JPH07176406A - Negative resistance temp. coefficient semiconductor ceramics, rush current-blocking element and motor start delaying element - Google Patents
Negative resistance temp. coefficient semiconductor ceramics, rush current-blocking element and motor start delaying elementInfo
- Publication number
- JPH07176406A JPH07176406A JP1172094A JP1172094A JPH07176406A JP H07176406 A JPH07176406 A JP H07176406A JP 1172094 A JP1172094 A JP 1172094A JP 1172094 A JP1172094 A JP 1172094A JP H07176406 A JPH07176406 A JP H07176406A
- Authority
- JP
- Japan
- Prior art keywords
- constant
- rare earth
- resistance
- sample
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、負の抵抗温度特性を有
する半導体磁器,及び該半導体磁器からなる突入電流防
止用素子,モーター起動遅延用素子に関し、詳細には定
常状態において、低抵抗でかつB定数が大きく、大電流
を流すことができるようにした組成物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor porcelain having a negative resistance temperature characteristic, an element for preventing inrush current and an element for delaying motor start-up, which are made of the semiconductor porcelain. In addition, the present invention relates to a composition having a large B constant and capable of passing a large current.
【0002】[0002]
【従来の技術】従来から、初期の過電流を防止する素子
として、温度上昇とともに抵抗値が減少する負の抵抗温
度特性を有する半導体磁器(NTC素子)が用いられて
いる。このNTC素子は室温での抵抗値が高いため、初
期の過電流を抑制し、その後、自己発熱により昇温して
低抵抗となり、定常状態では電力消費量が減少する。2. Description of the Related Art Conventionally, as an element for preventing an initial overcurrent, a semiconductor ceramic (NTC element) having a negative resistance temperature characteristic in which a resistance value decreases with an increase in temperature has been used. Since this NTC element has a high resistance value at room temperature, the initial overcurrent is suppressed, and thereafter, the temperature rises due to self-heating to a low resistance, and the power consumption decreases in the steady state.
【0003】例えばスイッチング電源では、スイッチを
入れた瞬間に過電流が流れることから、この初期の突入
電流を吸収する素子として、上記NTC素子が用いられ
ている。このNTC素子は上述のように室温での抵抗値
が高く、温度の上昇とともに抵抗値が低下する機能を有
していることから、スイッチがオンすると初期の突入電
流を抑制し、この後自己発熱により昇温して低抵抗とな
り、定常状態では電力消費量が減少する。For example, in a switching power supply, since an overcurrent flows at the moment the switch is turned on, the NTC element is used as an element for absorbing this initial inrush current. As described above, this NTC element has a high resistance value at room temperature and has a function of decreasing the resistance value as the temperature rises. Therefore, when the switch is turned on, the initial inrush current is suppressed, and then self-heating occurs. As a result, the temperature rises to a low resistance, and the power consumption decreases in the steady state.
【0004】また、例えばモータが起動して始めて潤滑
油の供給が開始されるように構成された歯車装置では、
駆動モーターで歯車装置を直ちに高速回転させると潤滑
油の供給が不充分となり、歯車が破損するおそれがあ
る。また砥石を回転させて磁器表面を研磨する場合に用
いられるラップ盤では、駆動モーターを起動した瞬間に
高速回転させると磁器が割れたりする場合がある。この
ような問題を回避するには、上記駆動モータの起動を一
定時間遅らせる必要があり、このようなモーター起動を
遅延させる素子として、上記NTC素子が用いられてい
る。このNTC素子により起動時にはモーター端子電圧
が低くなることから、モーターの起動を遅らせることが
できる。そして上述のように、この後自己発熱により昇
温して低抵抗となり、定常状態ではモーターは正常に回
転することとなる。Further, for example, in a gear device constructed so that the supply of the lubricating oil is started only after the motor is started,
If the drive motor immediately rotates the gear device at a high speed, the supply of the lubricating oil may be insufficient and the gear may be damaged. Further, in a lapping machine used when a grindstone is rotated to polish a porcelain surface, the porcelain may be broken when the drive motor is rotated at a high speed at the moment of starting. In order to avoid such a problem, it is necessary to delay the activation of the drive motor for a certain period of time, and the NTC element is used as an element that delays the activation of the motor. With this NTC element, the motor terminal voltage is lowered at the time of startup, so that the startup of the motor can be delayed. Then, as described above, after that, the temperature rises due to self-heating and the resistance becomes low, and in a steady state, the motor normally rotates.
【0005】[0005]
【発明が解決しようとする課題】ところで、上記NTC
素子を突入電流防止用素子,及びモーター起動遅延用素
子として用いる場合、自己発熱による昇温状態で抵抗値
が小さくならなければならない。しかしながら上記従来
のスピネル型構造を有する遷移金属酸化物を用いたNT
C素子では、温度上昇による抵抗減少割合(B定数)を
3200K以上にすることができないという問題があ
る。そのため、高温状態におけるNTC素子の抵抗値を
十分小さくすることができず定常状態における電力消費
量が大きくならざるを得なかった。高温状態における抵
抗値を十分に小さくするには、例えば、NTC素子が円
板状の場合はその径を大きくするか、肉厚を薄くすれば
よい。しかしこのような対応では、電子部品の小型化の
要求に逆行することになり、薄肉化も強度の面で限界が
ある。この点を改善するものとして、セラミック層間に
内部電極を介在させて積層体を形成し、これの側面に上
記内部電極が交互に電気接続される外部電極を形成して
なる積層型NTC素子がある。ところがこの積層型NT
C素子では、電極間が近すぎて初期の過電流(数A以
上)により破壊する場合がある。By the way, the above NTC
When the element is used as an element for preventing inrush current and an element for delaying motor start-up, the resistance value must be small in a temperature rising state due to self-heating. However, the NT using the transition metal oxide having the above conventional spinel structure is used.
The C element has a problem that the resistance decrease rate (B constant) due to temperature rise cannot be set to 3200K or more. Therefore, the resistance value of the NTC element in the high temperature state cannot be sufficiently reduced, and the power consumption in the steady state must be increased. In order to sufficiently reduce the resistance value in a high temperature state, for example, when the NTC element has a disc shape, its diameter may be increased or the wall thickness may be reduced. However, such a countermeasure goes against the demand for miniaturization of electronic components, and there is a limit in thinning the strength. In order to improve this point, there is a laminated NTC element in which an internal electrode is interposed between ceramic layers to form a laminated body, and an external electrode to which the internal electrodes are alternately electrically connected is formed on a side surface of the laminated body. . However, this laminated NT
In the C element, the electrodes may be too close to each other and may be destroyed by an initial overcurrent (several A or more).
【0006】一方、本件発明者らは、負の抵抗温度特性
を示す材料について鋭意検討したところ、希土類元素系
からなる酸化物について着目した。この希土類遷移元素
系酸化物は、温度上昇によりB定数が増加し、かつ抵抗
値も低くなるという特性を有している。この特性はV.
G.Bhide及びD.S.Rajoriaによる文献(Phys.Rev.
B6〔3 〕1021(1972)) 等に記載されている。On the other hand, the inventors of the present invention have made extensive studies on a material exhibiting a negative resistance temperature characteristic, and have paid attention to an oxide composed of a rare earth element system. This rare earth transition element-based oxide has the characteristics that the B constant increases and the resistance value decreases as the temperature rises. This characteristic is
G. Bhide and D. S. Reference by Rajoria (Phys. Rev.
B6 [3] 1021 (1972)) and the like.
【0007】しかしながら、上記希土類遷移元素系酸化
物は、従来のスピネル型構造を有する遷移金属酸化物と
比較して高温における抵抗値は低いが、B定数が小さ
く、実用的な値が得られない場合がある。However, the above-mentioned rare earth transition element-based oxide has a low resistance value at high temperature as compared with the conventional transition metal oxide having a spinel type structure, but has a small B constant, and a practical value cannot be obtained. There are cases.
【0008】本発明は上記した各問題を解決するために
なされたものであり、定常状態において、低比抵抗でか
つB定数が大きく、大電流を流すことができる負の抵抗
温度特性を有する半導体磁器及び該半導体磁器からなる
突入電流防止用素子,モーター起動遅延用素子を提供す
ることを目的としている。The present invention has been made to solve the above-mentioned problems, and in a steady state, a semiconductor having a low specific resistance, a large B constant, and a negative resistance-temperature characteristic capable of flowing a large current. It is an object of the present invention to provide an element for preventing inrush current and an element for delaying motor startup, which is made of a porcelain and a semiconductor porcelain.
【0009】[0009]
【課題を解決するための手段】そこで請求項1の発明
は、希土類遷移元素系酸化物(但し、希土類のうちCe
を除き、Yを含む)を主成分とし、これにSi,Zr,
Hf,Ta,Sn,Sb,W,Mo,Te,Ceのうち
少なくとも1種を添加してなることを特徴とする負の抵
抗温度抵抗特性を有する半導体磁器である。Therefore, the invention of claim 1 provides a rare earth transition element-based oxide (provided that among rare earth elements, Ce
Except Y, including Y) as the main component, and Si, Zr,
A semiconductor porcelain having a negative resistance-temperature resistance characteristic, characterized in that at least one of Hf, Ta, Sn, Sb, W, Mo, Te, and Ce is added.
【0010】請求項2の発明は、上記添加物が0.00
1〜10mol %であることを特徴としている。また請求
項3の発明は、上記希土類遷移元素系酸化物がLaCo
系酸化物であることを特徴としている。According to the invention of claim 2, the additive is 0.00
It is characterized in that it is 1 to 10 mol%. According to the invention of claim 3, the rare earth transition element-based oxide is LaCo.
It is characterized by being a system oxide.
【0011】請求項4の発明は、希土類遷移元素系酸化
物からなり、負の抵抗温度特性を示す半導体磁器からな
る突入電流防止用素子であり、請求項5の発明は、上記
半導体磁器からなるモーター起動遅延用素子であること
を特徴としている。A fourth aspect of the present invention is an inrush current preventing element comprising a rare earth transition element-based oxide and a semiconductor porcelain having a negative resistance temperature characteristic, and a fifth aspect of the invention comprises the semiconductor porcelain. The feature is that it is an element for delaying motor startup.
【0012】ここで、上記希土類遷移元素酸化物には、
LaCoO3 系,SmNiO3 ,あるいはNdCoO3
系等が採用でき、特に限定されるものではない。このう
ちLaCoO3 系を採用した場合は、温度上昇によるB
定数の増大が大きく、かつ高温での比抵抗が十分に小さ
いという実用的な特性が得られる。なお、上記希土類元
素のなかでCeについては、遷移金属との酸化物を得る
ことが困難であることから除外した。またYについて
は、希土類元素と同様の特性,効果が得られることから
本発明における希土類元素のグループに含めた。Here, the rare earth transition element oxide is
LaCoO 3 system, SmNiO 3 , or NdCoO 3
A system or the like can be adopted and is not particularly limited. Among them, when LaCoO 3 system is adopted, B due to temperature rise
Practical characteristics such as a large increase in the constant and a sufficiently small specific resistance at high temperature can be obtained. Among the above rare earth elements, Ce was excluded because it is difficult to obtain an oxide with a transition metal. Further, Y is included in the group of rare earth elements in the present invention because it has characteristics and effects similar to those of rare earth elements.
【0013】また、上記希土類遷移元素酸化物にSi,
Zr,Hf,Ta,Sn,Sb,W,Mo,Te,Ce
を0.001mol %以上添加することにより、高温での
比抵抗を低く係持したままB定数を大きくすることがで
き、実用的な値が得られる。この場合、添加量が10mo
l %を越えると高温でのB定数が従来のものより小さく
なる。このため添加量は0.001〜10mol %の範囲
が望ましい。In addition, the above rare earth transition element oxide may contain Si,
Zr, Hf, Ta, Sn, Sb, W, Mo, Te, Ce
By adding 0.001 mol% or more, the B constant can be increased while keeping the specific resistance at high temperature low, and a practical value can be obtained. In this case, the addition amount is 10mo
If it exceeds l%, the B constant at high temperature becomes smaller than that of the conventional one. Therefore, the addition amount is preferably in the range of 0.001 to 10 mol%.
【0014】さらに、上記希土類元素と遷移元素とのモ
ル比は1:1に限るものではなく変化させてもよい。こ
の場合、モル比を0.6〜1.1の範囲で変化させた場
合は1:1と同程度のB定数が得られるが、モル比が
0.6未満となったり,1.1を越えたりすると昇温状
態での抵抗値が小さくならず、このため定常状態での電
力消費量が増大し、大電流が流れる回路には使用できな
くなる場合がある。Further, the molar ratio of the rare earth element to the transition element is not limited to 1: 1 and may be changed. In this case, when the molar ratio is changed in the range of 0.6 to 1.1, a B constant similar to 1: 1 can be obtained, but the molar ratio becomes less than 0.6 or 1.1. If it exceeds the limit, the resistance value in the temperature rising state does not become small, so the power consumption in the steady state increases, and it may not be usable in a circuit in which a large current flows.
【0015】[0015]
【作用】本発明に係る負の抵抗温度特性を有する半導体
磁器によれば、希土類遷移元素系酸化物に上述の副成分
を添加したので、高温における抵抗値を低く保持したま
ま室温での比抵抗を高くすることができるので、B定数
が大きいNTC素子を得ることができる。したがって、
NTC素子を小型化した場合でも、昇温状態での抵抗値
を十分小さくでき、定常状態での電力消費量を低減で
き、しかも大電流が流れる回路にも適用することができ
る。従って、上記特性を有する半導体磁器を突入電流防
止用素子として採用することによって、スイッチング電
源等の大電流が流れる機器にも適用できる。また上記半
導体磁器をモーター起動遅延用素子として採用すること
によって、大電流が流れる駆動モーターにも対応でき
る。According to the semiconductor porcelain having the negative resistance-temperature characteristic according to the present invention, since the above-mentioned subcomponents are added to the rare earth transition element-based oxide, the specific resistance at room temperature while keeping the resistance value at high temperature low. Can be increased, so that an NTC element having a large B constant can be obtained. Therefore,
Even when the NTC element is downsized, the resistance value in the temperature rising state can be made sufficiently small, the power consumption in the steady state can be reduced, and it can be applied to a circuit in which a large current flows. Therefore, by adopting the semiconductor porcelain having the above characteristics as an inrush current prevention element, it can be applied to a device such as a switching power supply through which a large current flows. Further, by adopting the above-mentioned semiconductor porcelain as an element for delaying motor activation, it is possible to deal with a drive motor in which a large current flows.
【0016】[0016]
【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.
【0017】実施例1 この実施例は、希土類遷移系酸化物として、LaCoO
3 を採用し、これにZrを添加した例である。Example 1 In this example, LaCoO was used as a rare earth transition oxide.
In this example, 3 is adopted and Zr is added to this.
【0018】まず、Coに対するLaのモル比率が0.
95となるように、Co3 O4 とLa2 O3 の各粉末を
秤量した。First, the molar ratio of La to Co is 0.
Each powder of Co 3 O 4 and La 2 O 3 was weighed so as to be 95.
【0019】[0019]
【表1】 [Table 1]
【0020】この秤量した粉末に、表1に示すように、
Zrを0〜20mol %添加し、ナイロンボールを用いた
ボールミルで16時間湿式混合した。この後、脱水,乾
燥させて1000℃で2時間仮焼成した。この仮焼成し
た粉末をジェットミルで粉砕し、これにバインダを加え
て再度ナイロンボールを用いたボールミルで5時間湿式
混合し、次いでろ過,乾燥させた後、円板状に加圧成形
し、該成形体を大気中にて1400℃で2時間焼成して
焼結体を得た。次に、この焼結体の両主面に白金ペース
トをスクリーン印刷した後、1000℃で2時間焼き付
けて電極を形成した。これにより本実施例の各試料を製
造した。As shown in Table 1, the weighed powder was
Zr was added in an amount of 0 to 20 mol% and wet-mixed for 16 hours in a ball mill using nylon balls. Then, it was dehydrated, dried, and calcined at 1000 ° C. for 2 hours. The calcined powder was pulverized with a jet mill, a binder was added to the powder, the mixture was wet-mixed again with a ball mill using nylon balls for 5 hours, filtered, dried, and then pressure-molded into a disc shape. The molded body was fired in air at 1400 ° C. for 2 hours to obtain a sintered body. Next, platinum paste was screen-printed on both main surfaces of this sintered body and then baked at 1000 ° C. for 2 hours to form electrodes. This produced each sample of this example.
【0021】このようにして得られた各試料(試料No.
1−1〜1−8)について、比抵抗(ρ)及びB定数の
各電気特性を測定した。なお、表1において*印は本願
請求項の範囲外である。ここで、上記比抵抗(ρ)は2
5℃において測定した値である。また、B定数は温度を
T、比抵抗をρ、自然対数をInとすると、 B(T)=〔Inρ(T0 )−Inρ(T)〕/(1/T0 −1/T) で定義される定数であり、温度による抵抗変化を示す。
この数値が大きいほど温度による抵抗変化が大きい。ま
た、表中、B定数(−10℃),B定数(140℃)は
それぞれ以下のように定めた。 B定数(−10℃) =〔Inρ(-10℃) −Inρ(25
℃)〕/〔1/(−10+273.15) −1/(25 +273.5)〕 B定数(140 ℃) =〔Inρ(25 ℃) −Inρ(140
℃) 〕/〔1/(25+273.15) −1/(140 +273.5)〕Each sample thus obtained (Sample No.
Regarding 1-1 to 1-8), the electrical properties of the specific resistance (ρ) and the B constant were measured. In Table 1, the mark * is outside the scope of the claims of the present application. Here, the specific resistance (ρ) is 2
It is a value measured at 5 ° C. Further, the B constant is expressed as B (T) = [Inρ (T 0 ) −Inρ (T)] / (1 / T 0 −1 / T) where T is temperature, ρ is specific resistance, and In is natural logarithm. It is a constant that is defined and indicates the resistance change with temperature.
The larger this value, the larger the resistance change with temperature. In the table, the B constant (-10 ° C) and the B constant (140 ° C) are defined as follows. B constant (-10 ° C) = [Inρ (-10 ° C) -Inρ (25
℃)] / [1 / (-10 + 273.15) -1 / (25 +273.5)] B constant (140 ℃) = [Inρ (25 ℃) -Inρ (140
℃)] / [1 / (25 + 273.15) -1 / (140 + 273.5)]
【0022】表1からも明らかなように、主成分のLa
CoO3 にZrを0.001〜10mol %の範囲で添加
することによって、比抵抗は11.1〜19.8Ω・c
mと低く、−10℃のB定数は1220〜2620K
で、140℃のB定数は3020〜4730Kと満足で
きる値が得られていることがわかる。As is clear from Table 1, the main component La
By adding Zr to CoO 3 in the range of 0.001 to 10 mol%, the specific resistance is 11.1 to 19.8 Ω · c.
As low as m, B constant at -10 ° C is 1220-2620K
It can be seen that the B constant at 140 ° C. is 3020 to 4730K, which is a satisfactory value.
【0023】図1及び図2は、本実施例試料の繰り返し
通電試験を行った結果を示す。この試験は、Zr量を1
mol %とした試料(表1のNo. 1−6参照)を採用し
た。図1は、25℃において、上記試料をスイッチング
電源に直列接続し、電源投入時のスイッチング電源電流
の時間変化を測定した結果を示す。また、図2は、繰り
返し通電試験の回数と25℃における抵抗値との関係を
示す。この繰り返し通電試験は、上記試料に1分間電流
を通電した後、30分間電源をオフし、25℃に冷却す
るという工程を1サイクルとした。FIG. 1 and FIG. 2 show the results of repeated current-carrying tests of the samples of this example. This test uses a Zr content of 1
A sample (see No. 1-6 in Table 1) having mol% was used. FIG. 1 shows the results of measuring the time change of the switching power supply current when the power supply was turned on by serially connecting the above sample to the switching power supply at 25 ° C. FIG. 2 shows the relationship between the number of repeated energization tests and the resistance value at 25 ° C. In this repeated energization test, one cycle was a step of energizing the sample for 1 minute, then turning off the power for 30 minutes and cooling to 25 ° C.
【0024】各図からも明らかなように、1回から10
000回行っても特性の変化は全く認められなかった。
また100個の試料に20A,100時間連続して通電
して実用試験を行ったが、何れの試料も破壊することは
なく、大電流にも適用できることが確認できた。As is clear from each figure, once to 10 times
No change in properties was observed even after 000 times.
In addition, 100 samples were continuously energized at 20 A for 100 hours to carry out a practical test, but it was confirmed that none of the samples was destroyed and that it could be applied to a large current.
【0025】実施例2 本実施例は、希土類遷移系酸化物として、上記実施例1
と同様のLaCoO3を採用し、これに表2に示すよう
に、Si,Mo,Sn,Sb,Te,Hf,Ta,W,
Ceをそれぞれ所定量添加した。また表3に示すよう
に、上記LaCoO3 に、Zr−Mo,Zr−Sn,Z
r−Sn−W,Zr−Mo−Ceをそれぞれ所定量添加
した。そして上記実施例1と同様の製造方法により本実
施例の各試料を作成し、各試料の比抵抗(ρ)及びB定
数の各電気特性を測定した。Example 2 This example is the same as Example 1 except that the rare earth transition oxide is used.
The same LaCoO 3 is adopted, and as shown in Table 2, Si, Mo, Sn, Sb, Te, Hf, Ta, W,
Ce was added in a predetermined amount. Also as shown in Table 3, in the LaCoO 3, Zr-Mo, Zr -Sn, Z
A predetermined amount of each of r-Sn-W and Zr-Mo-Ce was added. Then, each sample of this example was prepared by the same manufacturing method as in Example 1 above, and the electrical properties of the specific resistance (ρ) and B constant of each sample were measured.
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【表3】 [Table 3]
【0028】表2及び表3からも明らかなように、何れ
の試料(試料No. 1−9〜1−21)においても、比抵
抗は16.2〜20.5Ω・cmと低く、−10℃のB
定数は1820〜2630Kで、140℃のB定数は4
290〜4680Kと満足できる値が得られている。As is clear from Tables 2 and 3, in any of the samples (Sample Nos. 1-9 to 1-21), the specific resistance was as low as 16.2 to 20.5 Ω · cm and -10. B of ℃
The constant is 1820 to 2630K, and the B constant at 140 ° C is 4
A satisfactory value of 290 to 4680K is obtained.
【0029】実施例3 本実施例は、希土類遷移系酸化物としてLaCrO3 を
採用し、これのCrに対するLaのモル比率が0.95
となるように、La3 O3 とCr2 O3 の各粉末を秤量
した。この秤量した粉末に、表4に示すように、Zr,
Mo,Sb,Hf,Ta,Ce,及びSb−Hf,Zr
−Ta,Sn−Ce,Si−Mo−Wをそれぞれ所定量
添加した。そして上記実施例1と同様の製造方法により
本実施例の各試料を作成し、各試料の比抵抗(ρ)及び
B定数の各電気特性を測定した。Example 3 In this example, LaCrO 3 was used as a rare earth transition oxide, and the molar ratio of La to Cr was 0.95.
The powders of La 3 O 3 and Cr 2 O 3 were weighed so that As shown in Table 4, Zr,
Mo, Sb, Hf, Ta, Ce, and Sb-Hf, Zr
-Ta, Sn-Ce, and Si-Mo-W were added in predetermined amounts. Then, each sample of this example was prepared by the same manufacturing method as in Example 1 above, and the electrical properties of the specific resistance (ρ) and B constant of each sample were measured.
【0030】[0030]
【表4】 [Table 4]
【0031】表4からも明らかなように、何れの試料
(試料No. 2−1〜2−10)においても、比抵抗は1
6.1〜20.0Ω・cmと低く、−10℃のB定数は
2420〜2710Kで、140℃のB定数は3870
〜4320Kと満足できる値が得られている。As is clear from Table 4, in any of the samples (Sample Nos. 2-1 to 2-10), the specific resistance is 1
It is as low as 6.1 to 20.0 Ω · cm, the B constant at −10 ° C. is 2420 to 2710 K, and the B constant at 140 ° C. is 3870.
A satisfactory value of 4320K is obtained.
【0032】実施例4 本実施例は、希土類遷移系酸化物としてSmNiO3 を
採用し、これのNiに対するSmのモル比率が0.95
となるように、Sm2 O3 とNiOの各粉末を秤量し
た。この秤量した粉末に、表5に示すように、Zr,M
o,Sb,Hf,Ta,W及びSb−Ce,Zr−T
a,Sn−W,Si−Mo−Wをそれぞれ所定量添加し
た。そして上記実施例1と同様の製造方法により本実施
例の各試料を作成し、各試料の比抵抗(ρ)及びB定数
の各電気特性を測定した。Example 4 In this example, SmNiO 3 was used as a rare earth transition oxide, and the molar ratio of Sm to Ni was 0.95.
Each powder of Sm 2 O 3 and NiO was weighed so that As shown in Table 5, Zr, M
o, Sb, Hf, Ta, W and Sb-Ce, Zr-T
A predetermined amount of each of a, Sn-W, and Si-Mo-W was added. Then, each sample of this example was prepared by the same manufacturing method as in Example 1 above, and the electrical properties of the specific resistance (ρ) and B constant of each sample were measured.
【0033】[0033]
【表5】 [Table 5]
【0034】表5からも明らかなように、何れの試料
(試料No. 3−1〜3−10)においても、比抵抗は1
2.0〜15.0Ω・cmと低く、−10℃のB定数は
2060〜2410Kで、140℃のB定数は3620
〜3990Kと満足できる値が得られている。As is clear from Table 5, in any of the samples (Sample Nos. 3-1 to 3-10), the specific resistance is 1
It is as low as 2.0 to 15.0 Ω · cm, the B constant at −10 ° C. is 2060 to 2410 K, and the B constant at 140 ° C. is 3620.
A satisfactory value of ~ 3990K is obtained.
【0035】実施例5 本実施例は、希土類遷移系酸化物としてNdNiO3 を
採用し、これのNiに対するNdのモル比率が0.95
となるように、Nd2 O3 とNiOの各粉末を秤量し
た。この秤量した粉末に、表6に示すように、Si,Z
r,Mo,Sn,Sb,Ce及びSi−Sn,Zr−
W,Mo−Ta,Zr−Sn−Taをそれぞれ所定量添
加した。そして上記実施例1と同様の製造方法により本
実施例の各試料を作成し、各試料の比抵抗(ρ)及びB
定数の各電気特性を測定した。Example 5 In this example, NdNiO 3 was used as the rare earth transition oxide, and the molar ratio of Nd to Ni was 0.95.
Each powder of Nd 2 O 3 and NiO was weighed so that As shown in Table 6, Si, Z was added to the weighed powder.
r, Mo, Sn, Sb, Ce and Si-Sn, Zr-
Each of W, Mo-Ta, and Zr-Sn-Ta was added in a predetermined amount. Then, each sample of this example was prepared by the same manufacturing method as in Example 1, and the specific resistance (ρ) and B of each sample were
Each constant electrical property was measured.
【0036】[0036]
【表6】 [Table 6]
【0037】表6からも明らかなように、何れの試料
(試料No. 4−1〜4−10)においても、比抵抗は2
2.6〜25.9Ω・cmと低く、−10℃のB定数は
1970〜2240Kで、140℃のB定数は3710
〜3930Kと満足できる値が得られている。As is clear from Table 6, in any of the samples (Sample Nos. 4-1 to 4-10), the specific resistance was 2
It is as low as 2.6 to 25.9 Ω · cm, the B constant at -10 ° C is 1970 to 2240K, and the B constant at 140 ° C is 3710.
A satisfactory value of ~ 3930K is obtained.
【0038】実施例6 本実施例は、希土類遷移系酸化物としてPrNiO3 を
採用し、これのNiに対するPrのモル比率が0.95
となるように、Pr6 O11とNiOの各粉末を秤量し
た。この秤量した粉末に、表7に示すように、Zr,M
o,Sb,Te,Ta,W及びZr−Hf,Zr−W,
Mo−Sb,Sb−Hf−Wをそれぞれ所定量添加し
た。そして上記実施例1と同様の製造方法により本実施
例の各試料を作成し、各試料の比抵抗(ρ)及びB定数
の各電気特性を測定した。Example 6 In this example, PrNiO 3 was used as a rare earth transition oxide, and the molar ratio of Pr to Ni was 0.95.
Each powder of Pr 6 O 11 and NiO was weighed so that As shown in Table 7, Zr, M
o, Sb, Te, Ta, W and Zr-Hf, Zr-W,
Mo-Sb and Sb-Hf-W were added in predetermined amounts. Then, each sample of this example was prepared by the same manufacturing method as in Example 1 above, and the electrical properties of the specific resistance (ρ) and B constant of each sample were measured.
【0039】[0039]
【表7】 [Table 7]
【0040】表7からも明らかなように、何れの試料
(試料No. 5−1〜5−10)においても、比抵抗は
8.9〜12.0Ω・cmと低く、−10℃のB定数は
1960〜2210Kで、140℃のB定数は3590
〜3820Kと満足できる値が得られている。As is clear from Table 7, in any of the samples (Sample Nos. 5-1 to 5-10), the specific resistance was as low as 8.9 to 12.0 Ω · cm, and the B of -10 ° C was obtained. The constant is 1960 to 2210K, and the B constant at 140 ° C is 3590.
A satisfactory value of up to 3820K is obtained.
【0041】実施例7 本実施例は、希土類遷移系酸化物としてLa0.9 Nd
0.1 CoO3 を採用し、該La0.9 Nd0.1 CoO3 半
導体磁器が得られるようにLa2 O3 ,Nd2 O 3 及び
Co3 O4 の各粉末を秤量した。この秤量した粉末に、
表8に示すように、Zr,Sb,W及びSi−Hf,Z
r−Mo−Taをそれぞれ所定量添加した。そして上記
実施例1と同様の製造方法により本実施例の各試料を作
成し、各試料の比抵抗(ρ)及びB定数の各電気特性を
測定した。Example 7 In this example, La was used as a rare earth transition oxide.0.9Nd
0.1CoO3And the La0.9Nd0.1CoO3Half
La so that conductor porcelain can be obtained2O3, Nd2O 3as well as
Co3OFourEach powder was weighed. To this weighed powder,
As shown in Table 8, Zr, Sb, W and Si-Hf, Z
A predetermined amount of each of r-Mo-Ta was added. And above
Each sample of this example was prepared by the same manufacturing method as in Example 1.
The electrical resistance of each sample (ρ) and B constant
It was measured.
【0042】[0042]
【表8】 [Table 8]
【0043】表8からも明らかなように、何れの試料
(試料No. 6−1〜6−5)においても、比抵抗は2
4.0〜26.4Ω・cmと低く、−10℃のB定数は
1720〜1910Kで、140℃のB定数は3540
〜3690Kと満足できる値が得られている。As is clear from Table 8, in any of the samples (Sample Nos. 6-1 to 6-5), the specific resistance was 2
Low as 4.0-26.4 Ω · cm, B constant at -10 ° C is 1720-1910K, and B constant at 140 ° C is 3540.
A satisfactory value of ˜3690K is obtained.
【0044】実施例8 本実施例は、希土類遷移系酸化物としてLa0.9 Gd
0.1 CoO3 を採用し、該La0.9 Gd0.1 CoO3 半
導体磁器が得られるようにLa2 O3 ,Gd2 O 3 及び
Co3 O4 の各粉末を秤量した。この秤量した粉末に、
表9に示すように、Sn,Ta,Ce及びZr−Mo,
Zr−Te−Hfをそれぞれ所定量添加した。そして上
記実施例1と同様の製造方法により本実施例の各試料を
作成し、各試料の比抵抗(ρ)及びB定数の各電気特性
を測定した。Example 8 In this example, La is used as a rare earth transition oxide.0.9Gd
0.1CoO3And the La0.9Gd0.1CoO3Half
La so that conductor porcelain can be obtained2O3, Gd2O 3as well as
Co3OFourEach powder was weighed. To this weighed powder,
As shown in Table 9, Sn, Ta, Ce and Zr-Mo,
Zr-Te-Hf was added in a predetermined amount. And above
Each sample of this example was manufactured by the same manufacturing method as in Example 1.
Electrical characteristics of resistivity (ρ) and B constant of each sample created
Was measured.
【0045】[0045]
【表9】 [Table 9]
【0046】表9からも明らかなように、何れの試料
(試料No. 7−1〜7−5)においても、比抵抗は2
1.9〜23.7Ω・cmと低く、−10℃のB定数は
1840〜2020Kで、140℃のB定数は3650
〜3860Kと満足できる値が得られている。As is apparent from Table 9, in any of the samples (Sample Nos. 7-1 to 7-5), the specific resistance was 2
Low as 1.9 to 23.7 Ω · cm, B constant at −10 ° C. is 1840 to 2020K, and B constant at 140 ° C. is 3650.
A satisfactory value of ~ 3860K is obtained.
【0047】実施例9 本実施例は、希土類遷移系酸化物としてLa0.99Y0.01
MnO3 を採用し、該La0.99Y0.01MnO3 半導体磁
器が得られるようにLa2 O3 ,Y2 O3 及びMnOの
各粉末を秤量した。この秤量した粉末に、表10に示す
ように、Sn,Mo,W及びSb−Ta,Zr−Sb−
Moをそれぞれ所定量添加した。そして上記実施例1と
同様の製造方法により本実施例の各試料を作成し、各試
料の比抵抗(ρ)及びB定数の各電気特性を測定した。Example 9 In this example, La 0.99 Y 0.01 was used as a rare earth transition oxide.
MnO 3 was adopted, and each powder of La 2 O 3 , Y 2 O 3 and MnO was weighed so that the La 0.99 Y 0.01 MnO 3 semiconductor ceramic was obtained. As shown in Table 10, Sn, Mo, W and Sb-Ta, Zr-Sb- were added to the weighed powder.
A predetermined amount of Mo was added to each. Then, each sample of this example was prepared by the same manufacturing method as in Example 1 above, and the electrical properties of the specific resistance (ρ) and B constant of each sample were measured.
【0048】[0048]
【表10】 [Table 10]
【0049】表10からも明らかなように、何れの試料
(試料No. 8−1〜8−5)においても、比抵抗は1
9.7〜21.5Ω・cmと低く、−10℃のB定数は
2190〜2290Kで、140℃のB定数は3820
〜3970Kと満足できる値が得られている。As is clear from Table 10, in any of the samples (Sample Nos. 8-1 to 8-5), the specific resistance was 1
Low as 9.7 to 21.5 Ω · cm, B constant at -10 ° C is 2190 to 2290K, and B constant at 140 ° C is 3820.
A satisfactory value of -3970K is obtained.
【0050】なお、上記各実施例1〜9では、LaCo
O3 系,LaCrO3 系,SmNiO3 系,NdNiO
3 系,PrNiO3 系の各酸化物について説明したが、
本発明はこれに限られるものではなくその他の希土類遷
移系酸化物についても同様の効果が得られる。In each of the above Examples 1 to 9, LaCo is used.
O 3 system, LaCrO 3 system, SmNiO 3 system, NdNiO
The 3 type and PrNiO 3 type oxides have been explained.
The present invention is not limited to this, and similar effects can be obtained with other rare earth transition oxides.
【0051】[0051]
【発明の効果】以上のように、本発明に係る負の抵抗温
度特性を有する半導体磁器及び該磁器からなる突入電流
防止用素子並びにそれからなるモーター起動遅延用素子
によれば、希土類遷移元素系酸化物に、Si,Zr,H
f,Ta,Sn,Sb,W,Mo,Te,Ceのうち少
なくとも1種を添加したので、室温付近での比抵抗を小
さくすることができるとともに、かつ高温でのB定数が
大きい素子を得ることができる。したがって、昇温状態
での抵抗値を十分小さくでき、定常状態での電力消費量
を低減できる効果があるとともに、大電流が流れる回路
にも適用できる効果がある。As described above, according to the semiconductor porcelain having the negative resistance temperature characteristic, the inrush current preventing element including the porcelain, and the motor starting delay element including the same according to the present invention, rare earth element transition element-based oxidation is achieved. For objects, Si, Zr, H
Since at least one of f, Ta, Sn, Sb, W, Mo, Te, and Ce is added, it is possible to reduce the specific resistance near room temperature and obtain a device having a large B constant at high temperature. be able to. Therefore, the resistance value in the temperature rising state can be made sufficiently small, the power consumption in the steady state can be reduced, and the effect can be applied to a circuit in which a large current flows.
【図1】25℃において、スイッチング電源にNTC素
子を直列接続し、電源投入時のスイッチング電源電流の
時間変化を測定した結果を示す特性図である。FIG. 1 is a characteristic diagram showing a result of measuring a time change of a switching power supply current when a power supply is turned on by connecting an NTC element in series to a switching power supply at 25 ° C.
【図2】繰り返し通常試験の回数と25℃の抵抗値の関
係を示す特性図である。FIG. 2 is a characteristic diagram showing the relationship between the number of repeated normal tests and the resistance value at 25 ° C.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年2月4日[Submission date] February 4, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【書類名】 明細書[Document name] Statement
【発明の名称】 負の抵抗温度特性を有する半導体磁器
及びそれからなる突入電流防止用素子並びにそれからな
るモーター起動遅延用素子Title: Semiconductor porcelain having negative resistance temperature characteristics, inrush current prevention element formed of the same, and motor start delay element formed of the same
【特許請求の範囲】[Claims]
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は、負の抵抗温度特性を有
する半導体磁器,及び該半導体磁器からなる突入電流防
止用素子,モーター起動遅延用素子に関し、詳細には定
常状態において、低抵抗でかつB定数が大きく、大電流
を流すことができるようにした組成物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor porcelain having a negative resistance temperature characteristic, an element for preventing inrush current and an element for delaying motor start-up, which are made of the semiconductor porcelain. In addition, the present invention relates to a composition having a large B constant and capable of passing a large current.
【0002】[0002]
【従来の技術】従来から、初期の過電流を防止する素子
として、温度上昇とともに抵抗値が減少する負の抵抗温
度特性を有する半導体磁器(NTC素子)が用いられて
いる。このNTC素子は室温での抵抗値が高いため、初
期の過電流を抑制し、その後、自己発熱により昇温して
低抵抗となり、定常状態では電力消費量が減少する。2. Description of the Related Art Conventionally, as an element for preventing an initial overcurrent, a semiconductor ceramic (NTC element) having a negative resistance temperature characteristic in which a resistance value decreases with an increase in temperature has been used. Since this NTC element has a high resistance value at room temperature, the initial overcurrent is suppressed, and thereafter, the temperature rises due to self-heating to a low resistance, and the power consumption decreases in the steady state.
【0003】例えばスイッチング電源では、スイッチを
入れた瞬間に過電流が流れることから、この初期の突入
電流を吸収する素子として、上記NTC素子が用いられ
ている。このNTC素子は上述のように室温での抵抗値
が高く、温度の上昇とともに抵抗値が低下する機能を有
していることから、スイッチがオンすると初期の突入電
流を抑制し、この後自己発熱により昇温して低抵抗とな
り、定常状態では電力消費量が減少する。For example, in a switching power supply, since an overcurrent flows at the moment the switch is turned on, the NTC element is used as an element for absorbing this initial inrush current. As described above, this NTC element has a high resistance value at room temperature and has a function of decreasing the resistance value as the temperature rises. Therefore, when the switch is turned on, the initial inrush current is suppressed, and then self-heating occurs. As a result, the temperature rises to a low resistance, and the power consumption decreases in the steady state.
【0004】また、例えばモータが起動して始めて潤滑
油の供給が開始されるように構成された歯車装置では、
駆動モーターで歯車装置を直ちに高速回転させると潤滑
油の供給が不充分となり、歯車が破損するおそれがあ
る。また砥石を回転させて磁器表面を研磨する場合に用
いられるラップ盤では、駆動モーターを起動した瞬間に
高速回転させると磁器が割れたりする場合がある。この
ような問題を回避するには、上記駆動モータの起動を一
定時間遅らせる必要があり、このようなモーター起動を
遅延させる素子として、上記NTC素子が用いられてい
る。このNTC素子により起動時にはモーター端子電圧
が低くなることから、モーターの起動を遅らせることが
できる。そして上述のように、この後自己発熱により昇
温して低抵抗となり、定常状態ではモーターは正常に回
転することとなる。Further, for example, in a gear device constructed so that the supply of the lubricating oil is started only after the motor is started,
If the drive motor immediately rotates the gear device at a high speed, the supply of the lubricating oil may be insufficient and the gear may be damaged. Further, in a lapping machine used when a grindstone is rotated to polish a porcelain surface, the porcelain may be broken when the drive motor is rotated at a high speed at the moment of starting. In order to avoid such a problem, it is necessary to delay the activation of the drive motor for a certain period of time, and the NTC element is used as an element that delays the activation of the motor. With this NTC element, the motor terminal voltage is lowered at the time of startup, so that the startup of the motor can be delayed. Then, as described above, after that, the temperature rises due to self-heating and the resistance becomes low, and in a steady state, the motor normally rotates.
【0005】[0005]
【発明が解決しようとする課題】ところで、上記NTC
素子を突入電流防止用素子,及びモーター起動遅延用素
子として用いる場合、自己発熱による昇温状態で抵抗値
が小さくならなければならない。しかしながら上記従来
のスピネル型構造を有する遷移金属酸化物を用いたNT
C素子では、温度上昇による抵抗減少割合(B定数)を
3200K以上にすることができないという問題があ
る。そのため、高温状態におけるNTC素子の抵抗値を
十分小さくすることができず定常状態における電力消費
量が大きくならざるを得なかった。高温状態における抵
抗値を十分に小さくするには、例えば、NTC素子が円
板状の場合はその径を大きくするか、肉厚を薄くすれば
よい。しかしこのような対応では、電子部品の小型化の
要求に逆行することになり、薄肉化も強度の面で限界が
ある。この点を改善するものとして、セラミック層間に
内部電極を介在させて積層体を形成し、これの側面に上
記内部電極が交互に電気接続される外部電極を形成して
なる積層型NTC素子がある。ところがこの積層型NT
C素子では、電極間が近すぎて初期の過電流(数A以
上)により破壊する場合がある。By the way, the above NTC
When the element is used as an element for preventing inrush current and an element for delaying motor start-up, the resistance value must be small in a temperature rising state due to self-heating. However, the NT using the transition metal oxide having the above conventional spinel structure is used.
The C element has a problem that the resistance decrease rate (B constant) due to temperature rise cannot be set to 3200K or more. Therefore, the resistance value of the NTC element in the high temperature state cannot be sufficiently reduced, and the power consumption in the steady state must be increased. In order to sufficiently reduce the resistance value in a high temperature state, for example, when the NTC element has a disc shape, its diameter may be increased or the wall thickness may be reduced. However, such a countermeasure goes against the demand for miniaturization of electronic components, and there is a limit in thinning the strength. In order to improve this point, there is a laminated NTC element in which an internal electrode is interposed between ceramic layers to form a laminated body, and an external electrode to which the internal electrodes are alternately electrically connected is formed on a side surface of the laminated body. . However, this laminated NT
In the C element, the electrodes may be too close to each other and may be destroyed by an initial overcurrent (several A or more).
【0006】一方、本件発明者らは、負の抵抗温度特性
を示す材料について鋭意検討したところ、希土類元素系
からなる酸化物について着目した。この希土類遷移元素
系酸化物は、温度上昇によりB定数が増加し、かつ抵抗
値も低くなるという特性を有している。この特性はV.
G.Bhide及びD.S.Rajoriaによる文献(Phys.Rev.
B6〔3 〕1021(1972)) 等に記載されている。On the other hand, the inventors of the present invention have made extensive studies on a material exhibiting a negative resistance temperature characteristic, and have paid attention to an oxide composed of a rare earth element system. This rare earth transition element-based oxide has the characteristics that the B constant increases and the resistance value decreases as the temperature rises. This characteristic is
G. Bhide and D. S. Reference by Rajoria (Phys. Rev.
B6 [3] 1021 (1972)) and the like.
【0007】しかしながら、上記希土類遷移元素系酸化
物は、従来のスピネル型構造を有する遷移金属酸化物と
比較して高温における抵抗値は低いが、B定数が小さ
く、実用的な値が得られない場合がある。However, the above-mentioned rare earth transition element-based oxide has a low resistance value at high temperature as compared with the conventional transition metal oxide having a spinel type structure, but has a small B constant, and a practical value cannot be obtained. There are cases.
【0008】本発明は上記した各問題を解決するために
なされたものであり、定常状態において、低比抵抗でか
つB定数が大きく、大電流を流すことができる負の抵抗
温度特性を有する半導体磁器及び該半導体磁器からなる
突入電流防止用素子,モーター起動遅延用素子を提供す
ることを目的としている。The present invention has been made to solve the above-mentioned problems, and in a steady state, a semiconductor having a low specific resistance, a large B constant, and a negative resistance-temperature characteristic capable of flowing a large current. It is an object of the present invention to provide an element for preventing inrush current and an element for delaying motor startup, which is made of a porcelain and a semiconductor porcelain.
【0009】[0009]
【課題を解決するための手段】そこで請求項1の発明
は、希土類遷移元素系酸化物(但し、希土類のうちCe
を除き、Yを含む)を主成分とし、これにSi,Zr,
Hf,Ta,Sn,Sb,W,Mo,Te,Ceのうち
少なくとも1種を添加してなることを特徴とする負の抵
抗温度抵抗特性を有する半導体磁器である。Therefore, the invention of claim 1 provides a rare earth transition element-based oxide (provided that among rare earth elements, Ce
Except Y, including Y) as the main component, and Si, Zr,
A semiconductor porcelain having a negative resistance-temperature resistance characteristic, characterized in that at least one of Hf, Ta, Sn, Sb, W, Mo, Te, and Ce is added.
【0010】請求項2の発明は、上記添加物が0.00
1〜10mol %であることを特徴としている。また請求
項3の発明は、上記希土類遷移元素系酸化物がLaCo
系酸化物であることを特徴としている。According to the invention of claim 2, the additive is 0.00
It is characterized in that it is 1 to 10 mol%. According to the invention of claim 3, the rare earth transition element-based oxide is LaCo.
It is characterized by being a system oxide.
【0011】請求項4の発明は、希土類遷移元素系酸化
物からなり、負の抵抗温度特性を示す半導体磁器からな
る突入電流防止用素子であり、請求項5の発明は、上記
半導体磁器からなるモーター起動遅延用素子であること
を特徴としている。A fourth aspect of the present invention is an inrush current preventing element comprising a rare earth transition element-based oxide and a semiconductor porcelain having a negative resistance temperature characteristic, and a fifth aspect of the invention comprises the semiconductor porcelain. The feature is that it is an element for delaying motor startup.
【0012】ここで、上記希土類遷移元素酸化物には、
LaCoO3 系,SmNiO3 ,あるいはNdCoO3
系等が採用でき、特に限定されるものではない。このう
ちLaCoO3 系を採用した場合は、温度上昇によるB
定数の増大が大きく、かつ高温での比抵抗が十分に小さ
いという実用的な特性が得られる。なお、上記希土類元
素のなかでCeについては、遷移金属との酸化物を得る
ことが困難であることから除外した。またYについて
は、希土類元素と同様の特性,効果が得られることから
本発明における希土類元素のグループに含めた。Here, the rare earth transition element oxide is
LaCoO 3 system, SmNiO 3 , or NdCoO 3
A system or the like can be adopted and is not particularly limited. Among them, when LaCoO 3 system is adopted, B due to temperature rise
Practical characteristics such as a large increase in the constant and a sufficiently small specific resistance at high temperature can be obtained. Among the above rare earth elements, Ce was excluded because it is difficult to obtain an oxide with a transition metal. Further, Y is included in the group of rare earth elements in the present invention because it has characteristics and effects similar to those of rare earth elements.
【0013】また、上記希土類遷移元素酸化物にSi,
Zr,Hf,Ta,Sn,Sb,W,Mo,Te,Ce
を0.001mol %以上添加することにより、高温での
比抵抗を低く係持したままB定数を大きくすることがで
き、実用的な値が得られる。この場合、添加量が10mo
l %を越えると高温でのB定数が従来のものより小さく
なる。このため添加量は0.001〜10mol %の範囲
が望ましい。In addition, the above rare earth transition element oxide may contain Si,
Zr, Hf, Ta, Sn, Sb, W, Mo, Te, Ce
By adding 0.001 mol% or more, the B constant can be increased while keeping the specific resistance at high temperature low, and a practical value can be obtained. In this case, the addition amount is 10mo
If it exceeds l%, the B constant at high temperature becomes smaller than that of the conventional one. Therefore, the addition amount is preferably in the range of 0.001 to 10 mol%.
【0014】さらに、上記希土類元素と遷移元素とのモ
ル比は1:1に限るものではなく変化させてもよい。こ
の場合、モル比を0.6〜1.1の範囲で変化させた場
合は1:1と同程度のB定数が得られるが、モル比が
0.6未満となったり,1.1を越えたりすると昇温状
態での抵抗値が小さくならず、このため定常状態での電
力消費量が増大し、大電流が流れる回路には使用できな
くなる場合がある。Further, the molar ratio of the rare earth element to the transition element is not limited to 1: 1 and may be changed. In this case, when the molar ratio is changed in the range of 0.6 to 1.1, a B constant similar to 1: 1 can be obtained, but the molar ratio becomes less than 0.6 or 1.1. If it exceeds the limit, the resistance value in the temperature rising state does not become small, so the power consumption in the steady state increases, and it may not be usable in a circuit in which a large current flows.
【0015】[0015]
【作用】本発明に係る負の抵抗温度特性を有する半導体
磁器によれば、希土類遷移元素系酸化物に上述の副成分
を添加したので、高温における抵抗値を低く保持したま
ま室温での比抵抗を高くすることができるので、B定数
が大きいNTC素子を得ることができる。したがって、
NTC素子を小型化した場合でも、昇温状態での抵抗値
を十分小さくでき、定常状態での電力消費量を低減で
き、しかも大電流が流れる回路にも適用することができ
る。従って、上記特性を有する半導体磁器を突入電流防
止用素子として採用することによって、スイッチング電
源等の大電流が流れる機器にも適用できる。また上記半
導体磁器をモーター起動遅延用素子として採用すること
によって、大電流が流れる駆動モーターにも対応でき
る。According to the semiconductor porcelain having the negative resistance-temperature characteristic according to the present invention, since the above-mentioned subcomponents are added to the rare earth transition element-based oxide, the specific resistance at room temperature while keeping the resistance value at high temperature low. Can be increased, so that an NTC element having a large B constant can be obtained. Therefore,
Even when the NTC element is downsized, the resistance value in the temperature rising state can be made sufficiently small, the power consumption in the steady state can be reduced, and it can be applied to a circuit in which a large current flows. Therefore, by adopting the semiconductor porcelain having the above characteristics as an inrush current prevention element, it can be applied to a device such as a switching power supply through which a large current flows. Further, by adopting the above-mentioned semiconductor porcelain as an element for delaying motor activation, it is possible to deal with a drive motor in which a large current flows.
【0016】[0016]
【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.
【0017】実施例1 この実施例は、希土類遷移系酸化物として、LaCoO
3 を採用し、これにZrを添加した例である。Example 1 In this example, LaCoO was used as a rare earth transition oxide.
In this example, 3 is adopted and Zr is added to this.
【0018】まず、Coに対するLaのモル比率が0.
95となるように、Co3 O4 とLa2 O3 の各粉末を
秤量した。First, the molar ratio of La to Co is 0.
Each powder of Co 3 O 4 and La 2 O 3 was weighed so as to be 95.
【0019】[0019]
【表1】 [Table 1]
【0020】この秤量した粉末に、表1に示すように、
Zrを0〜20mol %添加し、ナイロンボールを用いた
ボールミルで16時間湿式混合した。この後、脱水,乾
燥させて1000℃で2時間仮焼成した。この仮焼成し
た粉末をジェットミルで粉砕し、これにバインダを加え
て再度ナイロンボールを用いたボールミルで5時間湿式
混合し、次いでろ過,乾燥させた後、円板状に加圧成形
し、該成形体を大気中にて1400℃で2時間焼成して
焼結体を得た。次に、この焼結体の両主面に白金ペース
トをスクリーン印刷した後、1000℃で2時間焼き付
けて電極を形成した。これにより本実施例の各試料を製
造した。As shown in Table 1, the weighed powder was
Zr was added in an amount of 0 to 20 mol% and wet-mixed for 16 hours in a ball mill using nylon balls. Then, it was dehydrated, dried, and calcined at 1000 ° C. for 2 hours. The calcined powder was pulverized with a jet mill, a binder was added to the powder, the mixture was wet-mixed again with a ball mill using nylon balls for 5 hours, filtered, dried, and then pressure-molded into a disc shape. The molded body was fired in air at 1400 ° C. for 2 hours to obtain a sintered body. Next, platinum paste was screen-printed on both main surfaces of this sintered body and then baked at 1000 ° C. for 2 hours to form electrodes. This produced each sample of this example.
【0021】このようにして得られた各試料(試料No.
1−1〜1−8)について、比抵抗(ρ)及びB定数の
各電気特性を測定した。なお、表1において*印は本願
請求項の範囲外である。ここで、上記比抵抗(ρ)は2
5℃において測定した値である。また、B定数は温度を
T、比抵抗をρ、自然対数をInとすると、 B(T)=〔Inρ(T0 )−Inρ(T)〕/(1/T0 −1/T) で定義される定数であり、温度による抵抗変化を示す。
この数値が大きいほど温度による抵抗変化が大きい。ま
た、表中、B定数(−10℃),B定数(140℃)は
それぞれ以下のように定めた。 B定数(−10℃) =〔Inρ(-10℃) −Inρ(25
℃)〕/〔1/(−10+273.15) −1/(25 +273.5)〕 B定数(140 ℃) =〔Inρ(25 ℃) −Inρ(140
℃) 〕/〔1/(25+273.15) −1/(140 +273.5)〕Each sample thus obtained (Sample No.
Regarding 1-1 to 1-8), the electrical properties of the specific resistance (ρ) and the B constant were measured. In Table 1, the mark * is outside the scope of the claims of the present application. Here, the specific resistance (ρ) is 2
It is a value measured at 5 ° C. Further, the B constant is expressed as B (T) = [Inρ (T 0 ) −Inρ (T)] / (1 / T 0 −1 / T) where T is temperature, ρ is specific resistance, and In is natural logarithm. It is a constant that is defined and indicates the resistance change with temperature.
The larger this value, the larger the resistance change with temperature. In the table, the B constant (-10 ° C) and the B constant (140 ° C) are defined as follows. B constant (-10 ° C) = [Inρ (-10 ° C) -Inρ (25
℃)] / [1 / (-10 + 273.15) -1 / (25 +273.5)] B constant (140 ℃) = [Inρ (25 ℃) -Inρ (140
℃)] / [1 / (25 + 273.15) -1 / (140 + 273.5)]
【0022】表1からも明らかなように、主成分のLa
CoO3 にZrを0.001〜10mol %の範囲で添加
することによって、比抵抗は11.1〜19.8Ω・c
mと低く、−10℃のB定数は1220〜2620K
で、140℃のB定数は3020〜4730Kと満足で
きる値が得られていることがわかる。As is clear from Table 1, the main component La
By adding Zr to CoO 3 in the range of 0.001 to 10 mol%, the specific resistance is 11.1 to 19.8 Ω · c.
As low as m, B constant at -10 ° C is 1220-2620K
It can be seen that the B constant at 140 ° C. is 3020 to 4730K, which is a satisfactory value.
【0023】図1及び図2は、本実施例試料の繰り返し
通電試験を行った結果を示す。この試験は、Zr量を1
mol %とした試料(表1のNo. 1−6参照)を採用し
た。図1は、25℃において、上記試料をスイッチング
電源に直列接続し、電源投入時のスイッチング電源電流
の時間変化を測定した結果を示す。また、図2は、繰り
返し通電試験の回数と25℃における抵抗値との関係を
示す。この繰り返し通電試験は、上記試料に1分間電流
を通電した後、30分間電源をオフし、25℃に冷却す
るという工程を1サイクルとした。FIG. 1 and FIG. 2 show the results of repeated current-carrying tests of the samples of this example. This test uses a Zr content of 1
A sample (see No. 1-6 in Table 1) having mol% was used. FIG. 1 shows the results of measuring the time change of the switching power supply current when the power supply was turned on by serially connecting the above sample to the switching power supply at 25 ° C. FIG. 2 shows the relationship between the number of repeated energization tests and the resistance value at 25 ° C. In this repeated energization test, one cycle was a step of energizing the sample for 1 minute, then turning off the power for 30 minutes and cooling to 25 ° C.
【0024】各図からも明らかなように、1回から10
000回行っても特性の変化は全く認められなかった。
また100個の試料に20A,100時間連続して通電
して実用試験を行ったが、何れの試料も破壊することは
なく、大電流にも適用できることが確認できた。As is clear from each figure, once to 10 times
No change in properties was observed even after 000 times.
In addition, 100 samples were continuously energized at 20 A for 100 hours to carry out a practical test, but it was confirmed that none of the samples was destroyed and that it could be applied to a large current.
【0025】実施例2 本実施例は、希土類遷移系酸化物として、上記実施例1
と同様のLaCoO3を採用し、これに表2に示すよう
に、Si,Mo,Sn,Sb,Te,Hf,Ta,W,
Ceをそれぞれ所定量添加した。また表3に示すよう
に、上記LaCoO3 に、Zr−Mo,Zr−Sn,Z
r−Sn−W,Zr−Mo−Ceをそれぞれ所定量添加
した。そして上記実施例1と同様の製造方法により本実
施例の各試料を作成し、各試料の比抵抗(ρ)及びB定
数の各電気特性を測定した。Example 2 This example is the same as Example 1 except that the rare earth transition oxide is used.
The same LaCoO 3 is adopted, and as shown in Table 2, Si, Mo, Sn, Sb, Te, Hf, Ta, W,
Ce was added in a predetermined amount. Also as shown in Table 3, in the LaCoO 3, Zr-Mo, Zr -Sn, Z
A predetermined amount of each of r-Sn-W and Zr-Mo-Ce was added. Then, each sample of this example was prepared by the same manufacturing method as in Example 1 above, and the electrical properties of the specific resistance (ρ) and B constant of each sample were measured.
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【表3】 [Table 3]
【0028】表2及び表3からも明らかなように、何れ
の試料(試料No. 1−9〜1−21)においても、比抵
抗は16.2〜20.5Ω・cmと低く、−10℃のB
定数は1820〜2630Kで、140℃のB定数は4
290〜4680Kと満足できる値が得られている。As is clear from Tables 2 and 3, in any of the samples (Sample Nos. 1-9 to 1-21), the specific resistance was as low as 16.2 to 20.5 Ω · cm and -10. B of ℃
The constant is 1820 to 2630K, and the B constant at 140 ° C is 4
A satisfactory value of 290 to 4680K is obtained.
【0029】実施例3 本実施例は、希土類遷移系酸化物としてLaCrO3 を
採用し、これのCrに対するLaのモル比率が0.95
となるように、La3 O3 とCr2 O3 の各粉末を秤量
した。この秤量した粉末に、表4に示すように、Zr,
Mo,Sb,Hf,Ta,Ce,及びSb−Hf,Zr
−Ta,Sn−Ce,Si−Mo−Wをそれぞれ所定量
添加した。そして上記実施例1と同様の製造方法により
本実施例の各試料を作成し、各試料の比抵抗(ρ)及び
B定数の各電気特性を測定した。Example 3 In this example, LaCrO 3 was used as a rare earth transition oxide, and the molar ratio of La to Cr was 0.95.
The powders of La 3 O 3 and Cr 2 O 3 were weighed so that As shown in Table 4, Zr,
Mo, Sb, Hf, Ta, Ce, and Sb-Hf, Zr
-Ta, Sn-Ce, and Si-Mo-W were added in predetermined amounts. Then, each sample of this example was prepared by the same manufacturing method as in Example 1 above, and the electrical properties of the specific resistance (ρ) and B constant of each sample were measured.
【0030】[0030]
【表4】 [Table 4]
【0031】表4からも明らかなように、何れの試料
(試料No. 2−1〜2−10)においても、比抵抗は1
6.1〜20.0Ω・cmと低く、−10℃のB定数は
2420〜2710Kで、140℃のB定数は3870
〜4320Kと満足できる値が得られている。As is clear from Table 4, in any of the samples (Sample Nos. 2-1 to 2-10), the specific resistance is 1
It is as low as 6.1 to 20.0 Ω · cm, the B constant at −10 ° C. is 2420 to 2710 K, and the B constant at 140 ° C. is 3870.
A satisfactory value of 4320K is obtained.
【0032】実施例4 本実施例は、希土類遷移系酸化物としてSmNiO3 を
採用し、これのNiに対するSmのモル比率が0.95
となるように、Sm2 O3 とNiOの各粉末を秤量し
た。この秤量した粉末に、表5に示すように、Zr,M
o,Sb,Hf,Ta,W及びSb−Ce,Zr−T
a,Sn−W,Si−Mo−Wをそれぞれ所定量添加し
た。そして上記実施例1と同様の製造方法により本実施
例の各試料を作成し、各試料の比抵抗(ρ)及びB定数
の各電気特性を測定した。Example 4 In this example, SmNiO 3 was used as a rare earth transition oxide, and the molar ratio of Sm to Ni was 0.95.
Each powder of Sm 2 O 3 and NiO was weighed so that As shown in Table 5, Zr, M
o, Sb, Hf, Ta, W and Sb-Ce, Zr-T
A predetermined amount of each of a, Sn-W, and Si-Mo-W was added. Then, each sample of this example was prepared by the same manufacturing method as in Example 1 above, and the electrical properties of the specific resistance (ρ) and B constant of each sample were measured.
【0033】[0033]
【表5】 [Table 5]
【0034】表5からも明らかなように、何れの試料
(試料No. 3−1〜3−10)においても、比抵抗は1
2.0〜15.0Ω・cmと低く、−10℃のB定数は
2060〜2410Kで、140℃のB定数は3620
〜3990Kと満足できる値が得られている。As is clear from Table 5, in any of the samples (Sample Nos. 3-1 to 3-10), the specific resistance is 1
It is as low as 2.0 to 15.0 Ω · cm, the B constant at −10 ° C. is 2060 to 2410 K, and the B constant at 140 ° C. is 3620.
A satisfactory value of ~ 3990K is obtained.
【0035】実施例5 本実施例は、希土類遷移系酸化物としてNdNiO3 を
採用し、これのNiに対するNdのモル比率が0.95
となるように、Nd2 O3 とNiOの各粉末を秤量し
た。この秤量した粉末に、表6に示すように、Si,Z
r,Mo,Sn,Sb,Ce及びSi−Sn,Zr−
W,Mo−Ta,Zr−Sn−Taをそれぞれ所定量添
加した。そして上記実施例1と同様の製造方法により本
実施例の各試料を作成し、各試料の比抵抗(ρ)及びB
定数の各電気特性を測定した。Example 5 In this example, NdNiO 3 was used as the rare earth transition oxide, and the molar ratio of Nd to Ni was 0.95.
Each powder of Nd 2 O 3 and NiO was weighed so that As shown in Table 6, Si, Z was added to the weighed powder.
r, Mo, Sn, Sb, Ce and Si-Sn, Zr-
Each of W, Mo-Ta, and Zr-Sn-Ta was added in a predetermined amount. Then, each sample of this example was prepared by the same manufacturing method as in Example 1, and the specific resistance (ρ) and B of each sample were
Each constant electrical property was measured.
【0036】[0036]
【表6】 [Table 6]
【0037】表6からも明らかなように、何れの試料
(試料No. 4−1〜4−10)においても、比抵抗は2
2.6〜25.9Ω・cmと低く、−10℃のB定数は
1970〜2240Kで、140℃のB定数は3710
〜3930Kと満足できる値が得られている。As is clear from Table 6, in any of the samples (Sample Nos. 4-1 to 4-10), the specific resistance was 2
It is as low as 2.6 to 25.9 Ω · cm, the B constant at -10 ° C is 1970 to 2240K, and the B constant at 140 ° C is 3710.
A satisfactory value of ~ 3930K is obtained.
【0038】実施例6 本実施例は、希土類遷移系酸化物としてPrNiO3 を
採用し、これのNiに対するPrのモル比率が0.95
となるように、Pr6 O11とNiOの各粉末を秤量し
た。この秤量した粉末に、表7に示すように、Zr,M
o,Sb,Te,Ta,W及びZr−Hf,Zr−W,
Mo−Sb,Sb−Hf−Wをそれぞれ所定量添加し
た。そして上記実施例1と同様の製造方法により本実施
例の各試料を作成し、各試料の比抵抗(ρ)及びB定数
の各電気特性を測定した。Example 6 In this example, PrNiO 3 was used as a rare earth transition oxide, and the molar ratio of Pr to Ni was 0.95.
Each powder of Pr 6 O 11 and NiO was weighed so that As shown in Table 7, Zr, M
o, Sb, Te, Ta, W and Zr-Hf, Zr-W,
Mo-Sb and Sb-Hf-W were added in predetermined amounts. Then, each sample of this example was prepared by the same manufacturing method as in Example 1 above, and the electrical properties of the specific resistance (ρ) and B constant of each sample were measured.
【0039】[0039]
【表7】 [Table 7]
【0040】表7からも明らかなように、何れの試料
(試料No. 5−1〜5−10)においても、比抵抗は
8.9〜12.0Ω・cmと低く、−10℃のB定数は
1960〜2210Kで、140℃のB定数は3590
〜3820Kと満足できる値が得られている。As is clear from Table 7, in any of the samples (Sample Nos. 5-1 to 5-10), the specific resistance was as low as 8.9 to 12.0 Ω · cm, and the B of -10 ° C was obtained. The constant is 1960 to 2210K, and the B constant at 140 ° C is 3590.
A satisfactory value of up to 3820K is obtained.
【0041】実施例7 本実施例は、希土類遷移系酸化物としてLa0.9 Nd
0.1 CoO3 を採用し、該La0.9 Nd0.1 CoO3 半
導体磁器が得られるようにLa2 O3 ,Nd2 O 3 及び
Co3 O4 の各粉末を秤量した。この秤量した粉末に、
表8に示すように、Zr,Sb,W及びSi−Hf,Z
r−Mo−Taをそれぞれ所定量添加した。そして上記
実施例1と同様の製造方法により本実施例の各試料を作
成し、各試料の比抵抗(ρ)及びB定数の各電気特性を
測定した。Example 7 In this example, La was used as a rare earth transition oxide.0.9Nd
0.1CoO3And the La0.9Nd0.1CoO3Half
La so that conductor porcelain can be obtained2O3, Nd2O 3as well as
Co3OFourEach powder was weighed. To this weighed powder,
As shown in Table 8, Zr, Sb, W and Si-Hf, Z
A predetermined amount of each of r-Mo-Ta was added. And above
Each sample of this example was prepared by the same manufacturing method as in Example 1.
The electrical resistance of each sample (ρ) and B constant
It was measured.
【0042】[0042]
【表8】 [Table 8]
【0043】表8からも明らかなように、何れの試料
(試料No. 6−1〜6−5)においても、比抵抗は2
4.0〜26.4Ω・cmと低く、−10℃のB定数は
1720〜1910Kで、140℃のB定数は3540
〜3690Kと満足できる値が得られている。As is clear from Table 8, in any of the samples (Sample Nos. 6-1 to 6-5), the specific resistance was 2
Low as 4.0-26.4 Ω · cm, B constant at -10 ° C is 1720-1910K, and B constant at 140 ° C is 3540.
A satisfactory value of ˜3690K is obtained.
【0044】実施例8 本実施例は、希土類遷移系酸化物としてLa0.9 Gd
0.1 CoO3 を採用し、該La0.9 Gd0.1 CoO3 半
導体磁器が得られるようにLa2 O3 ,Gd2 O 3 及び
Co3 O4 の各粉末を秤量した。この秤量した粉末に、
表9に示すように、Sn,Ta,Ce及びZr−Mo,
Zr−Te−Hfをそれぞれ所定量添加した。そして上
記実施例1と同様の製造方法により本実施例の各試料を
作成し、各試料の比抵抗(ρ)及びB定数の各電気特性
を測定した。Example 8 In this example, La is used as a rare earth transition oxide.0.9Gd
0.1CoO3And the La0.9Gd0.1CoO3Half
La so that conductor porcelain can be obtained2O3, Gd2O 3as well as
Co3OFourEach powder was weighed. To this weighed powder,
As shown in Table 9, Sn, Ta, Ce and Zr-Mo,
Zr-Te-Hf was added in a predetermined amount. And above
Each sample of this example was manufactured by the same manufacturing method as in Example 1.
Electrical characteristics of resistivity (ρ) and B constant of each sample created
Was measured.
【0045】[0045]
【表9】 [Table 9]
【0046】表9からも明らかなように、何れの試料
(試料No. 7−1〜7−5)においても、比抵抗は2
1.9〜23.7Ω・cmと低く、−10℃のB定数は
1840〜2020Kで、140℃のB定数は3650
〜3860Kと満足できる値が得られている。As is apparent from Table 9, in any of the samples (Sample Nos. 7-1 to 7-5), the specific resistance was 2
Low as 1.9 to 23.7 Ω · cm, B constant at −10 ° C. is 1840 to 2020K, and B constant at 140 ° C. is 3650.
A satisfactory value of ~ 3860K is obtained.
【0047】実施例9 本実施例は、希土類遷移系酸化物としてLa0.99Y0.01
MnO3 を採用し、該La0.99Y0.01MnO3 半導体磁
器が得られるようにLa2 O3 ,Y2 O3 及びMnOの
各粉末を秤量した。この秤量した粉末に、表10に示す
ように、Sn,Mo,W及びSb−Ta,Zr−Sb−
Moをそれぞれ所定量添加した。そして上記実施例1と
同様の製造方法により本実施例の各試料を作成し、各試
料の比抵抗(ρ)及びB定数の各電気特性を測定した。Example 9 In this example, La 0.99 Y 0.01 was used as a rare earth transition oxide.
MnO 3 was adopted, and each powder of La 2 O 3 , Y 2 O 3 and MnO was weighed so that the La 0.99 Y 0.01 MnO 3 semiconductor ceramic was obtained. As shown in Table 10, Sn, Mo, W and Sb-Ta, Zr-Sb- were added to the weighed powder.
A predetermined amount of Mo was added to each. Then, each sample of this example was prepared by the same manufacturing method as in Example 1 above, and the electrical properties of the specific resistance (ρ) and B constant of each sample were measured.
【0048】[0048]
【表10】 [Table 10]
【0049】表10からも明らかなように、何れの試料
(試料No. 8−1〜8−5)においても、比抵抗は1
9.7〜21.5Ω・cmと低く、−10℃のB定数は
2190〜2290Kで、140℃のB定数は3820
〜3970Kと満足できる値が得られている。As is clear from Table 10, in any of the samples (Sample Nos. 8-1 to 8-5), the specific resistance was 1
Low as 9.7 to 21.5 Ω · cm, B constant at -10 ° C is 2190 to 2290K, and B constant at 140 ° C is 3820.
A satisfactory value of -3970K is obtained.
【0050】なお、上記各実施例1〜9では、LaCo
O3 系,LaCrO3 系,SmNiO3 系,NdNiO
3 系,PrNiO3 系の各酸化物について説明したが、
本発明はこれに限られるものではなくその他の希土類遷
移系酸化物についても同様の効果が得られる。In each of the above Examples 1 to 9, LaCo is used.
O 3 system, LaCrO 3 system, SmNiO 3 system, NdNiO
The 3 type and PrNiO 3 type oxides have been explained.
The present invention is not limited to this, and similar effects can be obtained with other rare earth transition oxides.
【0051】[0051]
【発明の効果】以上のように、本発明に係る負の抵抗温
度特性を有する半導体磁器及び該磁器からなる突入電流
防止用素子並びにそれからなるモーター起動遅延用素子
によれば、希土類遷移元素系酸化物に、Si,Zr,H
f,Ta,Sn,Sb,W,Mo,Te,Ceのうち少
なくとも1種を添加したので、室温付近での比抵抗を小
さくすることができるとともに、かつ高温でのB定数が
大きい素子を得ることができる。したがって、昇温状態
での抵抗値を十分小さくでき、定常状態での電力消費量
を低減できる効果があるとともに、大電流が流れる回路
にも適用できる効果がある。As described above, according to the semiconductor porcelain having the negative resistance temperature characteristic, the inrush current preventing element including the porcelain, and the motor start delay element including the same according to the present invention, the rare earth transition element-based oxide is used. For objects, Si, Zr, H
Since at least one of f, Ta, Sn, Sb, W, Mo, Te, and Ce is added, it is possible to reduce the specific resistance near room temperature and obtain a device having a large B constant at high temperature. be able to. Therefore, the resistance value in the temperature rising state can be made sufficiently small, the power consumption in the steady state can be reduced, and the effect can be applied to a circuit in which a large current flows.
【図面の簡単な説明】[Brief description of drawings]
【図1】25℃において、スイッチング電源にNTC素
子を直列接続し、電源投入時のスイッチング電源電流の
時間変化を測定した結果を示す特性図である。FIG. 1 is a characteristic diagram showing a result of measuring a time change of a switching power supply current when a power supply is turned on by connecting an NTC element in series to a switching power supply at 25 ° C.
【図2】繰り返し通常試験の回数と25℃の抵抗値の関
係を示す特性図である。FIG. 2 is a characteristic diagram showing the relationship between the number of repeated normal tests and the resistance value at 25 ° C.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 橘高 敏彦 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 (72)発明者 鷹木 洋 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 (72)発明者 伴野 国三郎 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Tachibana 2 26-10 Tenjin, Nagaokakyo, Kyoto Prefecture Murata Manufacturing Co., Ltd. (72) Inventor Hiroshi Takagi 2 26-10 Tenjin, Nagaokakyo, Kyoto Stock Company Murata Manufacturing Co., Ltd. (72) Inventor, Kunizaburo Banno, 2 26-10 Tenjin Tenjin, Nagaokakyo City, Kyoto Murata Manufacturing Co., Ltd.
Claims (5)
のうちCeを除き、Yを含む)を主成分とし、これにS
i,Zr,Hf,Ta,Sn,Sb,W,Mo,Te,
Ceのうち少なくとも1種を添加してなることを特徴と
する負の抵抗温度抵抗特性を有する半導体磁器。1. A rare earth transition element-based oxide (provided that rare earth is Ce except Y and Y is contained) as a main component, and S is added thereto.
i, Zr, Hf, Ta, Sn, Sb, W, Mo, Te,
A semiconductor porcelain having negative resistance-temperature resistance characteristics, characterized in that at least one of Ce is added.
01〜10mol %であることを特徴とする負の抵抗温度
抵抗特性を有する半導体磁器。2. The additive according to claim 1, wherein the additive is 0.0
A semiconductor porcelain having a negative resistance-temperature resistance characteristic, characterized in that the content is 01 to 10 mol%.
移元素系酸化物がLaCo系酸化物であることを特徴と
する負の抵抗温度抵抗特性を有する半導体磁器。3. The semiconductor ceramic according to claim 1, wherein the rare earth transition element-based oxide is a LaCo-based oxide, which has negative resistance-temperature resistance characteristics.
抵抗温度特性を示す半導体磁器からなる突入電流防止用
素子。4. An element for preventing inrush current, which is made of a rare earth transition element-based oxide and is made of a semiconductor ceramic exhibiting a negative resistance temperature characteristic.
抵抗温度特性を示す半導体磁器からなるモーター起動遅
延用素子。5. An element for delaying motor start-up, which is made of a rare earth transition element-based oxide and is made of a semiconductor porcelain exhibiting negative resistance-temperature characteristics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1172094A JPH07176406A (en) | 1993-02-05 | 1994-02-03 | Negative resistance temp. coefficient semiconductor ceramics, rush current-blocking element and motor start delaying element |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1899793 | 1993-02-05 | ||
JP5-18997 | 1993-02-05 | ||
JP3832893 | 1993-02-26 | ||
JP5-275443 | 1993-11-04 | ||
JP27544393 | 1993-11-04 | ||
JP5-38328 | 1993-11-04 | ||
JP1172094A JPH07176406A (en) | 1993-02-05 | 1994-02-03 | Negative resistance temp. coefficient semiconductor ceramics, rush current-blocking element and motor start delaying element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07176406A true JPH07176406A (en) | 1995-07-14 |
Family
ID=27455664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1172094A Pending JPH07176406A (en) | 1993-02-05 | 1994-02-03 | Negative resistance temp. coefficient semiconductor ceramics, rush current-blocking element and motor start delaying element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07176406A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6090735A (en) * | 1997-10-08 | 2000-07-18 | Murata Manufacturing Co., Ltd. | Semiconductive ceramic composition and semiconductive ceramic element using the same |
JP2009173484A (en) * | 2008-01-23 | 2009-08-06 | Mitsubishi Materials Corp | Metal oxide sintered compact for thermistor, thermistor element, and method for producing metal oxide sintered compact for thermistor |
KR101220312B1 (en) * | 2012-06-28 | 2013-01-10 | 태성전장주식회사 | Ceramic composition for thermistor temperature sensor and thermistor element peepared by the composition |
-
1994
- 1994-02-03 JP JP1172094A patent/JPH07176406A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6090735A (en) * | 1997-10-08 | 2000-07-18 | Murata Manufacturing Co., Ltd. | Semiconductive ceramic composition and semiconductive ceramic element using the same |
JP2009173484A (en) * | 2008-01-23 | 2009-08-06 | Mitsubishi Materials Corp | Metal oxide sintered compact for thermistor, thermistor element, and method for producing metal oxide sintered compact for thermistor |
KR101220312B1 (en) * | 2012-06-28 | 2013-01-10 | 태성전장주식회사 | Ceramic composition for thermistor temperature sensor and thermistor element peepared by the composition |
WO2014003322A1 (en) * | 2012-06-28 | 2014-01-03 | 태성전장주식회사 | Ceramic composition for thermistor temperature sensors and thermistor device manufactured from said composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3319314B2 (en) | Barium titanate-based semiconductor porcelain composition | |
JP3286906B2 (en) | Semiconductor ceramic device with negative resistance-temperature characteristics | |
JP3687696B2 (en) | Semiconductor porcelain composition and semiconductor porcelain element using the same | |
JP3245984B2 (en) | Barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic and method of manufacturing the same | |
JP3996411B2 (en) | Composite NTC thermistor | |
EP0609888B1 (en) | Semiconductive ceramics having negative temperature coefficient of resistance | |
JPH07176406A (en) | Negative resistance temp. coefficient semiconductor ceramics, rush current-blocking element and motor start delaying element | |
JP2727626B2 (en) | Ceramic capacitor and method of manufacturing the same | |
JP3141719B2 (en) | Semiconductor ceramic having negative resistance-temperature characteristics and semiconductor ceramic parts using the same | |
EP1227507B1 (en) | Semiconductive ceramic composition and semiconductive ceramic element using the same | |
US6136741A (en) | Semiconducting ceramic, semiconducting ceramic element, and method for producing the semiconducting ceramic | |
JPH05283209A (en) | Laminated varistor | |
JP3334264B2 (en) | Semiconductor ceramic element | |
JP3206517B2 (en) | Semiconductor porcelain composition and semiconductor porcelain device using the same | |
JP3804365B2 (en) | Semiconductor ceramic and semiconductor ceramic element using the same | |
JP3617795B2 (en) | Positive thermistor porcelain composition | |
JPH07176405A (en) | Ntc thermistor element | |
JPS5932043B2 (en) | Manufacturing method of voltage nonlinear resistance element | |
JP2001253771A (en) | Positive characteristic thermistor porcelain composition | |
JPH07130505A (en) | Semiconductor ceramic composition | |
JPS643325B2 (en) | ||
JP2004063693A (en) | Voltage nonlinear resistor and lamination type varistor | |
JP2661246B2 (en) | Ceramic capacitor and method of manufacturing the same | |
JPS5821807B2 (en) | Manufacturing method of voltage nonlinear resistance element | |
JPH11265803A (en) | Semiconductor ceramic and semiconductor ceramic element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020205 |