistor of the present invention includes zinc oxide, bismuth oxide, antimony oxide, cobalt oxide or manganese oxide, chromium oxide, boric acid, silicon dioxide, and aluminum oxide. A varistor raw material is prepared, a slurry is prepared by adding a diluent and a dispersant to the varistor raw material, a green sheet is prepared using the slurry, a green chip is formed by stacking the green sheets, and the green chip Is a method of manufacturing a zinc oxide laminated chip varistor that is heated to a predetermined temperature and calcined, wherein the dispersant uses a copolymer of α-olefin and maleic anhydride, and the calcining is performed at 500 ° C./hr. The temperature is increased to the predetermined temperature at the above temperature increase rate.

本発明によれば、500℃/hr以上の昇温速度で高速焼成を行うことで、グリーンチップに高速に熱を入れると熱を伝える速度が速くなり、つまり焼結が進む時の構造の格子運動が活発化するため、熱の伝わりがスムーズになり、その結果、均質な燒結体が得られる。そして、分散剤として、α−オレフィンと無水マレイン酸の共重合体を用いることで、スラリーの段階で、材料の各成分が均一に分散し、材料の粒径を揃えることができ、この状態からグリーンチップを作成し、焼成することで、均質性の高い燒結体が得られる。これにより、インパルス耐量特性に優れ、特性のバラツキが低減した酸化亜鉛積層チップバリスタを製造することができる。 According to the present invention, by performing high-speed firing at a temperature rising rate of 500 ° C./hr or more, when heat is applied to the green chip at a high speed, the heat transfer speed is increased, that is, the lattice of the structure when the sintering proceeds. Since the movement is activated, the transfer of heat becomes smooth, and as a result, a homogeneous sintered body is obtained. And, by using a copolymer of α-olefin and maleic anhydride as a dispersant, each component of the material can be uniformly dispersed at the slurry stage, and the particle size of the material can be made uniform. A green chip is produced and fired to obtain a sintered body with high homogeneity. Thereby, it is possible to manufacture a zinc oxide multilayer chip varistor having excellent impulse withstand characteristics and reduced variation in characteristics.

以下、本発明の実施形態について、添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、酸化亜鉛積層チップバリスタの素子構造例を示す。この酸化亜鉛積層チップバリスタ10は、バリスタ素材となる酸化亜鉛(ZnO)を主成分とし、酸化ビスマス(Bi2O3)や酸化アンチモン(Sb2O3)等を副成分としたグリーンシートに白金(Pt)またはパラジウム(Pd)などの導電材ペーストパターン(内部電極パターン)を配置したものを積層し、焼成して作製された積層型の焼結体素子である。そして、積層したグリーンシートが焼成して形成されたバリスタ焼結体11の内部に、平行平板状に交互に導電材の内部電極12a,12bが積層配置され、積層コンデンサと同様の電極配置となっている。 FIG. 1 shows an example of the element structure of a zinc oxide laminated chip varistor. This zinc oxide laminated chip varistor 10 is made of platinum on a green sheet mainly composed of zinc oxide (ZnO) as a varistor material and bismuth oxide (Bi 2 O 3 ), antimony oxide (Sb 2 O 3 ), or the like as subcomponents. It is a multilayer sintered body element produced by laminating and firing a conductive material paste pattern (internal electrode pattern) such as (Pt) or palladium (Pd). Then, the internal electrodes 12a and 12b of the conductive material are alternately arranged in a parallel plate shape inside the varistor sintered body 11 formed by firing the laminated green sheets, and the electrode arrangement is the same as that of the multilayer capacitor. ing.

複数の内部電極12a,12bは、それぞれ左右の外部電極13a,13bに接続されている。外部電極13a,13bは、銀などの電極にニッケルメッキ、ハンダまたはスズメッキが施され、面実装に適合した構造となっている。従って、左右の外部電極13a,13b間に印加された電圧は、バリスタ焼結体11の内部に平行平板状に配置された電極12a,12b間のバリスタ焼結体部分に印加される。この図示の例では、4層のバリスタ焼結体層によって、バリスタ素子が構成されているが、層数および各層の層厚は、所要バリスタ電圧および耐量等に応じて決められる。なお、酸化亜鉛積層チップバリスタ10は、例えば、5.7mm×5.0mm(5750型)、3.2mm×1.6mm(3216型)、2.0mm×1.2mm(2012型)、1.0mm×0.5mm(1005型)、0.6mm×0.3mm(0603型)などの標準的なチップ部品としてのサイズを有する面実装型の部品である。   The plurality of internal electrodes 12a and 12b are connected to the left and right external electrodes 13a and 13b, respectively. The external electrodes 13a and 13b have a structure suitable for surface mounting, in which electrodes such as silver are subjected to nickel plating, solder or tin plating. Therefore, the voltage applied between the left and right external electrodes 13 a and 13 b is applied to the varistor sintered body portion between the electrodes 12 a and 12 b arranged in a parallel plate shape inside the varistor sintered body 11. In the illustrated example, a varistor element is constituted by four varistor sintered body layers, but the number of layers and the layer thickness of each layer are determined according to the required varistor voltage, withstand capability, and the like. The zinc oxide multilayer chip varistor 10 is, for example, 5.7 mm x 5.0 mm (5750 type), 3.2 mm x 1.6 mm (3216 type), 2.0 mm x 1.2 mm (2012 type), 1.0 mm x 0.5 mm (1005 type) ), Surface mount type parts having a size as a standard chip part such as 0.6 mm × 0.3 mm (0603 type).

本発明の製造工程の試験のために、試作した酸化亜鉛積層チップバリスタは、5.7mm×5.0mm(5750型)であり、内部電極層数は16層であり、内部電極には白金(Pt)を用いている。バリスタ原料は、酸化亜鉛(ZnO)100mol%と、これに対する外掛け量で、酸化ビスマス(Bi2O3)を0.5mol%と、酸化アンチモン(Sb2O3)を1.0mol%と、酸化コバルト(CoO)と酸化マンガン(MnO2)とをそれぞれ1.0mol%と、酸化クロム(Cr2O3)を0.5mol%と、酸化チタン(TiO2)を0.1mol%と、ホウ酸(H3BO3)を0.5mol%と、二酸化ケイ素(SiO2)を0.50mol%と、酸化アルミニウム(Al2O3)を0.0001mol%(100ppm)とを含み、バリスタ電圧は22V品(電流1mA印加時のバリスタ両端電圧が19.8〜24.2V)である。 For the test of the manufacturing process of the present invention, the prototype zinc oxide laminated chip varistor is 5.7 mm × 5.0 mm (5750 type), the number of internal electrode layers is 16, and the internal electrode is platinum (Pt). Is used. Varistor material is a zinc (ZnO) 100 mol% oxide in outer percentage amount with respect to this, and 0.5 mol% of bismuth oxide (Bi 2 O 3), and 1.0 mol% of antimony oxide (Sb 2 O 3), cobalt oxide (CoO) and manganese oxide (MnO 2 ) 1.0 mol%, chromium oxide (Cr 2 O 3 ) 0.5 mol%, titanium oxide (TiO 2 ) 0.1 mol%, boric acid (H 3 BO 3) and a 0.5 mol%, and 0.50 mol% of silicon dioxide (SiO2), and a 0.0001 mol% (100 ppm) of aluminum oxide (Al 2 O 3), the varistor voltage is 22V products (when current 1mA is applied varistor The voltage between both ends is 19.8-24.2V).

一般的な製造工程に従って製作された上記バリスタの電気的特性は、バリスタ電圧(電流1mA印加時のバリスタ両端電圧)の平均が22.6V(σ=1.6)であり、バリスタ電圧の0.8垳の電圧印加時の漏洩電流の平均が4.2μA(σ=1.2)であり、α値(0.01〜1mA間の非直線性)が35(σ=1.2)であり、制限電圧(電流2A印加時のバリスタ両端電圧)が34V(σ=2.1)であり、サージ耐量(耐最大負荷電流)が2200Aであり、エネルギー耐量(ロードダンプ耐量、耐最大負荷エネルギー)が25Jである。   The electrical characteristics of the varistor manufactured according to the general manufacturing process are as follows. The average of the varistor voltage (voltage across the varistor when current of 1 mA is applied) is 22.6 V (σ = 1.6), and the voltage applied is 0.8 V of the varistor voltage. The average leakage current at the time is 4.2μA (σ = 1.2), the α value (non-linearity between 0.01-1mA) is 35 (σ = 1.2), and the limiting voltage (voltage across the varistor when current 2A is applied) ) Is 34V (σ = 2.1), surge resistance (maximum load current resistance) is 2200A, and energy resistance (load dump resistance, maximum load energy resistance) is 25J.

上記酸化亜鉛積層チップバリスタは、酸化亜鉛を主原料とし、これに酸化ビスマスと、酸化アンチモンと、酸化コバルトまたは酸化マンガンの少なくとも何れかと、酸化クロムと、ホウ酸と、二酸化ケイ素と、酸化アルミニウムと、を含むバリスタ原料を準備し、このバリスタ原料に分散剤を加えてスラリーを作成し、スラリーを用いてグリーンシートを作成し、グリーンシートを積層してグリーンチップを作成し、グリーンチップを所定温度まで加熱して焼成することで、内部に平行平板状に配置された電極を備えた積層バリスタ燒結体を形成する。   The zinc oxide multilayer chip varistor is mainly composed of zinc oxide, and bismuth oxide, antimony oxide, at least one of cobalt oxide or manganese oxide, chromium oxide, boric acid, silicon dioxide, and aluminum oxide. A varistor raw material is prepared, a dispersant is added to the varistor raw material to create a slurry, a green sheet is formed using the slurry, a green chip is laminated to form a green chip, and the green chip is heated to a predetermined temperature. Is heated and fired to form a laminated varistor sintered body having electrodes arranged in a parallel plate shape inside.

従来からの製造工程では、分散剤として、一般的なポリカルボン酸系分散剤を用いていた。また、焼成時の昇温速度も一般的な酸化亜鉛バリスタの昇温速度である200℃/hrを用いていた。   In a conventional manufacturing process, a general polycarboxylic acid-based dispersant is used as a dispersant. Also, the heating rate during firing was 200 ° C./hr which is the heating rate of a general zinc oxide varistor.

ところで、特に車載用の酸化亜鉛積層チップバリスタにおいては、インパルス耐量特性に優れ、且つ特性のバラツキが低減することが望まれる。バリスタ焼結体として望ましい姿は、グレイン(ZnOの粒)が均一であること、グレイン(ZnO)間の空隙が少ないこと、粒界準位(ダブルショットキー障壁)が形成されバラツキが少ないこと、グレイン(ZnO)の比抵抗が小さいことにある。このためには、スラリーの段階或いはグリーンチップの段階で材料の組成が均一に分散していること、材料の粒径が揃っていることが必要であり、そのまま、焼結体の焼結性が均質であり、グレイン(ZnOの粒)が均一に形成されるように燒結することが必要である。   By the way, in particular, in an in-vehicle zinc oxide multilayer chip varistor, it is desired to have excellent impulse withstand characteristics and to reduce variation in characteristics. The desirable shape as a varistor sintered body is that grains (ZnO grains) are uniform, that there are few voids between grains (ZnO), that there are few variations due to the formation of grain boundary levels (double Schottky barrier), The specific resistance of grains (ZnO) is small. For this purpose, it is necessary that the composition of the material is uniformly dispersed at the stage of the slurry or the stage of the green chip, and that the particle size of the material is uniform. It is necessary to be sintered so that it is homogeneous and grains (ZnO grains) are uniformly formed.

そこで本発明では、まず、燒成時の昇温速度に着目している。グリーンチップを焼成する際に、徐々に熱を加えた場合、外側から熱が内側に伝わっていくが、そうすると、外側から内側に含まれる成分が理論通りに化学反応して順次徐々に結晶構造を形成していく。しかしながら、この過程の反応は無い方が仕上りのグレインが均一になることを本発明者等は見いだした。つまり、昇温速度を高め、急速に全体が熱処理されると、結晶構造を形成していく反応は起こるものの、ごく僅かな時間で次の反応にシフトするため、外側から内側に順次徐々に結晶構造を形成していく悪影響を低減できると考えられる。   Therefore, in the present invention, first, attention is paid to the temperature rising rate during the formation. When firing green chips, when heat is gradually applied, the heat is transferred from the outside to the inside, but then the components contained from the outside to the inside chemically react as theoretically and gradually form a crystal structure. To form. However, the present inventors have found that when there is no reaction in this process, the finished grain becomes uniform. In other words, if the heating rate is increased and the whole is rapidly heat-treated, the reaction that forms the crystal structure occurs, but the next reaction takes place in a very short time. It is thought that the adverse effect of forming the structure can be reduced.

すなわち、バリスタの機能を大きく阻害する要因の一つに、最適な組成配合とプロセスで製作されたグリーンチップで有っても、グリーンチップに構成される揮発性のある添加物が高温に長く曝される事でチップ表面から大気中に拡散してしまいグレインの均質性を損ねるという問題がある。徐々に焼成すると組成に準じた化学反応が外側から内側に順次行われ焼結が進むが、外側と内側の焼けの速度に開きがあり、セラミックス素体全体の焼けの状態は外側と内側で差が生まれるが、これを高速に熱を入れると熱を伝える速度が速くなり、つまり焼結が進む時の構造の格子運動が活発化するため、熱の伝わりがスムーズになり、その結果、全体として均一な燒結が行え、グレインの均質性が向上すると考えられる。   In other words, one of the factors that greatly hinders the function of a varistor is that even if it is a green chip manufactured by an optimal composition and process, the volatile additives that make up the green chip are exposed to high temperatures for a long time. As a result, it diffuses from the chip surface into the atmosphere, which impairs the homogeneity of grains. When it is gradually fired, the chemical reaction according to the composition is carried out sequentially from the outside to the inside, and the sintering proceeds. However, there is a difference in the burning rate between the outside and inside, and the burning state of the entire ceramic body is different between the outside and inside. However, if heat is applied at a high speed, the heat transfer speed becomes faster, that is, the lattice motion of the structure is activated as the sintering proceeds, and the heat transfer becomes smoother. It is considered that uniform sintering can be performed and the homogeneity of grains is improved.

このような観点から、高速焼成を検証したデータを表1に示す。即ち、高速に焼成することで粒成長において問題となる核粒子の出現を抑え、且つ高温に曝す時間を減らすことで添加物の揮発による特性劣化を抑えることが可能となると考えられる。表1のデータは、昇温速度を変更し、インパルス耐量2ms波形で限界値を測定・評価したものである。

Figure 0005282332
From such a viewpoint, data verifying high-speed firing is shown in Table 1. That is, it is considered that by firing at high speed, the appearance of core particles that are a problem in grain growth can be suppressed, and the deterioration of characteristics due to volatilization of the additive can be suppressed by reducing the exposure time to high temperature. The data in Table 1 is obtained by changing the temperature rising rate and measuring and evaluating the limit value with a 2 ms impulse withstand waveform.
Figure 0005282332

この結果、400℃/hr以上の昇温速度で、インパルス耐量の向上が認められ、特に、500℃/hr以上の昇温速度で焼結した場合に、従来の200℃/hrの昇温速度に対して20%強のインパルス耐量の向上が認められる。なお、昇温速度400℃/hrにおける2Jの向上は、例えば3.2mm×2.5mmサイズのチップバリスタ1つを追加することに相当する特性の向上である。   As a result, an improvement in impulse withstand was observed at a heating rate of 400 ° C / hr or higher, especially when sintering at a heating rate of 500 ° C / hr or higher, especially when the conventional heating rate of 200 ° C / hr was used. On the other hand, an improvement in impulse tolerance of over 20% is observed. Note that the improvement of 2J at a temperature increase rate of 400 ° C./hr is an improvement in characteristics corresponding to the addition of, for example, one chip varistor having a size of 3.2 mm × 2.5 mm.

次に重要なのは、分散剤の選択である。分散剤として、従来は一般的なポリカルボン酸系分散剤を用いていたが、α−オレフィンと無水マレイン酸の共重合体を用いることで、スラリーの段階で、材料の各成分が均一に分散し、材料の粒径を揃えることができ、これからグリーンチップを形成し、焼成することで、均質性の高い燒結体が得られる。   Next important is the choice of dispersant. Conventionally, a general polycarboxylic acid-based dispersant has been used as a dispersant. By using a copolymer of α-olefin and maleic anhydride, each component of the material is uniformly dispersed at the slurry stage. Then, the particle diameters of the materials can be made uniform, and a green chip is formed and fired from this, whereby a sintered body with high homogeneity can be obtained.

高速焼成と分散剤との組合せによる効果を検証したデータを表2に示す。

Figure 0005282332
Table 2 shows data verifying the effect of the combination of high-speed firing and dispersant.
Figure 0005282332

比較例1は、従来の昇温速度で、且つ分散剤をまったく添加しなかった場合である。出来上がった製品は、材料混合および粒径のバラツキによりバリスタ電圧等の特性バラツキが大きく、回路保護能力は低いものであった。比較例2は、従来の昇温速度で、且つ分散剤も従来のポリカルボン酸系のものを用いた場合である。出来上がった製品は、材料分散が加速されバリスタ電圧等の基本性能は得られるが、サージ耐量等の性能は不十分なものであった。比較例3は、従来の昇温速度で、且つ分散剤は本発明のα−オレフィンと無水マレイン酸の共重合体を用いた場合である。出来上がった製品は、材料分散性が十分に進み基本性能に加えサージ耐量等の回路保護機能が得られるが、従来品に比べて著しい特性向上は得られない。 Comparative Example 1 is a case where the conventional temperature increase rate was used and no dispersant was added. The finished product had a large variation in characteristics such as a varistor voltage due to variation in material mixing and particle size, and circuit protection ability was low. Comparative Example 2 is a case where a conventional polycarboxylic acid-based dispersant is used at a conventional temperature increase rate. In the finished product, material dispersion was accelerated and basic performance such as varistor voltage was obtained, but performance such as surge resistance was insufficient. Comparative Example 3 is a case where the conventional temperature rising rate is used, and the copolymer of the α-olefin and maleic anhydride of the present invention is used as the dispersant. The finished product has sufficiently advanced material dispersibility and can provide circuit protection functions such as surge resistance in addition to basic performance, but no significant improvement in characteristics compared to conventional products.

比較例4は、本発明の昇温速度である500℃/hrを用いて焼成したもので、且つ分散剤をまったく添加しなかった場合である。出来上がった製品は、材料混合および粒径のバラツキによりバリスタ電圧等の特性バラツキが大きく、回路保護能力は低いものであった。なお、セラミックス焼結均質性が上がるが、材料混合および粒径不均一性の影響が強く、インパルス耐量の向上等の効果は見られない。   Comparative Example 4 is a case where firing was performed at a temperature increase rate of 500 ° C./hr according to the present invention, and no dispersant was added. The finished product had a large variation in characteristics such as a varistor voltage due to variation in material mixing and particle size, and circuit protection ability was low. In addition, although ceramic sintering homogeneity increases, the influence of material mixing and particle size non-uniformity is strong, and effects such as improvement of impulse resistance are not seen.

本発明1は、高速燒結の昇温速度500℃/hrを用いて焼成したもので、且つ分散剤は従来のポリカルボン酸系のものを用いた場合である。従来の分散剤による効果と高速燒結による効果とが相乗効果を発揮し、基本性能は若干バラツキがあるがサージ耐量等の特性は著しく向上する。但し、無水マレイン酸-αオレフィン系分散剤を使用した場合よりは特性の向上という点で劣る。本発明2は、高速燒結の昇温速度500℃/hrを用いて焼成したもので、且つ分散剤も本発明のα−オレフィンと無水マレイン酸の共重合体を用いた場合である。出来上がった製品は、分散剤および高速昇温による焼結性の効果が最大限に発揮され、基本性能のバラツキが小さいことに加え、サージ耐量、エネルギー耐量といった回路保護機能は格段に向上する。 The present invention 1 is a case where baking is performed at a heating rate of 500 ° C./hr of high-speed sintering, and a conventional polycarboxylic acid-based dispersant is used. The effect of the conventional dispersant and the effect of high-speed sintering have a synergistic effect, and the basic performance varies slightly, but the characteristics such as surge resistance are remarkably improved. However, it is inferior in terms of improvement in characteristics as compared with the case where a maleic anhydride-α-olefin dispersant is used. The present invention 2 is a case where firing is performed at a heating rate of 500 ° C./hr of high-speed sintering, and the copolymer of the α-olefin and maleic anhydride of the present invention is also used as the dispersant. The finished product exhibits the effect of sinterability due to the dispersant and high-speed temperature rise to the maximum. In addition to small variations in basic performance, circuit protection functions such as surge resistance and energy resistance are greatly improved.

次に、Bi2O3-Sb2O3-ZnO系の混合物の添加による低制限電圧化について検討した。ZnOの粒成長とZnO-Bi2O3-Sb2O3系で起こるパイロクロア、スピネル形成の反応を独立させることでZnOグレインの均一性が得られ低制限電圧化が図れると考えられる。そこで、Bi2O3-Sb2O3混合物にZnOを添加し、仮焼後主原料に添加することで、制限電圧がどう変化するのか確認した。この試験データを表3に示す。なお、添加量はZnO
100mol%に対する外掛けの添加量であり、Bi/Sb比はバリスタ電圧を低くしたい時には大きく、高くしたい時には小さくすれば良く、Bi/Sb比を1とし、各0.5mol%添加した混合物にZnO添加量を変化させてデータを取得した。
Next, the reduction of the voltage limit by adding a Bi 2 O 3 —Sb 2 O 3 —ZnO-based mixture was studied. By making the ZnO grain growth and the pyrochlore and spinel formation reactions that occur in the ZnO—Bi 2 O 3 —Sb 2 O 3 system independent, the uniformity of the ZnO grains can be obtained and the voltage limit can be reduced. Therefore, it was confirmed how the limiting voltage changes by adding ZnO to the Bi 2 O 3 —Sb 2 O 3 mixture and adding it to the main raw material after calcination. The test data is shown in Table 3. The amount added is ZnO
Addition amount of 100 mol%, Bi / Sb ratio can be increased when lowering the varistor voltage, lower when increasing the varistor voltage, Bi / Sb ratio is 1, and ZnO is added to each 0.5 mol% added mixture Data was acquired with varying amounts.

Figure 0005282332
この結果、ZnO0.1〜1mol%の範囲でBi2O3-Sb2O3混合物と一緒にZnOを加え仮焼きし、主原料に添加することで大幅に制限電圧特性が改善されることが確認出来た。
Figure 0005282332
As a result, the limiting voltage characteristics can be greatly improved by adding ZnO together with the Bi 2 O 3 -Sb 2 O 3 mixture and calcining in the range of ZnO 0.1 to 1 mol% and adding it to the main raw material. I was able to confirm.

次に、ドナー元素の添加による高インパルス耐量化について検討した。高インパルス耐量化には2つの手段があり、1つが粒界の二重ショットキー障壁の厚みを厚くし、大電流が印加された時にトンネル効果による雪崩式に電子が粒界を飛び越える現象を抑えることであり、もう1つがZnOの比抵抗を下げ熱拡散効率を上げることで、発生したジュール熱を素子全体に素早く拡散させ1粒界の破壊を防ぐことである。しかし、実際は幾ら二重ショットキー障壁の厚みを厚くし大きな電流に耐えられる粒界を形成しても、発生するジュール熱が大きく、1粒界に集中すると十分な耐量を得ることは難しい。従って、インパルス耐量を向上させる為には、後者であるZnOの比抵抗を下げ熱拡散効率を向上させることが重要であると考えられる。   Next, high impulse resistance by adding a donor element was examined. There are two ways to increase the impulse resistance, one is to increase the thickness of the double Schottky barrier at the grain boundary, and to suppress the phenomenon that electrons jump over the grain boundary due to the tunnel effect when a large current is applied. The other is to reduce the specific resistance of ZnO and increase the thermal diffusion efficiency, thereby quickly diffusing the generated Joule heat throughout the device and preventing the destruction of one grain boundary. In reality, however, even if the double Schottky barrier is thickened to form a grain boundary that can withstand a large current, the generated Joule heat is large, and it is difficult to obtain a sufficient tolerance when concentrated at one grain boundary. Therefore, in order to improve the impulse withstand capability, it is considered important to reduce the specific resistance of ZnO, which is the latter, and improve the thermal diffusion efficiency.

そこで、ZnOに対しドナー元素となるAl2O3の添加量を変化させ、データを取得した結果を表4に示す。このデータは、上記条件に基づきチップバリスタを作製し、8/20μsサージ波形で2000(A)印加し、バリスタ電圧変化率を測定したものである。なお、Al2O3の添加量はZnOに対するppmで表示している。 Therefore, Table 4 shows the results obtained by changing the addition amount of Al 2 O 3 as a donor element with respect to ZnO. This data was obtained by fabricating a chip varistor based on the above conditions, applying 2000 (A) with an 8/20 μs surge waveform, and measuring the varistor voltage change rate. The amount of Al 2 O 3 added is expressed in ppm with respect to ZnO.

Figure 0005282332
Figure 0005282332

この結果、10〜1000ppmの範囲でAl2O3を添加することで、ZnOの比抵抗を下げ熱拡散効率を向上させ、高インパルス耐量化が図れることが分かる。 As a result, it can be seen that by adding Al 2 O 3 in the range of 10 to 1000 ppm, the specific resistance of ZnO is lowered, the thermal diffusion efficiency is improved, and a high impulse resistance can be achieved.

次に、本発明のバリスタの製造工程について、図2を参照して説明する。まず、メジアン平均粒径3μm程度の酸化亜鉛(ZnO)100mol%と、これに対する外掛け量で、酸化ビスマス(Bi2O3)を0.1〜1.5mol%と、酸化アンチモン(Sb2O3)を0.01〜2.0mol%と、酸化コバルト(CoO)または酸化マンガン(MnO2)の少なくとも何れかを0.1〜1.5mol%と、酸化クロム(Cr2O3)を0.01〜2mol%と、ホウ酸(H3BO3)を0.1〜1.0mol%と、二酸化ケイ素(SiO2)を0.1〜1.0mol%と、酸化アルミニウム(Al2O3)を10〜1000ppmを含む原料を準備する。この原料のうち、酸化ビスマス(Bi2O3)および酸化アンチモン(Sb2O3)の全量と酸化亜鉛(ZnO)0.1〜1.0mol%を調合して(ステップ100)仮焼原料とし、これをボールミル等で粉砕・整粒し(ステップ101)、700〜1000℃の温度範囲の酸化雰囲気で仮焼を行い(ステップ102)、ボールミル等で粉砕・整粒する(ステップ103)。 Next, the manufacturing process of the varistor of this invention is demonstrated with reference to FIG. First, 100 mol% of zinc oxide (ZnO) with a median average particle size of about 3 μm, and 0.1 to 1.5 mol% of bismuth oxide (Bi 2 O 3 ), and antimony oxide (Sb 2 O 3 ) in an amount of the outer coating. and 0.01~2.0mol%, and 0.1~1.5Mol% of at least one of cobalt oxide (CoO) or manganese oxide (MnO 2), and 0.01 to 2 mol% of chromium oxide (Cr 2 O 3), boric acid (H 3 and BO 3) to 0.1 to 1.0 mol%, prepared with 0.1 to 1.0 mol% of silicon dioxide (SiO 2), aluminum oxide (Al 2 O 3) a raw material containing 10-1000 ppm. Of these raw materials, the total amount of bismuth oxide (Bi 2 O 3 ) and antimony oxide (Sb 2 O 3 ) and zinc oxide (ZnO) 0.1 to 1.0 mol% were prepared (step 100) to form a calcined raw material, The mixture is pulverized and sized with a ball mill or the like (step 101), calcined in an oxidizing atmosphere within a temperature range of 700 to 1000 ° C. (step 102), and pulverized and sized with a ball mill or the like (step 103).

そして、この仮焼原料と、その他の原料を加えて原料調合する(ステップ104)。そして、ボールミル等で粉砕し粒を揃え(ステップ105)、PVB、可塑剤、離型材、希釈溶剤を加えスラリーを作製する(ステップ106)。この際、α−オレフィンと無水マレイン酸の共重合体からなる分散剤(例えば、共栄社化学(株)のフローレンG700)を0.5〜3wt%添加する。α−オレフィンと無水マレイン酸の共重合体からなる分散剤を用いることで、特に分散の効率が上がり、スラリーにおいて、材料の組成が均一に分散し、材料の粒径が揃っている状態を形成できる。   Then, the calcined raw material and other raw materials are added to prepare a raw material (step 104). And it grind | pulverizes with a ball mill etc. and arranges a grain (step 105), PVB, a plasticizer, a mold release material, and a dilution solvent are added, and a slurry is produced (step 106). At this time, 0.5 to 3 wt% of a dispersant composed of a copolymer of α-olefin and maleic anhydride (for example, Floren G700 from Kyoeisha Chemical Co., Ltd.) is added. By using a dispersant composed of a copolymer of α-olefin and maleic anhydride, the efficiency of dispersion is particularly improved, and in the slurry, the composition of the material is uniformly dispersed, and the material has a uniform particle size. it can.

次に、ドクターブレードにて成膜し、厚さが10〜100μm程度のグリーンシートを作製する(ステップ107)。該グリーンシートに、白金(Pt)もしくはパラジウム(Pd)ペーストパターンを印刷して内部電極パターンを形成し、ホットプレス等で積層する(ステップ108)。そして、製品サイズ(5750サイズ等)に合わせて切断してグリーンチップを形成し(ステップ109)、500℃10時間で脱バインダーを行い(ステップ110)、950〜1300℃で焼成を行う(ステップ111)。焼成に際して、400℃/hr〜1000℃/hrの昇温速度で、上記所定温度まで昇温させる。そして、2〜10時間所定温度でキープし、その後常温に放置して冷却する。   Next, a film is formed with a doctor blade to produce a green sheet having a thickness of about 10 to 100 μm (step 107). A platinum (Pt) or palladium (Pd) paste pattern is printed on the green sheet to form an internal electrode pattern, which is laminated by hot pressing or the like (step 108). And it cuts according to product size (5750 size etc.), forms a green chip (step 109), debinders at 500 degreeC for 10 hours (step 110), and bakes at 950-1300 degreeC (step 111) ). At the time of firing, the temperature is raised to the predetermined temperature at a temperature rising rate of 400 ° C./hr to 1000 ° C./hr. Then, it is kept at a predetermined temperature for 2 to 10 hours, and is then allowed to cool to room temperature.

さらに、700℃でアニールを行い(ステップ112)、端子電極(外部電極)を銀(Ag)もしくは銀/パラジウム(Ag/Pd)ペーストを塗布し、焼成することで形成する(ステップ113)。そして、端子電極にニッケル(Ni)層、スズ(Sn)層の順にメッキを施し(ステップ114)、バリスタ電圧、漏れ電流等の電気的特性を検測し(ステップ115)、完成品となる。   Further, annealing is performed at 700 ° C. (step 112), and a terminal electrode (external electrode) is formed by applying silver (Ag) or silver / palladium (Ag / Pd) paste and baking (step 113). Then, the terminal electrode is plated in the order of a nickel (Ni) layer and a tin (Sn) layer (step 114), and electrical characteristics such as varistor voltage and leakage current are measured (step 115), and a finished product is obtained.

上記製造工程で製作されたバリスタは、Bi2O3-Sb2O3混合物にZnOを添加し、仮焼後主原料に添加することで、低制限電圧化を達成でき、10〜1000ppmの範囲でAl2O3を添加することで、ZnOの比抵抗を下げ熱拡散効率を向上させ、高インパルス耐量化が図れ、400℃/hr以上の高速燒結とα−オレフィンと無水マレイン酸の共重合体からなる分散剤を用いることで、分散剤および高速昇温による焼結性の効果が最大限に発揮され、基本性能のバラツキが小さいことに加え、サージ耐量、エネルギー耐量といった回路保護機能が格段に向上した酸化亜鉛積層チップバリスタが得られる。 The varistor manufactured in the above manufacturing process can achieve low voltage limit by adding ZnO to the Bi 2 O 3 -Sb 2 O 3 mixture and adding it to the main raw material after calcination, and the range of 10 to 1000 ppm By adding Al 2 O 3 in this step, the specific resistance of ZnO is reduced, the thermal diffusion efficiency is improved, the impulse resistance is increased, the high-speed sintering of 400 ° C / hr or more, the co-polymerization of α-olefin and maleic anhydride By using a dispersant made of coalescence, the effect of sinterability due to the dispersant and high-speed temperature rise is maximized, and in addition to small variations in basic performance, circuit protection functions such as surge withstand capability and energy withstand capability are outstanding. An improved zinc oxide multilayer chip varistor can be obtained.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことはいうまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

酸化亜鉛積層チップバリスタの断面図である。It is sectional drawing of a zinc oxide laminated chip varistor. 本発明の一実施形態の酸化亜鉛積層チップバリスタの製造方法のフロー図である。It is a flowchart of the manufacturing method of the zinc oxide multilayer chip varistor of one Embodiment of this invention.

符号の説明Explanation of symbols

10 酸化亜鉛積層チップバリスタ
11 バリスタ焼結体
12a,12b 内部電極
13a,13b 外部電極
10 Zinc Oxide Chip Chip Varistor 11 Varistor Sintered Body 12a, 12b Internal Electrode 13a, 13b External Electrode

Claims (3)

酸化亜鉛と、酸化ビスマスと、酸化アンチモンと、酸化コバルトまたは酸化マンガンの少なくとも何れかと、酸化クロムと、ホウ酸と、二酸化ケイ素と、酸化アルミニウムと、を含むバリスタ原料を準備し、
上記バリスタ原料に希釈溶剤と分散剤を加えてスラリーを作成し、
上記スラリーを用いてグリーンシートを作成し、
上記グリーンシートを積層してグリーンチップを作成し、
上記グリーンチップを、所定温度まで加熱して焼成する酸化亜鉛積層チップバリスタの製造方法であって、
上記分散剤は、α−オレフィンと無水マレイン酸の共重合体を使用し、
上記焼成は、500℃/hr以上の昇温速度で、上記所定温度まで昇温させることを特徴とする酸化亜鉛積層チップバリスタの製造方法。
Preparing a varistor raw material containing zinc oxide, bismuth oxide, antimony oxide, at least one of cobalt oxide or manganese oxide, chromium oxide, boric acid, silicon dioxide, and aluminum oxide;
Add slurry and dispersant to the varistor raw material to make a slurry,
Create a green sheet using the slurry,
A green chip is made by laminating the above green sheets,
A method for producing a zinc oxide laminated chip varistor, wherein the green chip is heated to a predetermined temperature and fired,
The dispersant uses a copolymer of α-olefin and maleic anhydride,
The method for producing a zinc oxide laminated chip varistor, characterized in that the firing is performed at a temperature elevation rate of 500 ° C./hr or higher up to the predetermined temperature.
上記バリスタ原料のうち、酸化ビスマスおよび酸化アンチモンの全量と、酸化亜鉛の少なくとも一部を予め仮焼きすることを特徴とする請求項に記載の酸化亜鉛積層チップバリスタの製造方法。 Among the varistor material, manufacturing method of the zinc oxide laminated chip varistor according to claim 1, wherein the total amount of bismuth oxide and antimony oxide, to advance calcining at least a portion of the zinc oxide. 上記バリスタ原料は、酸化亜鉛100mol%と、これに対する外掛け量で、酸化ビスマス0.1〜1.5mol%と、酸化アンチモン0.01〜2.0mol%と、酸化コバルトまたは酸化マンガンの少なくとも何れか0.1〜1.5mol%と、酸化クロム0.01〜2.0mol%と、ホウ酸0.1〜1.0mol%と、二酸化ケイ素0.1〜1.0mol%と、酸化アルミニウム10〜1000ppmと、を含むことを特徴とする請求項1または2に記載の酸化亜鉛積層チップバリスタの製造方法。 The varistor raw material is zinc oxide 100 mol%, and the amount of this applied is at least one of bismuth oxide 0.1 to 1.5 mol%, antimony oxide 0.01 to 2.0 mol%, and cobalt oxide or manganese oxide. 0.1 to 1.5 mol%, chromium oxide 0.01 to 2.0 mol%, boric acid 0.1 to 1.0 mol%, silicon dioxide 0.1 to 1.0 mol%, and aluminum oxide 10 The manufacturing method of the zinc oxide multilayer chip varistor according to claim 1 or 2 , characterized by comprising -1000 ppm.
JP2008113291A 2008-04-24 2008-04-24 Manufacturing method of zinc oxide laminated chip varistor Expired - Fee Related JP5282332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008113291A JP5282332B2 (en) 2008-04-24 2008-04-24 Manufacturing method of zinc oxide laminated chip varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113291A JP5282332B2 (en) 2008-04-24 2008-04-24 Manufacturing method of zinc oxide laminated chip varistor

Publications (2)

Publication Number Publication Date
JP2009266976A JP2009266976A (en) 2009-11-12
JP5282332B2 true JP5282332B2 (en) 2013-09-04

Family

ID=41392463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113291A Expired - Fee Related JP5282332B2 (en) 2008-04-24 2008-04-24 Manufacturing method of zinc oxide laminated chip varistor

Country Status (1)

Country Link
JP (1) JP5282332B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674317B2 (en) * 2010-01-13 2015-02-25 コーア株式会社 Zinc oxide varistor and method for producing the same
KR101948718B1 (en) * 2015-11-02 2019-02-18 한국전기연구원 Manufacturing Methods of ZnO Varistors With High Surge Energy Capability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544736B2 (en) * 1987-04-22 1996-10-16 株式会社クラレ Dispersant for fine ceramics
JPH02189904A (en) * 1989-01-18 1990-07-25 Murata Mfg Co Ltd Manufacture of varistor
JPH1197213A (en) * 1997-09-17 1999-04-09 Matsushita Electric Ind Co Ltd Manufacture of zno varistor device
JP2003109807A (en) * 2001-09-28 2003-04-11 Atsushi Iga Zinc oxide based sintered body and its manufacturing method and zinc oxide varistor

Also Published As

Publication number Publication date
JP2009266976A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
US9236170B2 (en) ZnO multilayer chip varistor with base metal inner electrodes and preparation method thereof
JP2008273818A (en) Voltage non-linear resistance ceramic composition and voltage non-linear resistance element
JP4618010B2 (en) Manufacturing method of ceramic electronic component
JP2023179653A (en) Varistor for high-temperature applications
JP2008277786A (en) Voltage non-linear resistance porcelain composition and voltage non-linear resistance element
JP2014133693A (en) Voltage non-linear resistive element ceramic composition and electronic component
JP5282332B2 (en) Manufacturing method of zinc oxide laminated chip varistor
JP5830715B2 (en) Multilayer varistor and manufacturing method thereof
JP2004022976A (en) Stacked voltage nonlinear resistor and method of manufacturing the same
JP2007005499A (en) Zinc oxide laminated varistor and its manufacturing method
JP2008100856A (en) Method for producing zinc oxide laminated chip varistor
JP5301852B2 (en) Multilayer chip varistor
JP4184172B2 (en) Voltage nonlinear resistor ceramic composition, electronic component and multilayer chip varistor
JP5833929B2 (en) Varistor ceramic, multilayer component including varistor ceramic, and method for producing varistor ceramic
JP4710560B2 (en) Manufacturing method of multilayer chip varistor
JP5674317B2 (en) Zinc oxide varistor and method for producing the same
JP5301853B2 (en) Zinc oxide chip varistor
KR101889678B1 (en) Zinc oxide varistor
JP2006245111A (en) Bismuth-based zinc oxide varistor
KR102666011B1 (en) ZnO-BASED VARISTOR COMPOSITION AND MANUFACTURING METHOD AND VARISTOR THEREOF
JP2625178B2 (en) Varistor manufacturing method
JP6937390B2 (en) Materials for current-voltage non-linear resistors, current-voltage non-linear resistors and their manufacturing methods
TWI384500B (en) Composition of varistors and process for manufacturing varistors made from the same
TWI447750B (en) Chip varistor containing rare-earth oxide sintered at lower temperature and method of making the same
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Ref document number: 5282332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees