JPH0653011A - Barium titanate based semiconductor porcelain having negative resistance temperature characteristic - Google Patents

Barium titanate based semiconductor porcelain having negative resistance temperature characteristic

Info

Publication number
JPH0653011A
JPH0653011A JP22210992A JP22210992A JPH0653011A JP H0653011 A JPH0653011 A JP H0653011A JP 22210992 A JP22210992 A JP 22210992A JP 22210992 A JP22210992 A JP 22210992A JP H0653011 A JPH0653011 A JP H0653011A
Authority
JP
Japan
Prior art keywords
site
temperature
barium titanate
based semiconductor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22210992A
Other languages
Japanese (ja)
Inventor
Hideaki Niimi
秀明 新見
Terunobu Ishikawa
輝伸 石川
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP22210992A priority Critical patent/JPH0653011A/en
Publication of JPH0653011A publication Critical patent/JPH0653011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain barium titanate based semiconductor porcelain which is excellent in temperature stability at a low temperature and has negative resistance temperature characteristics whose resistance decrease ratio is large at a high temperature, wherein the B constant at a temperature higher than or equal to the phase transition point is larger than the B constant at a temperature lower than or equal to the phase transition point. CONSTITUTION:In a barium titanate based semiconductor porcelain, the mol ratio of a Ba site and a Ti site (Ba site/Ti site) is adjusted in the range from 0.99 to 1.05, and set so as to contain Mn of 0.001-0.5mol%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、スイッチング電源な
どにおける電源投入初期の過電流を防止するための過電
流防止素子などに用いられる負の抵抗温度特性を有する
チタン酸バリウム系半導体磁器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic used for an overcurrent preventing element for preventing an overcurrent at the initial stage of power supply in a switching power supply or the like.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】スイッ
チング電源などにおいて、電源投入時の過電流を防止す
るために、温度が上昇すると抵抗が低下する負の温度特
性を有する半導体磁器(負特性サーミスタ)が用いられ
ている。この負特性サーミスタは、室温における抵抗が
高いため、スイッチング電源などの電源投入初期におけ
る過電流を抑制するとともに、その後の自己発熱により
昇温して低抵抗になるため、定常状態では電力消費量が
減少するという特性を有しており、過電流防止素子とし
て種々の用途に広く用いられている。
2. Description of the Related Art In a switching power supply or the like, in order to prevent an overcurrent at the time of power-on, a semiconductor ceramic (negative-characteristic thermistor) having a negative temperature characteristic in which the resistance decreases as the temperature rises. ) Is used. Since this negative-characteristic thermistor has a high resistance at room temperature, it suppresses overcurrent at the initial stage of power-on of a switching power supply, etc., and then it self-heats to raise its temperature to a low resistance, so power consumption in the steady state is reduced. It has the property of decreasing and is widely used in various applications as an overcurrent preventing element.

【0003】しかし、スイッチング電源などに使用され
る従来の負特性サーミスタは、温度と抵抗との関係を表
すB定数が2000〜4000Kであるため、雰囲気温
度の影響を受けやすく、外気温度の変化により初期抵抗
が大きく変動し、立上がり特性にばらつきが生じるとい
う問題点がある。特に、0℃以下の低温では立上がりが
遅くなり過ぎるという問題点がある。
However, a conventional negative characteristic thermistor used for a switching power supply or the like has a B constant of 2000 to 4000K, which represents the relationship between temperature and resistance, and is therefore easily affected by the ambient temperature, and changes due to changes in the outside air temperature. There is a problem that the initial resistance fluctuates greatly and the rising characteristics vary. In particular, at a low temperature of 0 ° C. or lower, there is a problem that the rise is too slow.

【0004】上記のような問題点を解決するためには、
常温付近(−50〜50℃)でB定数が小さく、それ以
上の温度になるとB定数が大きくなるような特性を有す
る負特性サーミスタが必要となる。
In order to solve the above problems,
A negative characteristic thermistor having a characteristic that the B constant is small near room temperature (-50 to 50 ° C.) and increases at a temperature higher than that is required.

【0005】このような素子として、チタン酸バリウム
(BaTiO3)にLi2CO3を20重量%添加した素
子が提案されている(特公昭48−6352号公報)。
As such an element, an element in which 20% by weight of Li 2 CO 3 is added to barium titanate (BaTiO 3 ) has been proposed (Japanese Patent Publication No. 48-6352).

【0006】しかし、この素子は、B定数が相転移点を
越えると急激に大きくなるという特性を有しているもの
の、140℃の比抵抗が105Ω・cm以上と大きいた
め、定常状態における電力消費量が大きいという問題点
がある。
However, although this element has a characteristic that the B constant rapidly increases when it exceeds the phase transition point, the specific resistance at 140 ° C. is as large as 10 5 Ω · cm or more, so that in a steady state. There is a problem that the power consumption is large.

【0007】この発明は、上記問題点を解決するもので
あり、抵抗が低く、通電時の電力損失を抑えることがで
きるとともに、B定数が、室温では小さく、高温になる
と大きくなるような負の抵抗温度特性を有するチタン酸
バリウム系半導体磁器を提供することを目的とする。
The present invention solves the above-mentioned problems. It has a low resistance and can suppress the power loss during energization, and the B constant is negative at room temperature and large at high temperatures. An object of the present invention is to provide a barium titanate-based semiconductor ceramic having resistance temperature characteristics.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明の負の抵抗温度特性を有するチタン酸バリ
ウム系半導体磁器は、BaサイトとTiサイトのモル比
(Baサイト/Tiサイト)が0.99〜1.05であ
り、かつ、Mnを0.001〜0.5mol%含有するこ
とを特徴としている。
In order to achieve the above object, a barium titanate-based semiconductor ceramic having a negative resistance temperature characteristic of the present invention has a molar ratio of Ba site and Ti site (Ba site / Ti site). Is 0.99 to 1.05, and 0.001 to 0.5 mol% of Mn is contained.

【0009】すなわち、この発明の負の抵抗温度特性を
有するチタン酸バリウム系半導体磁器は、Baサイト/
Tiサイト(モル比)を0.99〜1.05の範囲に調
整するとともに、Mnを0.001〜0.5mol%添加
することにより、抵抗を低く抑えるとともに、立方晶か
ら正方晶への相転移点(例えば、120℃)以上の温度
におけるB定数を、相転移点以下の温度におけるB定数
よりも大きくするようにしている。
That is, the barium titanate-based semiconductor porcelain having the negative resistance-temperature characteristic of the present invention has a Ba site /
By adjusting the Ti site (molar ratio) in the range of 0.99 to 1.05 and adding Mn in the range of 0.001 to 0.5 mol%, the resistance is suppressed low and the phase from cubic to tetragonal is reduced. The B constant at a temperature above the transition point (for example, 120 ° C.) is made larger than the B constant at a temperature below the phase transition point.

【0010】[0010]

【実施例】以下に、この発明の実施例を示してその特徴
をさらに詳しく説明する。
EXAMPLES The features of the present invention will be described in more detail below with reference to examples of the present invention.

【0011】まず、原料であるBaCO3、La23
TiO2、MnO2及びSiO2の粉末を下記の式: (Ba0.998La0.002mTiO3+XMn+0.01SiO2 で表される組成になるように秤量する。それから、各原
料粉末を水とともにボールミルで5時間湿式混合して乾
燥した後、1150℃で2時間仮焼する。次に、得られ
た粉末(仮焼粉末)にバインダーを加えてボールミルで
5時間湿式混合して粉砕し、濾過、乾燥を行った後、直
径10mmの円板に加圧成形し、窒素に3%の水素を混合
した雰囲気中(H2/N2=3vol%)において1350
℃で2時間加熱して焼結した。
First, the raw materials BaCO 3 , La 2 O 3 and
Powders of TiO 2 , MnO 2 and SiO 2 are weighed so as to have a composition represented by the following formula: (Ba 0.998 La 0.002 ) m TiO 3 + XMn + 0.01SiO 2 . Then, each raw material powder is wet mixed with water in a ball mill for 5 hours, dried, and then calcined at 1150 ° C. for 2 hours. Next, a binder is added to the obtained powder (calcined powder), and the mixture is wet mixed in a ball mill for 5 hours, crushed, filtered, dried, and then pressure-molded into a disk having a diameter of 10 mm, and nitrogen is added to % In a mixed atmosphere of hydrogen (H 2 / N 2 = 3 vol%) 1350
Sintered by heating for 2 hours at ℃.

【0012】それから、焼結した円板の両側にIn−G
aを塗布して電極を形成した試料について抵抗温度特性
を測定した。
Then, on both sides of the sintered disk, In-G
The resistance-temperature characteristic was measured for the sample on which a was applied to form an electrode.

【0013】表1、表2に、Baサイト/Tiサイト
(モル比)mの値と、Mn量Xの値とを変化させた各試
料について測定した、25℃と150℃における比抵抗
の変化率、25℃と150℃のB定数、及びその比率な
どの特性を示す。
In Tables 1 and 2, changes in specific resistance at 25 ° C. and 150 ° C. measured for each sample in which the value of Ba site / Ti site (molar ratio) m and the value of Mn amount X were changed. The characteristics such as the rate, the B constant at 25 ° C. and 150 ° C., and the ratio thereof are shown.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】なお、表1、表2において、試料番号に*
印を付したものはこの発明の範囲外の比較例であり、そ
の他はこの発明の実施例を示す。
In Tables 1 and 2, the sample number is *
Those marked are comparative examples that are outside the scope of the present invention, and others indicate examples of the present invention.

【0017】また、Mn量X=0.005mol%,Ba
サイトとTiサイトのモル比(Baサイト/Tiサイ
ト)m=1.010の試料(表1の試料番号20の試
料)の比抵抗と温度との関係(抵抗温度特性)を図1に
示す。
The Mn content X = 0.005 mol%, Ba
FIG. 1 shows the relationship between the specific resistance and the temperature (resistance temperature characteristic) of a sample (sample No. 20 in Table 1) having a molar ratio of sites to Ti sites (Ba site / Ti site) m = 1.010 (sample No. 20 in Table 1).

【0018】図1に示したこの発明の一実施例にかかる
試料は、B定数が立方晶から正方晶への相転移点(12
0℃)以下で約430K、相転移点(120℃)以上で
約2200Kとなるような抵抗温度特性は有しており、
B定数が室温では小さく、高温になると大きくなるよう
な負の抵抗温度特性を有していることがわかる。
In the sample according to the embodiment of the present invention shown in FIG. 1, the B constant has a phase transition point (12) from cubic to tetragonal.
It has a resistance temperature characteristic of about 430K below 0 ° C) and about 2200K above the phase transition point (120 ° C).
It can be seen that the B constant has a negative resistance-temperature characteristic such that it is small at room temperature and large at high temperature.

【0019】また、表1、表2より、Baサイト/Ti
サイト(モル比)mが0.99〜1.05、Mn量Xが
0.001〜0.5mol%の範囲にあるこの発明の実施
例にかかる試料については、いずれも相転移点(120
℃)以上の温度(150℃)でB定数が大きくなってい
ることがわかる。
Further, from Tables 1 and 2, Ba site / Ti
For the samples according to the examples of the present invention in which the site (molar ratio) m is in the range of 0.99 to 1.05 and the Mn amount X is in the range of 0.001 to 0.5 mol%, the phase transition point (120
It can be seen that the B constant increases at a temperature (150 ° C.) or higher.

【0020】また、モル比mの値が0.99〜1.05
の範囲にあっても、Mn量Xの値が0.001未満の試
料(例えば、試料番号17のMn量X=0mol%、モル
比m=1.010の試料)では、図2に示すように、弱
い正の抵抗温度特性を示した後に、負の抵抗温度特性を
示す。このため、25℃における比抵抗ρの150℃に
おける比抵抗ρに対する割合、すなわち、抵抗変化率
(ρ25℃/ρ150℃)が2以下になり、実用上問題
がある。
The value of the molar ratio m is 0.99 to 1.05.
2 in the sample having the Mn amount X of less than 0.001 (for example, the sample of Sample No. 17 having the Mn amount X = 0 mol% and the molar ratio m = 1.010) even in the range of After showing a weak positive resistance temperature characteristic, it shows a negative resistance temperature characteristic. Therefore, the ratio of the specific resistance ρ at 25 ° C. to the specific resistance ρ at 150 ° C., that is, the rate of change in resistance (ρ25 ° C./ρ150° C.) becomes 2 or less, which is a practical problem.

【0021】したがって、Baサイト/Tiサイト(モ
ル比)mが0.99〜1.05、Mn量Xが0.001
〜0.5mol%の範囲になるようにその組成を調整する
ことにより、150℃におけるB定数の25℃における
B定数に対する割合(B150℃/B25℃)が2以上
で、かつ、抵抗変化率(ρ25℃/ρ150℃)が2以
上の負の抵抗温度特性を有するチタン酸バリウム系半導
体磁器を得ることができる。
Therefore, the Ba site / Ti site (molar ratio) m is 0.99 to 1.05, and the Mn amount X is 0.001.
By adjusting the composition so as to fall within the range of 0.5 mol%, the ratio of the B constant at 150 ° C to the B constant at 25 ° C (B150 ° C / B25 ° C) is 2 or more, and the rate of change in resistance ( A barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic of ρ25 ° C./ρ150° C. of 2 or more can be obtained.

【0022】なお、上記実施例においては、Baサイト
に微量のLaを含むチタン酸バリウム系半導体磁器につ
いて説明したが、この発明の負の抵抗温度特性を有する
チタン酸バリウム系半導体磁器は、特にLaを含ませな
い場合にも上記実施例と同様の効果を得ることが可能で
あり、また、La以外に半導体化剤であるYなどの希土
類元素その他の微量成分を共存させることも可能であ
る。
In the above embodiments, the barium titanate-based semiconductor porcelain containing a trace amount of La in the Ba site has been described, but the barium titanate-based semiconductor porcelain having the negative resistance temperature characteristic of the present invention is particularly La. Even when not containing, it is possible to obtain the same effect as in the above-mentioned embodiment, and it is also possible to coexist with a rare earth element such as Y which is a semiconducting agent and other trace components in addition to La.

【0023】[0023]

【発明の効果】上述のように、この発明の負の抵抗温度
特性を有するチタン酸バリウム系半導体磁器は、Baサ
イト/Tiサイトのモル比を0.99〜1.05の範囲
に調整するとともに、Mnを0.001〜0.5mol%
含有させるようにしているので、低温での温度安定性に
優れているとともに、低抵抗で、高温での抵抗低下割合
が大きく、かつ、立方晶から正方晶への相転移点(例え
ば、120℃)以上の温度におけるB定数が、相転移点
以下の温度におけるB定数よりも相当に大きい負の抵抗
温度特性を有するチタン酸バリウム系半導体磁器を得る
ことができる。
As described above, in the barium titanate-based semiconductor ceramic having the negative resistance temperature characteristic of the present invention, the Ba site / Ti site molar ratio is adjusted within the range of 0.99 to 1.05. , Mn 0.001 to 0.5 mol%
Since it is contained, it has excellent temperature stability at low temperature, low resistance, a large rate of decrease in resistance at high temperature, and a cubic to tetragonal phase transition point (for example, 120 ° C). ) It is possible to obtain a barium titanate-based semiconductor ceramic having a negative resistance-temperature characteristic in which the B constant at the above temperature is considerably larger than the B constant at the temperature below the phase transition point.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例にかかる負の抵抗温度特性
を有するチタン酸バリウム系半導体磁器の抵抗温度特性
を示す線図である。
FIG. 1 is a diagram showing a resistance temperature characteristic of a barium titanate-based semiconductor ceramic having a negative resistance temperature characteristic according to an embodiment of the present invention.

【図2】比較例の負の抵抗温度特性を有するチタン酸バ
リウム系半導体磁器の抵抗温度特性を示す線図である。
FIG. 2 is a diagram showing a resistance temperature characteristic of a barium titanate-based semiconductor ceramic having a negative resistance temperature characteristic of a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 負の抵抗温度特性を有するチタン酸バリ
ウム系半導体磁器において、BaサイトとTiサイトの
モル比(Baサイト/Tiサイト)が0.99〜1.0
5であり、かつ、Mnを0.001〜0.5mol%含有
することを特徴とする負の抵抗温度特性を有するチタン
酸バリウム系半導体磁器。
1. In a barium titanate-based semiconductor ceramic having a negative resistance temperature characteristic, the molar ratio of Ba site to Ti site (Ba site / Ti site) is 0.99 to 1.0.
5. The barium titanate-based semiconductor porcelain having negative resistance-temperature characteristics, characterized in that Mn is 5 and 0.001 to 0.5 mol% is contained.
JP22210992A 1992-07-28 1992-07-28 Barium titanate based semiconductor porcelain having negative resistance temperature characteristic Pending JPH0653011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22210992A JPH0653011A (en) 1992-07-28 1992-07-28 Barium titanate based semiconductor porcelain having negative resistance temperature characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22210992A JPH0653011A (en) 1992-07-28 1992-07-28 Barium titanate based semiconductor porcelain having negative resistance temperature characteristic

Publications (1)

Publication Number Publication Date
JPH0653011A true JPH0653011A (en) 1994-02-25

Family

ID=16777289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22210992A Pending JPH0653011A (en) 1992-07-28 1992-07-28 Barium titanate based semiconductor porcelain having negative resistance temperature characteristic

Country Status (1)

Country Link
JP (1) JPH0653011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542067B1 (en) * 1999-05-20 2003-04-01 Murata Manufacturing Co., Ltd. Barium titanate semiconductor ceramic powder and laminated semiconductor ceramic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542067B1 (en) * 1999-05-20 2003-04-01 Murata Manufacturing Co., Ltd. Barium titanate semiconductor ceramic powder and laminated semiconductor ceramic device

Similar Documents

Publication Publication Date Title
JP3245984B2 (en) Barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic and method of manufacturing the same
JPH0653011A (en) Barium titanate based semiconductor porcelain having negative resistance temperature characteristic
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
WO2004110952A1 (en) Barium titanate based semiconductor porcelain composition
JPH05299207A (en) Semiconductor porcelain with negative resistance temperature characteristics
KR100358301B1 (en) Semiconducting ceramic, semiconducting ceramic element and method for producing the semiconducting ceramic
JP3208857B2 (en) Barium titanate-based semiconductor porcelain with negative resistance temperature characteristics
JPH03215354A (en) Barium titanate-based semiconductor ceramic composition
JPH07220902A (en) Barium titanate semiconductor ceramic
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JPH07118061A (en) Barium titanate-based semiconductor porcelain composition
JPH05198406A (en) Barium titanate based semiconductor porcelain composition
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
JPS6049151B2 (en) Method for manufacturing dielectric magnetic composition
JPH03138905A (en) Voltage dependent non-linear ceramic resistor and its manufacture
JP2967439B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JP3036128B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JP2015086104A (en) Semiconductor ceramic composition and manufacturing method thereof
KR950000505B1 (en) Composite with high dielectricity
JPH02192456A (en) Semiconductor ceramic
JPS62229603A (en) Dielectric porcelain compound
JPH0529110A (en) Grain boundary oxidation type voltage nonlinear resistor element
JPH03215356A (en) Barium titanate-based semiconductor ceramic composition
JPH03215353A (en) Barium titanate-based semiconductor ceramic composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011120