JPH07130505A - Semiconductor ceramic composition - Google Patents

Semiconductor ceramic composition

Info

Publication number
JPH07130505A
JPH07130505A JP27636593A JP27636593A JPH07130505A JP H07130505 A JPH07130505 A JP H07130505A JP 27636593 A JP27636593 A JP 27636593A JP 27636593 A JP27636593 A JP 27636593A JP H07130505 A JPH07130505 A JP H07130505A
Authority
JP
Japan
Prior art keywords
rare earth
temperature
transition element
resistance
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27636593A
Other languages
Japanese (ja)
Inventor
Akiyoshi Nakayama
晃慶 中山
Terunobu Ishikawa
輝伸 石川
Hiroshi Takagi
洋 鷹木
Kunisaburo Tomono
国三郎 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP27636593A priority Critical patent/JPH07130505A/en
Publication of JPH07130505A publication Critical patent/JPH07130505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To provide practical resistance-temperature characteristics for an NTC element which is used for motor start delaying and rush current suppressing for switching power supply and others. CONSTITUTION:In semiconductor ceramic components having negative resistance- temperature characteristics which comprise a rare earth transition element-based oxide having perovskite structure containing 100 to 10,000ppm of Zr added, the total quantity of 3 kinds of elements of Ba, Ca and Sr contained is less than 1,000ppm and does not exceed the quantity of Zr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負の抵抗温度特性を有
する半導体磁器組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor ceramic composition having a negative resistance temperature characteristic.

【0002】[0002]

【従来の技術】従来、駆動モーターの起動を遅延させた
り、スイッチング電源における突入電流を抑制する素子
として負の抵抗温度特性を有する素子(NTC素子)を
用いているが、これは次のような理由によるものであ
る。
2. Description of the Related Art Conventionally, an element having a negative resistance temperature characteristic (NTC element) is used as an element for delaying the start-up of a drive motor or suppressing an inrush current in a switching power supply. This is due to the reason.

【0003】モーターが起動して初めて潤滑油の供給を
開始するよう構成した歯車装置において、駆動モーター
で前記歯車装置を直ちに高速回転させると前記潤滑油の
供給が不十分となり、歯車を損傷する恐れがある。ま
た、砥石を回転させて磁器表面を研磨するラップ板は、
駆動用モーターが起動した瞬間に砥石を高速回転させる
と、研磨する磁器が割れたりする場合がある。このよう
な問題を回避するには、歯車や砥石が高速回転するま
で、前記駆動モーターの起動を一定時間遅延させる必要
がある。さらに、スイッチング電源では、スイッチを入
れた瞬間に過電流が流れることから、この初期の突入電
流を吸収することが必要になる。
In a gear device configured to start the supply of lubricating oil only after the motor is started, if the drive motor immediately rotates the gear device at a high speed, the supply of lubricating oil becomes insufficient and the gear may be damaged. There is. Also, the lap plate that grinds the porcelain surface by rotating the grindstone,
If the grindstone is rotated at a high speed at the moment when the drive motor is activated, the porcelain to be ground may be broken. In order to avoid such a problem, it is necessary to delay the activation of the drive motor for a certain period of time until the gear and the grindstone rotate at high speed. Further, in the switching power supply, since an overcurrent flows at the moment when the switch is turned on, it is necessary to absorb this initial inrush current.

【0004】ところで、前記NTC素子は、室温での抵
抗値が高く、温度の上昇とともに抵抗値が低下する機能
を有しており、スピネル系酸化物や希土類遷移元素系酸
化物で構成している。
By the way, the NTC element has a high resistance value at room temperature and a function of decreasing the resistance value as the temperature rises, and is composed of a spinel oxide or a rare earth transition element oxide. .

【0005】特に前記希土類遷移元素系酸化物は、温度
の上昇とともに低下する抵抗値の割合(B定数)が温度
依存性を有しており、スピネル系酸化物と比較して、室
温付近でのB定数が小さく、高温でのB定数が大きくな
るという特徴を持っている。
In particular, the rare earth transition element-based oxides have a temperature dependence in the ratio of the resistance value (B constant) that decreases with an increase in temperature, which is higher than that of spinel-based oxides near room temperature. It has a characteristic that the B constant is small and the B constant at a high temperature is large.

【0006】このため、前記希土類遷移元素系酸化物で
構成するNTC素子は、外気温度の変化による初期抵抗
値のばらつきが小さく、定常状態での消費電力量が低減
できるとともに、大電流が流れる駆動モーターやスイッ
チング電源等にも使われている。
Therefore, the NTC element composed of the rare earth transition element-based oxide has a small variation in initial resistance value due to a change in outside air temperature, can reduce power consumption in a steady state, and can drive a large current. It is also used in motors and switching power supplies.

【0007】[0007]

【発明が解決しようとする課題】上記した希土類遷移元
素系酸化物で構成するNTC素子は、ABO3 型のペロ
ブスカイト結晶構造を有しており、Aサイトには希土類
元素が、Bサイトには遷移元素が占めている。本材料を
製造する際に、粉砕メディアから混入するZr(4価)
は前記Bサイトの遷移元素(3価)を置換するため、原
子価制御により、室温の抵抗値が上昇する。この時、高
温の抵抗値は前記Zrの混入により変化しないので、前
記Zrが混入すると、室温から高温にかけての抵抗値変
化の割合が大きくなり、その結果、B定数が大きくな
る。
The NTC element composed of the above-mentioned rare earth transition element-based oxide has an ABO 3 type perovskite crystal structure, in which the rare earth element at the A site and the transition at the B site. Elements are occupied. Zr (4 values) mixed from grinding media when manufacturing this material
Replaces the transition element (trivalent) at the B site, so that the valence control increases the resistance value at room temperature. At this time, since the resistance value at high temperature does not change due to the mixing of Zr, the mixing ratio of Zr increases the rate of change in resistance value from room temperature to high temperature, resulting in a large B constant.

【0008】そして本発明者らは、Zrが10〜100
00ppmの範囲で混入したとき、実用に適した抵抗温
度特性が得られることを発見している。(特願平05−
018997号及び特願平05−038328号)一
方、本材料を製造する際に出発原料となる希土類酸化物
と遷移元素酸化物には多くの不純物が混入しており、製
造ロットの異なる出発原料を用いると、抵抗温度特性が
大きく変動することが問題となっていた。
The present inventors have found that Zr is 10 to 100.
It has been discovered that resistance temperature characteristics suitable for practical use can be obtained when mixed in the range of 00 ppm. (Japanese Patent Application No. 05-
On the other hand, many impurities are mixed in the rare earth oxide and the transition element oxide, which are the starting materials when the present material is manufactured, and the starting materials of different manufacturing lots are mixed. If it is used, there has been a problem that the resistance temperature characteristic largely changes.

【0009】そこで本発明の目的は、モーターの起動遅
延やスイッチング電源等の突入電流抑制に用いるNTC
素子に関して、希土類酸化物と遷移元素酸化物に含まれ
る不純物の含有量を見出だすことにより、実用に適する
抵抗温度特性が得られるものを提供することにある。
Therefore, an object of the present invention is to use an NTC for delaying the start-up of a motor and suppressing the inrush current of a switching power supply.
With regard to the device, it is to provide a device having resistance temperature characteristics suitable for practical use by finding out the content of impurities contained in the rare earth oxide and the transition element oxide.

【0010】[0010]

【課題を解決するための手段】本発明は、請求項1にお
いては、ペロブスカイト構造を持つ希土類遷移元素系酸
化物に、Zrを10〜10000ppm添加したものか
らなる負の抵抗温度特性を有する半導体磁器組成物にお
いて、Ba,Ca,Srの3種類の元素の総量が100
0ppm未満であり、かつ、Zrの量を超えない量が添
加含有されていることを特徴とするものである。
According to a first aspect of the present invention, there is provided a semiconductor ceramic having a negative resistance temperature characteristic, which is obtained by adding 10 to 10000 ppm of Zr to a rare earth transition element type oxide having a perovskite structure. In the composition, the total amount of the three elements Ba, Ca and Sr is 100.
It is characterized in that it is added in an amount of less than 0 ppm and not exceeding the amount of Zr.

【0011】また、請求項2においては、請求項1にお
ける半導体磁器組成物の希土類遷移元素系酸化物は、ラ
ンタンコバルト系酸化物からなることを特徴とするもの
である。
In the second aspect, the rare earth transition element-based oxide of the semiconductor ceramic composition according to the first aspect is composed of a lanthanum cobalt-based oxide.

【0012】[0012]

【作用】本発明は、請求項1においては、ペロブスカイ
ト構造を持つ希土類遷移元素系酸化物に、Zrを10〜
10000ppm添加したものからなる負の抵抗温度特
性を有する半導体磁器組成物において、Ba,Ca,S
rの3種類の元素の総量が1000ppm未満であり、
かつ、Zrの量を超えない量が添加含有されているもの
としたため、希土類酸化物と遷移元素酸化物に含まれる
不純物の量の範囲が限定され、出発原料の製造ロットに
大きく影響されることなく、室温付近でのB定数が小さ
く、かつ高温でのB定数が大きい抵抗温度特性が安定し
て得られることになる。
According to the present invention, in the first aspect, the rare earth transition element-based oxide having the perovskite structure contains 10 to 10% of Zr.
In a semiconductor porcelain composition having a negative resistance-temperature characteristic consisting of those added with 10000 ppm, Ba, Ca, S
the total amount of the three elements of r is less than 1000 ppm,
In addition, since the amount added does not exceed the amount of Zr, the range of the amount of impurities contained in the rare earth oxides and transition element oxides is limited, and the production lot of the starting material is greatly affected. In other words, the resistance-temperature characteristic having a small B constant near room temperature and a large B constant at high temperature can be stably obtained.

【0013】[0013]

【実施例】希土類遷移元素系酸化物として、Coに対す
るLaのモル比が0.95となるようにLa2 3 とC
3 4 の粉末を秤量した。さらに、ZrO2 とCaC
3 の粉末を表1の組成が得られるように秤量し添加し
た。この秤量原料に純水を加えてボールミルで10時間
湿式混合した後、乾燥させて1000℃で2時間仮焼し
た。この仮焼原料に酢酸ビニル系のバインダーを加え
て、再度ボールミルで5時間湿式混合して粉砕し、乾燥
させた後、直径10.0mm、肉厚3.0mmのディス
ク状に2トンの圧力をかけて成形した。この成形体を5
00℃で脱脂した後、大気中にて1400℃で2時間焼
成して焼結体を得た。次に、この焼結体の両主面に白金
ペーストを塗布した後、1000℃で10分間焼き付け
て外部電極を形成し、NTC素子を得た。
EXAMPLES As rare earth transition element-based oxides, La 2 O 3 and C were used so that the molar ratio of La to Co was 0.95.
The powder of o 3 O 4 was weighed. Furthermore, ZrO 2 and CaC
O 3 powder was weighed and added so that the composition shown in Table 1 was obtained. Pure water was added to this weighed raw material, wet mixed in a ball mill for 10 hours, dried, and calcined at 1000 ° C. for 2 hours. A vinyl acetate binder was added to this calcination raw material, and the mixture was wet mixed again in a ball mill for 5 hours, pulverized and dried, and a pressure of 2 tons was applied to a disc having a diameter of 10.0 mm and a thickness of 3.0 mm. It was formed by molding. 5 this molded body
After degreasing at 00 ° C., it was fired in air at 1400 ° C. for 2 hours to obtain a sintered body. Next, after applying a platinum paste to both main surfaces of this sintered body, it was baked at 1000 ° C. for 10 minutes to form an external electrode to obtain an NTC element.

【0014】得られたNTC素子の抵抗温度特性を、表
1及び図1に示す。なお、表1中*印を付したものは本
発明の範囲外のもの、それ以外は本発明の範囲内のもの
である。
The resistance-temperature characteristics of the obtained NTC element are shown in Table 1 and FIG. Those marked with * in Table 1 are outside the scope of the present invention, and others are within the scope of the present invention.

【0015】B定数は、温度をT(K)、比抵抗をρ
(Ω・cm)とすると、 B=〔ln ρ(T0 )−ln ρ(T)〕/(1/T0 −1/T) で定義される定数であり、温度による抵抗値の変化の割
合を示す。この数値が大きいほど温度による抵抗値の変
化の割合が大きい。表1中のB(−10℃)とB(14
0℃)はそれぞれ以下のように定めた。
The B constant is the temperature T (K) and the resistivity ρ
(Ω · cm), B = [ln ρ (T 0 ) −ln ρ (T)] / (1 / T 0 −1 / T) is a constant defined by the change of the resistance value with temperature. Indicates a percentage. The larger this value, the larger the rate of change in resistance value with temperature. B (-10 ° C) and B (14 in Table 1)
0 ° C.) was determined as follows.

【0016】 B(-10℃)=[ln ρ(-10℃)-ln ρ(25℃)]/[1/(-10+273.15)-1/(25+273.15)] B(140℃)=[ln ρ(140℃)-ln ρ(25℃)]/[1/(140+273.15)-1/(25+273.15)] 表1及び図1からも明らかなように、Ca量が1000
ppm以上になると、室温の比抵抗が低くなり、また高
温でのB定数が小さくなるため、昇温状態での抵抗値を
十分に小さくすることができない。一方、Ca量が10
00ppm未満の場合でも、Ca量がZr量を超える
と、高温でのB定数が小さくなることが分かる。
B (-10 ° C) = [ln ρ (-10 ° C) -ln ρ (25 ° C)] / [1 / (-10 + 273.15) -1 / (25 + 273.15)] B (140 ° C) = [ln ρ (140 ℃) -ln ρ (25 ℃)] / [1 / (140 + 273.15) -1 / (25 + 273.15)] As shown in Table 1 and FIG.
When it is more than ppm, the specific resistance at room temperature becomes low and the B constant at high temperature becomes small, so that the resistance value in the temperature rising state cannot be made sufficiently small. On the other hand, the amount of Ca is 10
It can be seen that even when the content is less than 00 ppm, the B constant at high temperature becomes small when the Ca content exceeds the Zr content.

【0017】なお、以上の実施例ではCaを添加した場
合を例にとったが、本発明は、BaやSrを添加した場
合にも同様の効果が認められるため、Ba,Ca,Sr
の3種類の元素の個々の含有量が問題となるのではな
く、これらの元素の総量が問題となるものである。
In the above examples, the case where Ca is added is taken as an example, but the present invention shows the same effect when Ba or Sr is added. Therefore, Ba, Ca, Sr
The content of each of the three elements is not a problem, but the total amount of these elements is a problem.

【0018】ところで、希土類遷移元素系酸化物は、ラ
ンタンコバルト系酸化物に限定されるものではないが、
ランタンコバルト系酸化物を採用した場合は、室温での
B定数が小さく、かつ温度上昇によるB定数の増大が大
きいことから、実用的には最も優れている。
By the way, the rare earth transition element type oxide is not limited to the lanthanum cobalt type oxide,
The lanthanum-cobalt-based oxide is practically the best because it has a small B constant at room temperature and a large increase in B constant due to temperature rise.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明に係る半導体磁器組成物によれ
ば、希土類酸化物と遷移元素酸化物に含まれる不純物量
の範囲を限定したため、出発原料の製造ロットに大きく
影響されることなく、室温付近でのB定数が小さく、か
つ高温でのB定数が大きい抵抗温度特性が安定して得ら
れる。その結果、NTC素子として外気温度の変化によ
る初期抵抗値のばらつきが小さく、定常状態での消費電
力量が低減できるとともに、大電流が流れる駆動モータ
−の起動遅延やスイッチング電源等の突入電流抑制にも
対応が可能となる。
According to the semiconductor porcelain composition according to the present invention, since the range of the amount of impurities contained in the rare earth oxide and the transition element oxide is limited, it is not affected by the manufacturing lot of the starting material and the room temperature is maintained. A resistance-temperature characteristic having a small B constant in the vicinity and a large B constant at high temperature can be stably obtained. As a result, the NTC element has a small variation in the initial resistance value due to the change of the outside air temperature, and the power consumption in the steady state can be reduced, and the start delay of the drive motor in which a large current flows and the inrush current control of the switching power supply etc. can be suppressed. Can also be supported.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の抵抗温度特性図である。FIG. 1 is a resistance temperature characteristic diagram of an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伴野 国三郎 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunizaburo Banno 2 26-10 Tenjin Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ペロブスカイト構造を持つ希土類遷移元
素系酸化物に、Zrを10〜10000ppm添加した
ものからなる負の抵抗温度特性を有する半導体磁器組成
物において、Ba,Ca,Srの3種類の元素の総量が
1000ppm未満であり、かつ、前記Zrの量を超え
ない量が添加含有されていることを特徴とする半導体磁
器組成物。
1. A semiconductor porcelain composition having a negative resistance temperature characteristic, which is obtained by adding 10 to 10000 ppm of Zr to a rare earth transition element-based oxide having a perovskite structure, and three kinds of elements Ba, Ca, and Sr. Is less than 1000 ppm, and an amount not exceeding the amount of Zr is added to the semiconductor porcelain composition.
【請求項2】 希土類遷移元素系酸化物はランタンコバ
ルト系酸化物からなることを特徴とする請求項1記載の
半導体磁器組成物。
2. The semiconductor ceramic composition according to claim 1, wherein the rare earth transition element-based oxide comprises a lanthanum cobalt-based oxide.
JP27636593A 1993-11-05 1993-11-05 Semiconductor ceramic composition Pending JPH07130505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27636593A JPH07130505A (en) 1993-11-05 1993-11-05 Semiconductor ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27636593A JPH07130505A (en) 1993-11-05 1993-11-05 Semiconductor ceramic composition

Publications (1)

Publication Number Publication Date
JPH07130505A true JPH07130505A (en) 1995-05-19

Family

ID=17568418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27636593A Pending JPH07130505A (en) 1993-11-05 1993-11-05 Semiconductor ceramic composition

Country Status (1)

Country Link
JP (1) JPH07130505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG94316A1 (en) * 1997-10-08 2003-02-18 Murata Manufacturing Co Semiconductive ceramic composition and semiconductive ceramic element using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG94316A1 (en) * 1997-10-08 2003-02-18 Murata Manufacturing Co Semiconductive ceramic composition and semiconductive ceramic element using the same

Similar Documents

Publication Publication Date Title
JP5327554B2 (en) Semiconductor ceramic and positive temperature coefficient thermistor
JP2004244300A (en) Piezoelectric ceramic composition, its production method, piezoelectric element, and dielectric element
JP5251506B2 (en) Resistance memory element
WO1990010941A1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
JP3245984B2 (en) Barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic and method of manufacturing the same
JPH09208310A (en) Semiconductor ceramic composition and semiconductor ceramic element using the same
JPH07130505A (en) Semiconductor ceramic composition
EP0609888B1 (en) Semiconductive ceramics having negative temperature coefficient of resistance
JP2727626B2 (en) Ceramic capacitor and method of manufacturing the same
JPH07106107A (en) Ceramic semiconductor composition
JP2005001971A (en) Barium titanate semiconductor ceramic composition
JP2697095B2 (en) Ceramic capacitor and method of manufacturing the same
JPH1179833A (en) Barium titanate-based semiconductor ceramic
JPH07176406A (en) Negative resistance temp. coefficient semiconductor ceramics, rush current-blocking element and motor start delaying element
JP2725357B2 (en) Ceramic capacitor and method of manufacturing the same
US20010001205A1 (en) Semiconductor ceramics having negative temperature coefficients of resistance
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JP2010138044A (en) Semiconductor ceramic and positive temperature coefficient thermistor
JP2850355B2 (en) Ceramic capacitor and method of manufacturing the same
JP3245953B2 (en) Semiconductor porcelain having negative resistance temperature characteristics and method of manufacturing the same
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP2000252104A (en) Semiconductor ceramic and semiconductor ceramic element
JP2715529B2 (en) Ceramic capacitor and method of manufacturing the same
JPH1131605A (en) Voltage nonlinear resistor
JP2005082457A (en) Piezoelectric porcelain composition