JP3245953B2 - Semiconductor porcelain having negative resistance temperature characteristics and method of manufacturing the same - Google Patents

Semiconductor porcelain having negative resistance temperature characteristics and method of manufacturing the same

Info

Publication number
JP3245953B2
JP3245953B2 JP12960192A JP12960192A JP3245953B2 JP 3245953 B2 JP3245953 B2 JP 3245953B2 JP 12960192 A JP12960192 A JP 12960192A JP 12960192 A JP12960192 A JP 12960192A JP 3245953 B2 JP3245953 B2 JP 3245953B2
Authority
JP
Japan
Prior art keywords
constant
resistance
temperature
negative resistance
semiconductor porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12960192A
Other languages
Japanese (ja)
Other versions
JPH05299207A (en
Inventor
輝伸 石川
陽子 有田
秀明 新見
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP12960192A priority Critical patent/JP3245953B2/en
Publication of JPH05299207A publication Critical patent/JPH05299207A/en
Application granted granted Critical
Publication of JP3245953B2 publication Critical patent/JP3245953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、スイッチング電源な
どにおける電源投入初期の過電流を防止するための過電
流防止素子などに適した負の抵抗温度特性を有する半導
体磁器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor porcelain having a negative resistance temperature characteristic suitable for an overcurrent prevention element for preventing an overcurrent in a switching power supply or the like at the initial stage of power-on.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】スイッ
チング電源などにおいて、電源投入時の過電流を防止す
るために、温度が上昇すると抵抗が低下する負の温度特
性を有する半導体磁器(負特性サーミスタ)が用いられ
ている。この負特性サーミスタは、室温における抵抗が
高いため、スイッチング電源などの電源投入初期におけ
る過電流を抑制するとともに、その後の自己発熱により
昇温して低抵抗になるため、定常状態では電力消費量が
減少するという特性を有しており、過電流防止素子とし
て種々の用途に広く用いられている。
2. Description of the Related Art In a switching power supply or the like, a semiconductor porcelain having a negative temperature characteristic (a negative temperature coefficient thermistor) whose resistance decreases as the temperature rises in order to prevent an overcurrent at power-on. ) Is used. This negative temperature coefficient thermistor has a high resistance at room temperature, so it suppresses overcurrent at the initial stage of power-on such as a switching power supply, and also self-heats to raise the temperature to a low resistance. It has the characteristic of decreasing, and is widely used for various applications as an overcurrent prevention element.

【0003】しかし、スイッチング電源などに使用され
る従来の負特性サーミスタは、温度と抵抗との関係を表
すB定数が2000〜4000Kであるため、雰囲気温
度の影響を受けやすく、外気温度の変化により初期抵抗
が大きく変動し、立上がり特性にばらつきが生じるとい
う問題点がある。特に、0℃以下の低温では立上がりが
遅くなり過ぎるという問題点がある。
However, a conventional negative characteristic thermistor used for a switching power supply or the like has a B constant representing the relationship between temperature and resistance of 2000 to 4000 K, and thus is susceptible to the influence of the ambient temperature. There is a problem that the initial resistance fluctuates greatly and the rise characteristics vary. In particular, there is a problem that the rise is too slow at a low temperature of 0 ° C. or less.

【0004】上記のような問題点を解決するためには、
常温付近(−50〜50℃)でB定数が小さく、それ以
上の温度になるとB定数が大きくなるような特性を有す
る負特性サーミスタが必要となる。
[0004] In order to solve the above problems,
A negative temperature coefficient thermistor having such a characteristic that the B constant is small near normal temperature (−50 to 50 ° C.) and becomes larger at a higher temperature.

【0005】このように、B定数が相転移点を越えると
急激に大きくなる素子として、チタン酸バリウム(Ba
TiO3)にLi2CO3を20重量%添加した素子が提
案されている(特公昭48−6352号公報)。
[0005] As described above, barium titanate (Ba) is an element that rapidly increases when the B constant exceeds the phase transition point.
A device in which 20 wt% of Li 2 CO 3 is added to TiO 3 ) has been proposed (Japanese Patent Publication No. 48-6352).

【0006】しかし、この素子は、140℃の比抵抗が
105Ω・cm以上と大きいため、定常状態における電力
消費量が大きいという問題点がある。
However, since this device has a large specific resistance at 140 ° C. of 10 5 Ω · cm or more, there is a problem that power consumption in a steady state is large.

【0007】本願発明は、上記問題点を解決するもので
あり、抵抗が低く、通電時の電力損失を抑えることがで
きるとともに、B定数が、室温では小さく、高温になる
と大きくなるような負の抵抗温度特性を有する半導体磁
器を提供することを目的とする。
The present invention solves the above-mentioned problems. The resistance is low, the power loss during energization can be suppressed, and the B constant is small at room temperature and large at high temperatures. An object of the present invention is to provide a semiconductor porcelain having resistance temperature characteristics.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本願発明の負の抵抗温度特性を有する半導体磁器
は、式: (Ba1-XCaXmTiO3 で表され、x、mがそれぞれ、 0.05≦x≦0.40 0.99≦m≦1.05 の範囲にあり、150℃におけるB定数の、25℃にお
けるB定数に対する割合が2以上で、かつ、25℃にお
ける比抵抗の、150℃における比抵抗に対する割合が
2以上であることを特徴としている。
In order to achieve the above object, a semiconductor ceramic having a negative resistance temperature characteristic according to the present invention is represented by the following formula: (Ba 1 -x Ca x ) m TiO 3 , wherein x, m each, Ri near range of 0.05 ≦ x ≦ 0.40 0.99 ≦ m ≦ 1.05, the B constant at 0.99 ° C., Contact to 25 ° C.
The ratio to the B constant is 2 or more and at 25 ° C
Of the specific resistance at 150 ° C.
It is characterized by two or more .

【0009】すなわち、本願発明の負の抵抗温度特性を
有するチタン酸バリウム系半導体磁器は、Baサイトを
Caで5〜40mol%置換するとともに、Baサイト/
Tiサイト(モル比)を0.99〜1.05の範囲にす
ることにより、抵抗を低く抑えるとともに、立方晶から
正方晶への相転移点(例えば、120℃)以上の温度に
おけるB定数、相転移点以下の温度におけるB定数よ
りも大きくるようにしている。
That is, according to the barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic of the present invention , the Ba site is replaced with Ca by 5 to 40 mol% and the Ba site /
By setting the Ti site (molar ratio) in the range of 0.99 to 1.05, the resistance is suppressed, and the B constant at a temperature equal to or higher than the phase transition point (for example, 120 ° C.) from cubic to tetragonal is obtained. , are largely Do so that than the constant B in the phase transition point or lower.

【0010】また、本願発明の負の抵抗温度特性を有す
る半導体磁器の製造方法は、 式: (Ba 1-X Ca X m TiO 3 で表され、x、mがそれぞれ、 0.05≦x≦0.40 0.99≦m≦1.05 の範囲にあり、150℃におけるB定数の、25℃にお
けるB定数に対する割合が2以上で、かつ、25℃にお
ける比抵抗の、150℃における比抵抗に対する割合が
2以上である負の抵抗温度特性を有する半導体磁器の製
造方法であって、セラミック原料を混合し、仮焼した、
少なくともBa、Ca,及びTiを含有する仮焼粉末に
バインダーを添加、混合して、所定の形状に成形し、得
られた成形体を還元雰囲気中で焼結することを特徴とし
ている。
Also, the present invention has a negative resistance-temperature characteristic.
The method for manufacturing a semiconductor porcelain is represented by the formula: (Ba 1 -x Ca x ) m TiO 3 , where x and m are respectively 0.05 ≦ x ≦ 0.40 0.99 ≦ m ≦ 1.05 . The B constant at 150 ° C is
The ratio to the B constant is 2 or more and at 25 ° C
Of the specific resistance at 150 ° C.
Manufacture of semiconductor porcelain having a negative resistance temperature characteristic of 2 or more
The method of making, mixing ceramic raw materials, calcined,
For calcined powder containing at least Ba, Ca, and Ti
Binder is added and mixed, molded into a predetermined shape, and obtained.
Characterized by sintering the molded body in a reducing atmosphere
ing.

【0011】例えば、Ba及びCaの炭酸塩や、Tiの
酸化物などのセラミック原料を混合し、仮焼した、少な
くともBa、Ca,及びTiを含有する仮焼粉末にバイ
ンダーを添加、混合して、所定の形状に成形し、得られ
た成形体を還元雰囲気中で焼結することにより、式: (Ba 1-X Ca X m TiO 3 で表され、x、mがそれぞれ、 0.05≦x≦0.40 0.99≦m≦1.05 の範囲にある負の抵抗温度特性を有する半導体磁器を製
造することが可能になり、150℃におけるB定数の、
25℃におけるB定数に対する割合が2以上で、かつ、
25℃における比抵抗の、150℃における比抵抗に対
する割合が2以上であるような負の抵抗温度特性を有す
る半導体磁器を製造することができるようになる。
For example, Ba and Ca carbonates and Ti
Mixing ceramic materials such as oxides and calcining
At least the calcined powder containing Ba, Ca, and Ti
Is added, mixed and molded into a predetermined shape.
By sintering the molded body in a reducing atmosphere , x is represented by the formula: (Ba 1 -x Ca x ) m TiO 3 , where x and m are respectively 0.05 ≦ x ≦ 0.40 0.99 ≦ A semiconductor porcelain having a negative resistance temperature characteristic in the range of m ≦ 1.05 is manufactured.
Of the B constant at 150 ° C.
The ratio to the B constant at 25 ° C. is 2 or more, and
The specific resistance at 25 ° C is lower than the specific resistance at 150 ° C.
Has a negative resistance temperature characteristic such that the ratio of
Semiconductor porcelain can be manufactured.

【0012】[0012]

【実施例】以下に、本願発明の実施例を示してその特徴
をさらに詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The features of the present invention will be described below in more detail by showing embodiments of the present invention .

【0013】原料であるBaCO3、CaCO3、La2
3、TiO2、及びSiO2の粉末を式: (Ba0.998-XCaXLa0.002mTiO3+0.01SiO2 で表される組成となるように秤量する。それから、各原
料粉末を水とともにボールミルで5時間湿式混合して乾
燥した後、1150℃で2時間仮焼する。次に、得られ
た粉末(仮焼粉末)にバインダーを加えてボールミルで
5時間湿式混合して粉砕し、濾過、乾燥を行った後、直
径10mmの円板に加圧成形し、窒素に3%の水素を混合
した雰囲気中(H2/N2=3vol%)において1350
℃で2時間加熱して焼結した。
The raw materials BaCO 3 , CaCO 3 , La 2
O 3 , TiO 2 , and SiO 2 powders are weighed so as to have a composition represented by the following formula: (Ba 0.998-X Ca X La 0.002 ) m TiO 3 +0.01 SiO 2 . Then, each raw material powder is wet-mixed with water in a ball mill for 5 hours, dried and calcined at 1150 ° C. for 2 hours. Next, a binder was added to the obtained powder (calcined powder), wet-mixed with a ball mill for 5 hours, pulverized, filtered and dried, and then pressed into a disk having a diameter of 10 mm. % In a mixed atmosphere of hydrogen (H 2 / N 2 = 3 vol%)
C. for 2 hours.

【0014】それから、焼結した円板の両側にIn−G
aを塗布して電極を形成した試料について抵抗温度特性
を測定した。Ca量x=0.20、BaサイトとTiサ
イトのモル比(Baサイト/Tiサイト)m=1.01
の試料の比抵抗と温度との関係(抵抗温度特性)を図1
に示す。
Then, In-G is applied to both sides of the sintered disc.
The resistance-temperature characteristics of the sample on which a was applied to form an electrode were measured. Ca amount x = 0.20, molar ratio of Ba site and Ti site (Ba site / Ti site) m = 1.01
Fig. 1 shows the relationship between the specific resistance and the temperature of the sample (resistance-temperature characteristics).
Shown in

【0015】図1に示す抵抗温度特性は、B定数が立方
晶から正方晶への相転移点(120℃)以下で約500
K、相転移点(120℃)以上で約2000K以上とな
るような抵抗温度特性であり、B定数が室温では小さ
く、高温になると大きくなるような負の抵抗温度特性を
有するチタン酸バリウム系半導体磁器が得られているこ
とがわかる。
The resistance-temperature characteristic shown in FIG. 1 is approximately 500 when the B constant is equal to or less than the phase transition point from cubic to tetragonal (120 ° C.).
K, a barium titanate-based semiconductor having a resistance temperature characteristic such that the temperature becomes about 2000 K or more at a phase transition point (120 ° C.) or more, and a B constant is small at room temperature and large at a high temperature It can be seen that porcelain has been obtained.

【0016】また、表1、表2に、Ca量xの値と、モ
ル比mの値を変化させた場合の、25℃と150℃にお
けるB定数、比抵抗などの特性を示す。
Tables 1 and 2 show characteristics such as the B constant and the specific resistance at 25 ° C. and 150 ° C. when the value of the amount x of Ca and the value of the molar ratio m are changed.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】なお、表1、表2において、試料番号に*
印を付したものは本願発明の範囲外の比較例であり、そ
の他は本願発明の実施例を示す。
In Tables 1 and 2, * is added to the sample number.
Those with a mark are comparative examples outside the scope of the present invention , and the others indicate examples of the present invention .

【0020】表1、表2に示すように、Ca量xが0.
05〜0.40(すなわち、5〜40mol%)、モル比
mが0.99〜1.05の範囲にある本願発明の実施例
については、相転移点(120℃)以上の温度(150
℃)でB定数が大きくなっていることがわかる。また、
モル比mの値が0.99〜1.05の範囲にあっても、
Ca量xの値が0.05未満の試料(例えば、試料番号
17のCa量x=0.00、モル比m=1.01の試
料)では、図2に示すように、弱い正の抵抗温度特性を
示した後に、負の抵抗温度特性を示す。このため、25
℃における比抵抗ρの150℃における比抵抗ρに対
する割合、すなわち、抵抗変化率(ρ25℃/ρ150
℃)が2以下になり、実用上問題がある。
As shown in Tables 1 and 2, when the amount x of Ca is 0.
For the examples of the present invention in which the molar ratio m is in the range of 0.99 to 1.05, the temperature (150 ° C.) or more is higher than the phase transition point (120 ° C.).
(° C.) shows that the B constant increases. Also,
Even if the value of the molar ratio m is in the range of 0.99 to 1.05,
As shown in FIG. 2, in a sample in which the value of Ca amount x is less than 0.05 (for example, the sample of sample No. 17 having Ca amount x = 0.00 and molar ratio m = 1.01), as shown in FIG. After showing the temperature characteristics, a negative resistance-temperature characteristic is shown. For this reason, 25
Specific resistance ρ at ° C., ratio resistivity ρ at 0.99 ° C., i.e., the rate of change in resistance (ρ25 ℃ / ρ150
° C) is 2 or less, which poses a practical problem.

【0021】したがって、Ca量xの値が0.05〜
0.40、モル比mの値が0.99〜1.05の範囲に
なるようにその組成を調整することにより、150℃に
おけるB定数の25℃におけるB定数に対する割合
(B150℃/B25℃)が2以上で、かつ、抵抗変化
率(ρ25℃/ρ150℃)が2以上の負の抵抗温度特
性を有する半導体磁器を得ることができる。
Therefore, the value of the amount x of Ca is 0.05 to
0.40, by the value of the molar ratio m is to adjust the composition to be in the range of 0.99 to 1.05, the B constant at 0.99 ° C., ratio B constant at 25 ℃ (B150 ℃ / B25 C.) of 2 or more, and a resistance change rate (ρ25 ° C./ρ150° C.) of 2 or more can provide a semiconductor ceramic having negative resistance temperature characteristics.

【0022】なお、上記実施例においては、Baサイト
に微量のLaを含むチタン酸バリウム系半導体磁器につ
いて説明したが、本願発明の負の抵抗温度特性を有する
半導体磁器は、特にLaを含ませない場合にも上記実施
例と同様の効果を得ることが可能であり、また、La以
外に半導体化剤であるYなどの希土類元素その他の微量
成分を共存させることも可能である。
In the above embodiment, the barium titanate-based semiconductor porcelain containing a small amount of La at the Ba site has been described. However, the semiconductor porcelain having a negative resistance temperature characteristic according to the present invention does not particularly contain La. In this case, the same effect as in the above embodiment can be obtained, and in addition to La, a rare earth element such as Y as a semiconducting agent and other trace components can coexist.

【0023】[0023]

【発明の効果】上述のように、本願発明の負の抵抗温度
特性を有する半導体磁器は、式:(Ba1-XCaXm
iO3で表され、x及びmがそれぞれ、0.05≦x≦
0.40、0.99≦m≦1.05の範囲にあり、か
つ、150℃におけるB定数の、25℃におけるB定数
に対する割合が2以上で、かつ、25℃における比抵抗
の、150℃における比抵抗に対する割合が2以上と
るようにしているので、立方晶から正方晶への相転移点
(例えば、120℃)以上の温度におけるB定数が、相
転移点以下の温度におけるB定数よりも相当に大きく、
低温での温度安定性に優れているとともに、高温での抵
抗低下割合が大きい負の抵抗温度特性を有する半導体磁
器を得ることができる。なお、本願発明の負の抵抗温度
特性を有する半導体磁器は、例えば、Ba及びCaの炭
酸塩や、Tiの酸化物などのセラミック原料を混合し、
仮焼した、少なくともBa、Ca,及びTiを含有する
仮焼粉末にバインダーを添加、混合して、所定の形状に
成形し、得られた成形体を還元雰囲気中で焼結すること
により得ることができる。
As described above, the semiconductor porcelain having the negative resistance-temperature characteristic of the present invention has the following formula: (Ba 1 -X Ca X ) m T
represented by iO 3 , wherein x and m are respectively 0.05 ≦ x ≦
In the range of 0.40,0.99 ≦ m ≦ 1.05, or
B constant at 150 ° C, B constant at 25 ° C
Is greater than or equal to 2 and the specific resistance at 25 ° C.
Of the specific resistance at 150 ° C. is 2 or more, so that the B constant at a temperature equal to or higher than the phase transition point from cubic to tetragonal (for example, 120 ° C.) Considerably larger than the B constant at temperatures below the transition point,
A semiconductor porcelain having excellent temperature stability at low temperatures and having a negative resistance-temperature characteristic having a large resistance reduction rate at high temperatures can be obtained. The semiconductor porcelain having the negative resistance temperature characteristic of the present invention is, for example, a Ba and Ca charcoal.
Mixing ceramic raw materials such as acid salts and oxides of Ti
Contains at least Ba, Ca, and Ti
Add the binder to the calcined powder and mix to form
Molding and sintering the resulting compact in a reducing atmosphere
Can be obtained by

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の一実施例にかかる負の抵抗温度特性
を有する半導体磁器の抵抗温度特性を示す線図である。
FIG. 1 is a diagram showing a resistance temperature characteristic of a semiconductor ceramic having a negative resistance temperature characteristic according to an embodiment of the present invention .

【図2】比較例の負の抵抗温度特性を有する半導体磁器
の抵抗温度特性を示す線図である。
FIG. 2 is a diagram showing a resistance temperature characteristic of a semiconductor ceramic having a negative resistance temperature characteristic of a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 康信 京都府長岡京市天神二丁目26番10号 株 式会社 村田製作所内 (56)参考文献 特開 昭47−33294(JP,A) 特開 昭57−64902(JP,A) 特開 昭54−44797(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01C 7/02 - 7/22 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasunobu Yoneda 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd. (56) References JP-A-47-33294 (JP, A) JP-A Sho 57-64902 (JP, A) JP-A-54-44797 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01C 7/ 02-7/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 式: (Ba1-XCaXmTiO3 で表され、x、mがそれぞれ、 0.05≦x≦0.40 0.99≦m≦1.05 の範囲にあり、 150℃におけるB定数の、25℃におけるB定数に対
する割合が2以上で、かつ、 25℃における比抵抗の、150℃における比抵抗に対
する割合が2以上であること を特徴とする負の抵抗温度
特性を有する半導体磁器。
1. The formula: (Ba 1 -x Ca x ) m TiO 3 , wherein x and m are each in the range of 0.05 ≦ x ≦ 0.40 0.99 ≦ m ≦ 1.05. Of the B constant at 150 ° C. to the B constant at 25 ° C.
The specific resistance at 25 ° C is higher than the specific resistance at 150 ° C.
Semiconductor ceramics having negative resistance-temperature characteristics, wherein the ratio is 2 or more .
【請求項2】 式:2. The formula: (Ba(Ba 1-X1-X CaCa XX ) mm TiOTiO 3Three で表され、x、mがそれぞれ、Where x and m are 0.05≦x≦0.400.05 ≦ x ≦ 0.40 0.99≦m≦1.050.99 ≦ m ≦ 1.05 の範囲にあり、150℃におけるB定数の、25℃におAnd the B constant at 150 ° C is 25 ° C.
けるB定数に対する割合が2以上で、かつ、25℃におThe ratio to the B constant is 2 or more and at 25 ° C
ける比抵抗の、150℃における比抵抗に対する割合がOf the specific resistance at 150 ° C.
2以上である負の抵抗温度特性を有する半導体磁器の製Manufacture of semiconductor porcelain having a negative resistance temperature characteristic of 2 or more
造方法であって、Manufacturing method, セラミック原料を混合し、仮焼した、少なくともBa、Ceramic materials were mixed and calcined, at least Ba,
Ca,及びTiを含有する仮焼粉末にバインダーを添Add binder to calcined powder containing Ca and Ti
加、混合して、所定の形状に成形し、Add, mix and mold into a predetermined shape, 得られた成形体を還元雰囲気中で焼結することを特徴とIt is characterized by sintering the obtained molded body in a reducing atmosphere.
する負の抵抗温度特性を有する半導体磁器の製造方法。Of manufacturing semiconductor porcelain having a negative resistance temperature characteristic.
JP12960192A 1992-04-22 1992-04-22 Semiconductor porcelain having negative resistance temperature characteristics and method of manufacturing the same Expired - Lifetime JP3245953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12960192A JP3245953B2 (en) 1992-04-22 1992-04-22 Semiconductor porcelain having negative resistance temperature characteristics and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12960192A JP3245953B2 (en) 1992-04-22 1992-04-22 Semiconductor porcelain having negative resistance temperature characteristics and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05299207A JPH05299207A (en) 1993-11-12
JP3245953B2 true JP3245953B2 (en) 2002-01-15

Family

ID=15013493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12960192A Expired - Lifetime JP3245953B2 (en) 1992-04-22 1992-04-22 Semiconductor porcelain having negative resistance temperature characteristics and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3245953B2 (en)

Also Published As

Publication number Publication date
JPH05299207A (en) 1993-11-12

Similar Documents

Publication Publication Date Title
JP3245984B2 (en) Barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic and method of manufacturing the same
EP0153412A1 (en) Voltage-dependent, non-linear resistor porcelain composition
JP3245953B2 (en) Semiconductor porcelain having negative resistance temperature characteristics and method of manufacturing the same
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
KR100306573B1 (en) Semiconductive ceramic composition and semiconductive ceramic element using the same
WO2004110952A1 (en) Barium titanate based semiconductor porcelain composition
JP2588951B2 (en) High temperature PTC thermistor and manufacturing method thereof
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP3208857B2 (en) Barium titanate-based semiconductor porcelain with negative resistance temperature characteristics
JPH0653011A (en) Barium titanate based semiconductor porcelain having negative resistance temperature characteristic
JPH07118061A (en) Barium titanate-based semiconductor porcelain composition
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JP2967439B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JP3036128B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JP3151566B2 (en) Barium titanate-based semiconductor material
JPH05198406A (en) Barium titanate based semiconductor porcelain composition
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JPH03215354A (en) Barium titanate-based semiconductor ceramic composition
JPH0248465A (en) Barium titanate-based semiconductor porcelain
JP2005119904A (en) Bismuth oxide based ceramics
JPH0248464A (en) Barium titanate-based semiconductor porcelain
JPH02192456A (en) Semiconductor ceramic
JPH1112033A (en) Barium lead titanate-based semiconductor ceramic composition
JPH07118063A (en) Barium titanate-based semiconductor porcelain composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11