JPH07106107A - Ceramic semiconductor composition - Google Patents

Ceramic semiconductor composition

Info

Publication number
JPH07106107A
JPH07106107A JP25181893A JP25181893A JPH07106107A JP H07106107 A JPH07106107 A JP H07106107A JP 25181893 A JP25181893 A JP 25181893A JP 25181893 A JP25181893 A JP 25181893A JP H07106107 A JPH07106107 A JP H07106107A
Authority
JP
Japan
Prior art keywords
rare earth
transition element
temperature
based oxide
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25181893A
Other languages
Japanese (ja)
Inventor
Akiyoshi Nakayama
晃慶 中山
Terunobu Ishikawa
輝伸 石川
Hiroshi Takagi
洋 鷹木
Kunisaburo Tomono
国三郎 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP25181893A priority Critical patent/JPH07106107A/en
Publication of JPH07106107A publication Critical patent/JPH07106107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To provide an NTC device having an appropriate temperature coefficient of resistance and suitable for applications such as the suppression of the delay in start of a motor or the rush current of a switching power source, etc. CONSTITUTION:A ceramic semiconductor composition having a negative temperature coefficient of resistance comprises a rare earth transition element oxide having perovskite structure, and the mol ratio between the rare earth element and the transition element is 0.60-1.10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負の抵抗温度特性を有
する半導体磁器組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor ceramic composition having a negative resistance temperature characteristic.

【0002】[0002]

【従来の技術】従来、駆動モーターの起動を遅延させた
り、スイッチング電源における突入電流を抑制する素子
として、負の抵抗温度特性を有する素子(NTC素子)
を用いているが、これは次のような理由によるものであ
る。
2. Description of the Related Art Conventionally, an element having a negative resistance temperature characteristic (NTC element) has been used as an element for delaying the start-up of a drive motor or suppressing an inrush current in a switching power supply.
This is due to the following reasons.

【0003】モーターが起動して初めて潤滑油の供給を
開始するよう構成した歯車装置において、駆動モーター
で前記歯車装置を直ちに高速回転させると前記潤滑油の
供給が不十分となり、歯車を損傷する恐れがある。ま
た、砥石を回転させて磁器表面を研磨するラップ板は、
駆動用モーターが起動した瞬間に前記砥石を高速回転さ
せると、研磨する磁器が割れたりする場合がある。この
ような問題を回避するには、前記歯車や砥石が高速回転
するまで、前記駆動モーターの起動を一定時間遅延させ
る必要がある。さらに、スイッチング電源では、スイッ
チを入れた瞬間に過電流が流れることから、この初期の
突入電流を吸収することが必要になる。
In a gear device configured to start the supply of lubricating oil only after the motor is started, if the drive motor immediately rotates the gear device at a high speed, the supply of lubricating oil becomes insufficient and the gear may be damaged. There is. Also, the lap plate that grinds the porcelain surface by rotating the grindstone,
When the grindstone is rotated at a high speed at the moment when the drive motor is activated, the porcelain to be ground may be broken. In order to avoid such a problem, it is necessary to delay the activation of the drive motor for a certain time until the gear and the grindstone rotate at high speed. Further, in the switching power supply, since an overcurrent flows at the moment when the switch is turned on, it is necessary to absorb this initial inrush current.

【0004】ところで、前記NTC素子は室温での抵抗
値が高く、温度の上昇とともに前記抵抗値が低下する機
能を有しており、スピネル系酸化物や希土類遷移元素系
酸化物で構成している。
By the way, the NTC element has a high resistance value at room temperature and has a function of decreasing the resistance value with an increase in temperature, and is composed of a spinel oxide or a rare earth transition element oxide. .

【0005】特に前記希土類遷移元素系酸化物は、温度
の上昇とともに低下する抵抗値の割合(B定数)が温度
依存性を有しており、前記スピネル系酸化物と比較し
て、室温付近でのB定数が小さく、高温でのB定数が大
きくなるという特徴を持っている。
In particular, the rare earth transition element-based oxides have a temperature dependence in the ratio of the resistance value (B constant) that decreases with an increase in temperature, which is higher than the spinel-based oxides at around room temperature. Has a small B constant and a large B constant at high temperature.

【0006】このため、前記希土類遷移元素系酸化物で
構成したNTC素子は、外気温度の変化による初期抵抗
値のばらつきが小さく、定常状態での消費電力量が低減
できるとともに、大電流が流れる駆動モーターやスイッ
チング電源等にも使われている。
Therefore, the NTC element composed of the rare earth transition element-based oxide has a small variation in initial resistance value due to a change in outside air temperature, can reduce power consumption in a steady state, and can drive a large current. It is also used in motors and switching power supplies.

【0007】[0007]

【発明が解決しようとする課題】ところで、希土類遷移
元素系酸化物で構成するNTC素子は、ABO3 型のペ
ロブスカイト結晶構造を有しており、Aサイトには希土
類元素が、Bサイトには遷移元素が占めている。前記ペ
ロブスカイト結晶構造を有する材料は、Aサイトの元素
とBサイトの元素のモル比が、特性に大きな影響を及ぼ
すのが一般的である。そして、前記希土類遷移元素系酸
化物の抵抗温度特性は、ブイ.ジー.ブハイド(V.G.Bh
ide )やディー.エス.ラジョリア(D.S.Rajoria )ら
により調べられている。(Phys.Rev.B6[3]1021(1972)) ところが、希土類元素と遷移元素のモル比を変えた時に
得られる特性の確認と、それがモーターの起動遅延やス
イッチング電源等の突入電流抑制に適用できるかどうか
の実用試験は、これまで行われたことはなかった。
By the way, an NTC element composed of a rare earth transition element-based oxide has an ABO 3 type perovskite crystal structure, in which a rare earth element is present at the A site and a transition is made at the B site. Elements are occupied. In the material having the perovskite crystal structure, it is general that the molar ratio of the A site element and the B site element greatly affects the characteristics. The resistance temperature characteristics of the rare earth transition element-based oxide are buoy. Gee. Bhide (VGBh
ide) and Dee. S. It has been investigated by DS Rajoria et al. (Phys.Rev.B6 [3] 1021 (1972)) However, confirmation of the characteristics obtained when the molar ratio of rare earth element and transition element was changed, and it was used to suppress the start delay of the motor and the inrush current of the switching power supply etc. Practical tests of applicability have never been performed.

【0008】そこで本発明の目的は、モーターの起動遅
延やスイッチング電源等の突入電流抑制に用いるNTC
素子に関して、希土類元素と遷移元素のモル比を見出だ
すことにより、実用に適する抵抗温度特性が得られるも
のを提供することにある。
Therefore, an object of the present invention is to use an NTC for delaying the start-up of a motor and suppressing an inrush current of a switching power supply or the like.
With regard to the device, it is to provide a device in which a resistance temperature characteristic suitable for practical use can be obtained by finding a molar ratio of a rare earth element and a transition element.

【0009】[0009]

【課題を解決するための手段】本発明は、請求項1にお
いては、ペロブスカイト構造を持つ希土類遷移元素系酸
化物からなる負の抵抗温度特性を有する半導体磁器組成
物において、希土類元素と遷移元素のモル比(希土類元
素/遷移元素)を0.60〜1.10とするものであ
る。
According to a first aspect of the present invention, in a semiconductor porcelain composition having a negative resistance temperature characteristic composed of a rare earth transition element-based oxide having a perovskite structure, the rare earth element and the transition element are The molar ratio (rare earth element / transition element) is 0.60 to 1.10.

【0010】また、請求項2においては、請求項1にお
ける半導体磁器組成物の希土類遷移元素系酸化物は、ラ
ンタンコバルト系酸化物からなることを特徴とするもの
である。
In the second aspect, the rare earth transition element-based oxide of the semiconductor ceramic composition according to the first aspect is a lanthanum-cobalt-based oxide.

【0011】希土類元素と遷移元素のモル比が0.60
を下回ったり、1.10を上回ったりすると、昇温状態
での抵抗値が十分に小さくならないため、定常状態での
電力消費量が増大し、大電流が流れる箇所に使用できな
い。
The molar ratio of rare earth element to transition element is 0.60.
If it is lower than or higher than 1.10, the resistance value in the temperature rising state does not become sufficiently small, so that the power consumption in the steady state increases and it cannot be used in a place where a large current flows.

【0012】また、希土類遷移元素系酸化物は、ランタ
ンコバルト系酸化物に限定されるものではないが、ラン
タンコバルト系酸化物を採用した場合は、室温でのB定
数が小さく、かつ温度上昇によるB定数の増大が大きい
ことから、実用的には最も優れている。
The rare earth transition element type oxide is not limited to the lanthanum cobalt type oxide, but when the lanthanum cobalt type oxide is adopted, the B constant at room temperature is small and the temperature rises. It is practically the best because the B constant increases greatly.

【0013】[0013]

【作用】本発明は、請求項1においては、ペロブスカイ
ト構造を持つ希土類遷移元素系酸化物からなる負の抵抗
温度特性を有する半導体磁器組成物において、希土類元
素と遷移元素のモル比(希土類元素/遷移元素)を0.
60〜1.10としたため、希土類元素と遷移元素のモ
ル比が最適の範囲にあり、室温付近でのB定数が小さ
く、かつ高温でのB定数が大きい抵抗温度特性が得られ
る。
According to the first aspect of the present invention, in a semiconductor porcelain composition having a negative resistance temperature characteristic comprising a rare earth transition element-based oxide having a perovskite structure, the molar ratio of rare earth element to transition element (rare earth element / Transition element) to 0.
Since 60 to 1.10, the molar ratio of the rare earth element to the transition element is in the optimum range, and the resistance-temperature characteristic that the B constant at room temperature is small and the B constant at high temperature is large is obtained.

【0014】[0014]

【実施例】希土類遷移元素系酸化物として、Coに対す
るLaのモル比が0.50〜1.20となるようにLa
2 3 とCo3 4 の粉末を表1の割合で秤量した。そ
して、この秤量原料を純水を用いてボールミルで10時
間湿式混合した後、乾燥させて1000℃で2時間仮焼
した。この仮焼原料に酢酸ビニル系のバインダーを加え
て、再度ボールミルで5時間湿式混合して粉砕し、乾燥
させた後、直径10.0mm、肉厚3.0mmのディス
ク状に2トンの圧力をかけて成形した。この成形体を5
00℃で脱脂した後、大気中にて1400℃で2時間焼
成して焼結体を得た。次に、この焼結体の両主面に白金
ペーストを塗布した後、1000℃で10分焼き付けて
外部電極を形成し、NTC素子を得た。
Example As a rare earth transition element-based oxide, La was prepared so that the molar ratio of La to Co was 0.50 to 1.20.
The powders of 2 O 3 and Co 3 O 4 were weighed in the ratios shown in Table 1. Then, this weighed raw material was wet mixed with pure water in a ball mill for 10 hours, dried and calcined at 1000 ° C. for 2 hours. A vinyl acetate binder was added to this calcination raw material, and the mixture was wet mixed again in a ball mill for 5 hours, pulverized and dried, and a pressure of 2 tons was applied to a disc having a diameter of 10.0 mm and a thickness of 3.0 mm. It was formed by molding. 5 this molded body
After degreasing at 00 ° C., it was fired in air at 1400 ° C. for 2 hours to obtain a sintered body. Next, after applying a platinum paste to both main surfaces of this sintered body, it was baked at 1000 ° C. for 10 minutes to form an external electrode to obtain an NTC element.

【0015】得られたNTC素子の抵抗温度特性を、表
1に示す。なお、表1中の*印を付したものは本発明の
範囲外のものであり、それ以外は本発明の範囲内のもの
である。
The resistance temperature characteristics of the obtained NTC element are shown in Table 1. Those marked with * in Table 1 are outside the scope of the present invention, and others are within the scope of the present invention.

【0016】B定数は、温度をT(K)、比抵抗をρ
(Ω・cm)とすると、 B=〔ln ρ(T0 )−ln ρ(T)〕/(1/T
0 −1/T) で定義される定数であり、温度による抵抗値の変化の割
合を示す。この数値が大きいほど温度による抵抗値の変
化の割合が大きい。表1中のB(−10℃)とB(14
0℃)はそれぞれ以下のように定めた。
B constant is T (K) for temperature and ρ for specific resistance.
(Ω · cm), B = [ln ρ (T 0 ) −ln ρ (T)] / (1 / T
It is a constant defined by 0-1 / T) and indicates the rate of change in resistance value with temperature. The larger this value, the larger the rate of change in resistance value with temperature. B (-10 ° C) and B (14 in Table 1)
0 ° C.) was determined as follows.

【0017】B(-10℃)=[ln ρ(-10℃)-ln ρ(25℃)]/[1
/(-10+273.15)-1/(25+273.15)] B(140℃)=[ln ρ(140℃)-ln ρ(25℃)]/[1/(140+273.1
5)-1/(25+273.15)] 表1からも明らかなように、Coに対するLaのモル比
が0.60〜1.10の範囲では、高温でのB定数が大
きく、昇温状態での抵抗値を十分に小さくすることがで
きる。一方、Coに対するLaのモル比が0.60を下
回ったり、1.10を上回ったりすると、高温でのB定
数が3000K以下となり、昇温状態での抵抗値を十分
に小さくすることができない。
B (-10 ° C) = [ln ρ (-10 ° C) -ln ρ (25 ° C)] / [1
/(-10+273.15)-1/(25+273.15)] B (140 ℃) = [ln ρ (140 ℃) -ln ρ (25 ℃)] / [1 / (140 + 273.1
5) -1 / (25 + 273.15)] As is clear from Table 1, when the molar ratio of La to Co is in the range of 0.60 to 1.10, the B constant at high temperature is large and The resistance value of can be made sufficiently small. On the other hand, when the molar ratio of La to Co is lower than 0.60 or higher than 1.10, the B constant at high temperature becomes 3000 K or less, and the resistance value in the temperature rising state cannot be sufficiently reduced.

【0018】なお、以上の実施例では、ランタンコバル
ト系酸化物を用いた場合を例にとったが、本発明は、ネ
オジウムコバルト系酸化物等のランタンを他の希土類元
素に置換した場合においても、モーターの起動遅延やス
イッチング電源等における突入電流抑制に必要な特性を
得ることができる。
In the above examples, the case where the lanthanum cobalt-based oxide was used was taken as an example, but the present invention is also applicable to the case where lanthanum such as neodymium cobalt-based oxide is replaced with another rare earth element. Therefore, it is possible to obtain the characteristics required for delaying the start-up of the motor and suppressing the inrush current in the switching power supply.

【0019】[0019]

【発明の効果】本発明に係る半導体磁器組成物によれ
ば、希土類遷移元素系酸化物における希土類元素と遷移
元素のモル比を最適化したため、室温付近でのB定数が
小さく、かつ高温でのB定数が大きい抵抗温度特性が得
られる。その結果、NTC素子として外気温度の変化に
よる初期抵抗値のばらつきが小さく、定常状態での電力
消費量が低減できるとともに、大電流が流れる駆動モー
ターの起動遅延やスイッチング電源等の突入電流抑制に
も対応できる。
According to the semiconductor porcelain composition according to the present invention, since the molar ratio of the rare earth element and the transition element in the rare earth transition element-based oxide is optimized, the B constant near room temperature is small and the B constant at room temperature is high. A resistance temperature characteristic having a large B constant can be obtained. As a result, the NTC element has a small variation in the initial resistance value due to changes in the outside air temperature, can reduce the power consumption in the steady state, and can also suppress the startup delay of the drive motor in which a large current flows and the inrush current of the switching power supply. Can handle.

【0020】[0020]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伴野 国三郎 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunizaburo Banno 2 26-10 Tenjin Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ペロブスカイト構造を持つ希土類遷移元
素系酸化物からなる負の抵抗温度特性を有する半導体磁
器組成物において、希土類元素と遷移元素のモル比(希
土類元素/遷移元素)を0.60〜1.10とすること
を特徴とする半導体磁器組成物。
1. A semiconductor porcelain composition having a negative resistance temperature characteristic, which is composed of a rare earth transition element-based oxide having a perovskite structure, and has a molar ratio of rare earth element to transition element (rare earth element / transition element) of 0.60. 1. The semiconductor porcelain composition characterized in that
【請求項2】 希土類遷移元素系酸化物はランタンコバ
ルト系酸化物からなることを特徴とする請求項1記載の
半導体磁器組成物。
2. The semiconductor ceramic composition according to claim 1, wherein the rare earth transition element-based oxide comprises a lanthanum cobalt-based oxide.
JP25181893A 1993-10-07 1993-10-07 Ceramic semiconductor composition Pending JPH07106107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25181893A JPH07106107A (en) 1993-10-07 1993-10-07 Ceramic semiconductor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25181893A JPH07106107A (en) 1993-10-07 1993-10-07 Ceramic semiconductor composition

Publications (1)

Publication Number Publication Date
JPH07106107A true JPH07106107A (en) 1995-04-21

Family

ID=17228380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25181893A Pending JPH07106107A (en) 1993-10-07 1993-10-07 Ceramic semiconductor composition

Country Status (1)

Country Link
JP (1) JPH07106107A (en)

Similar Documents

Publication Publication Date Title
JP5327554B2 (en) Semiconductor ceramic and positive temperature coefficient thermistor
JP5251506B2 (en) Resistance memory element
JP2004244300A (en) Piezoelectric ceramic composition, its production method, piezoelectric element, and dielectric element
JPWO2008152976A1 (en) Semiconductor ceramic material
JP3286906B2 (en) Semiconductor ceramic device with negative resistance-temperature characteristics
JP3687696B2 (en) Semiconductor porcelain composition and semiconductor porcelain element using the same
JP3245984B2 (en) Barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic and method of manufacturing the same
EP0609888B1 (en) Semiconductive ceramics having negative temperature coefficient of resistance
JPH07106107A (en) Ceramic semiconductor composition
JPH07130505A (en) Semiconductor ceramic composition
JP5812091B2 (en) Semiconductor ceramic and positive temperature coefficient thermistor
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP2697095B2 (en) Ceramic capacitor and method of manufacturing the same
JP2005001971A (en) Barium titanate semiconductor ceramic composition
JPH07176406A (en) Negative resistance temp. coefficient semiconductor ceramics, rush current-blocking element and motor start delaying element
KR100358301B1 (en) Semiconducting ceramic, semiconducting ceramic element and method for producing the semiconducting ceramic
JP2707706B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
US20010001205A1 (en) Semiconductor ceramics having negative temperature coefficients of resistance
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JP2773309B2 (en) Ceramic capacitor and method of manufacturing the same
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same
JP3624975B2 (en) PTC thermistor material and manufacturing method thereof
JPH11116332A (en) Semiconductor ceramic composition and semiconductor ceramic device using the same
JPH01238101A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JP3317129B2 (en) Voltage non-linear resistance ceramic composition