JP3317129B2 - Voltage non-linear resistance ceramic composition - Google Patents

Voltage non-linear resistance ceramic composition

Info

Publication number
JP3317129B2
JP3317129B2 JP06424196A JP6424196A JP3317129B2 JP 3317129 B2 JP3317129 B2 JP 3317129B2 JP 06424196 A JP06424196 A JP 06424196A JP 6424196 A JP6424196 A JP 6424196A JP 3317129 B2 JP3317129 B2 JP 3317129B2
Authority
JP
Japan
Prior art keywords
oxide
linear resistance
varistor
voltage non
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06424196A
Other languages
Japanese (ja)
Other versions
JPH09255419A (en
Inventor
正恒 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP06424196A priority Critical patent/JP3317129B2/en
Publication of JPH09255419A publication Critical patent/JPH09255419A/en
Application granted granted Critical
Publication of JP3317129B2 publication Critical patent/JP3317129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電圧非直線性抵抗磁
器組成物に関するものである。
The present invention relates to a voltage non-linear resistance ceramic composition.

【0002】[0002]

【従来の技術】従来の電圧非直線性抵抗磁器(以降バリ
スタ素子と称する)組成物は、主成分の酸化亜鉛に各種
微量添加物を加え各々の用途に適した電気特性を得てい
た。この中においてバリスタの基本性能に加えて高いバ
リスタ電圧(V1mA/mm)が必要な場合は、素子の厚さを
厚くするか、または副成分の酸化珪素添加量を制御す
る。一方、低いバリスタ電圧の必要な場合は、素子の厚
みを薄くする方法、あるいは焼結体の酸化亜鉛結晶粒径
を大きくし単位厚み当たりの結晶粒界数を少なくする方
法として酸化チタン、酸化錫を添加するなど副成分を制
御する方法が一般的に知られている。
2. Description of the Related Art A conventional voltage non-linear resistance porcelain (hereinafter referred to as "varistor element") composition has obtained electrical characteristics suitable for each application by adding various trace additives to zinc oxide as a main component. When a high varistor voltage (V 1 mA / mm ) is required in addition to the basic performance of the varistor, the thickness of the element is increased or the amount of silicon oxide added as a sub-component is controlled. On the other hand, when a low varistor voltage is required, titanium oxide or tin oxide may be used as a method of reducing the thickness of the element or a method of increasing the zinc oxide crystal grain size of the sintered body and reducing the number of crystal grain boundaries per unit thickness. A method of controlling a sub-component such as addition of a compound is generally known.

【0003】[0003]

【発明が解決しようとする課題】このような従来の構成
で、低電圧バリスタ素子の場合、素子の厚みを薄くする
と素子の機械的強度が低くなり実用的でない。このため
必要な厚さを確保し、焼結体内の酸化亜鉛結晶粒径を大
きくする方法が用いられるが、結晶粒径を大きくし、か
つ均一粒径に整えることが難しく、これがバリスタ電圧
のバラツキの原因となっていた。
In the case of a low-voltage varistor element having such a conventional structure, when the element thickness is reduced, the mechanical strength of the element is reduced, which is not practical. For this reason, a method of securing the required thickness and increasing the crystal grain size of zinc oxide in the sintered body is used. However, it is difficult to increase the crystal grain size and to make the grain size uniform, which causes a variation in the varistor voltage. Was the cause.

【0004】本発明は、このような問題点を解決するも
ので、バリスタ電圧のバラツキをおさえ、特性の安定し
たバリスタ素子を提供することを目的にするものであ
る。
An object of the present invention is to solve such a problem and to provide a varistor element which suppresses variations in varistor voltage and has stable characteristics.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明は、副成分として含まれる酸化チタン中の不純
物が、鉄分を酸化物換算で0.004%以下に制御され
た材料を用いるものである。これにより焼結過程に発生
する液相と酸化亜鉛との反応を制御し、均一な粒成長を
促し、焼結体中の粒界の数を抑制出来る。
In order to achieve the above object, the present invention uses a material in which impurities in titanium oxide contained as a sub-component are controlled to 0.004% or less of iron in terms of oxide. Things. This controls the reaction between the liquid phase and zinc oxide generated during the sintering process, promotes uniform grain growth, and suppresses the number of grain boundaries in the sintered body.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、主成分の酸化亜鉛に、副成分として加える、添加物
中の酸化チタンに含まれる、微量不純物の鉄分を酸化物
換算で0.004%以下に制御した材料を用いるもので
ある。前記酸化チタンはバリスタ素子の焼結過程で現れ
る液相の酸化ビスマスと固相の酸化亜鉛との反応を促進
し、酸化亜鉛の均一な結晶粒径成長を助ける働きを有す
る。この中にあって鉄分は酸化チタンの働きを阻害する
ため一定水準以下に抑制する必要がある。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is characterized in that iron as a trace impurity contained in titanium oxide in an additive added to zinc oxide as a main component and contained as an additive is converted into oxide. A material controlled to 0.004% or less is used. The titanium oxide promotes the reaction between liquid-phase bismuth oxide and solid-phase zinc oxide that appears during the sintering process of the varistor element, and has a function of assisting the uniform growth of the crystal grain size of zinc oxide. Among these, iron content must be suppressed to a certain level or less in order to inhibit the function of titanium oxide.

【0007】本発明の請求項2に記載の発明は、主成分
の酸化亜鉛に、副成分として加える、添加物中の酸化コ
バルトに含まれる微量不純物のカリウム分を酸化物換算
で0.0003%以下に制御した材料を用いるものであ
る。前記酸化コバルトは主成分の酸化亜鉛に固溶し安定
した界面準位を形成し、焼結体中の結晶粒界層を制御す
る働きを有する。この中にあってカリウム分は酸化コバ
ルトの働きを阻害するため一定水準以下に制御する必要
がある。
The invention according to claim 2 of the present invention is characterized in that the potassium content of trace impurities contained in the cobalt oxide in the additive, which is added to zinc oxide as the main component, is 0.0003% in terms of oxide. The materials controlled below are used. The cobalt oxide forms a stable interface state by forming a solid solution with zinc oxide as a main component, and has a function of controlling a crystal grain boundary layer in the sintered body. In this, the potassium content must be controlled to a certain level or less in order to inhibit the function of cobalt oxide.

【0008】(実施形態1)以下、本発明の一実施形態
について説明する。
(Embodiment 1) An embodiment of the present invention will be described below.

【0009】主成分の酸化亜鉛に対し、副成分として酸
化ビスマス0.70mol%、酸化コバルト0.30m
ol%、酸化マンガン0.95mol%、酸化アンチモ
ン0.05mol%、酸化クロム0.05mol%、酸
化ニッケル0.05mol%、酸化チタン0.50mo
l%、硝酸アルミ0.0018mol%をそれぞれを秤
量添加、混合してバリスタ電圧V1mA/mmが25Vのバリ
スタ組成とした。このとき使用した材料はそれぞれ準試
薬級のものを用いたが、このなかで特に、酸化チタンは
その中に含まれる微量不純物の鉄分を酸化物換算で0.
004%以下、酸化コバルトは微量不純物のカリウムを
酸化物換算で0.0003%以下に制御した材料を用い
た。上記バリスタ組成物を10ロット作成した。これら
それぞれの造粒粉を800kg/cm2の圧力で、直径13m
m、厚み1.2mmの円板に成形後、1260℃の温度で
焼結体とした。この焼結体の両面に銀電極を焼き付けて
バリスタ素子を完成した。こうして得られたバリスタ素
子のバリスタ電圧V1mA/mmを測定し、その結果を(表
1)に示す。また、酸化チタン、および酸化コバルトを
前記のように特別に制御していない材料を使用した場合
の結果も併せて示した。
Bismuth oxide 0.70 mol%, cobalt oxide 0.30 m
ol%, manganese oxide 0.95 mol%, antimony oxide 0.05 mol%, chromium oxide 0.05 mol%, nickel oxide 0.05 mol%, titanium oxide 0.50 mo
1% and 0.0018 mol% of aluminum nitrate were weighed and mixed to obtain a varistor composition having a varistor voltage V 1 mA / mm of 25 V. The materials used at this time were each of a quasi-reagent grade. Among them, titanium oxide, in particular, contained iron, which is a trace impurity contained therein, in an amount of 0.1% in terms of oxide.
004% or less, and cobalt oxide used was a material in which potassium as a trace impurity was controlled to 0.0003% or less in terms of oxide. Ten lots of the varistor composition were prepared. Each of these granulated powders was pressed at a pressure of 800 kg / cm 2 at a diameter of 13 m.
After molding into a disk having a thickness of 1.2 mm and a thickness of 1.2 mm, a sintered body was formed at a temperature of 1260 ° C. A varistor element was completed by baking silver electrodes on both sides of the sintered body. The varistor voltage V 1 mA / mm of the varistor element thus obtained was measured, and the results are shown in (Table 1). In addition, the results when titanium oxide and cobalt oxide were not specifically controlled as described above were also shown.

【0010】[0010]

【表1】 [Table 1]

【0011】(表1)で明らかなように、酸化チタン、
酸化コバルトを特別に制御した材料を用いて作成したバ
リスタ素子のバリスタ電圧V1mA/mmは、ロット間の変動
が少なく安定した値を示す。一方前記材料を特に制御し
てない材料を用いて作成した場合は、バリスタ素子のバ
リスタ電圧V1mA/mmはロット間で大きく変動している。
さらに、酸化チタン、および酸化コバルトに含まれる不
純物量を制御して得られたバリスタ素子を研磨後、光学
顕微鏡観察においても酸化亜鉛の焼結体粒径が50〜6
0μmと大きくしかも均一になっていることが確認され
ている。
As is clear from Table 1, titanium oxide,
The varistor voltage V 1 mA / mm of a varistor element made of a material in which cobalt oxide is specially controlled shows a stable value with little variation between lots. On the other hand, when the varistor element is prepared using a material that is not particularly controlled, the varistor voltage V 1 mA / mm of the varistor element varies greatly between lots.
Further, after polishing the varistor element obtained by controlling the amount of impurities contained in the titanium oxide and the cobalt oxide, the sintered body particle size of the zinc oxide was 50 to 6 in optical microscope observation.
It has been confirmed that it is as large as 0 μm and uniform.

【0012】(実施形態2)主成分の酸化亜鉛に対し、
副成分として酸化ビスマス0.70mol%、酸化コバ
ルト0.30mol%、酸化マンガン0.95mol
%、酸化アンチモン0.05mol%、酸化クロム0.
05mol%、酸化ニッケル0.05mol%、酸化チ
タン0.50mol%、硝酸アルミ0.0018mol
%をそれぞれを秤量添加、混合してバリスタ電圧V
1mA/mmが25Vのバリスタ組成とした。このとき使用し
た材料はそれぞれ実施形態1と同様な材料を用いたが、
この中にあって、 (1)酸化チタンのみを、これに含まれる微量不純物の
鉄分を酸化物換算で各々、0.002%、0.004
%、0.006%、および0.008%にそれぞれ制御
した材料を用い、その他の材料は特別に制御していない
材料を用いた場合。
(Embodiment 2) For zinc oxide as a main component,
Bismuth oxide 0.70 mol%, cobalt oxide 0.30 mol%, manganese oxide 0.95 mol as subcomponents
%, Antimony oxide 0.05 mol%, chromium oxide 0.
05 mol%, nickel oxide 0.05 mol%, titanium oxide 0.50 mol%, aluminum nitrate 0.0018 mol
% Were weighed and mixed, and the varistor voltage V
The varistor composition was 1 mA / mm of 25 V. The materials used at this time were the same as those in Embodiment 1,
Among them, (1) only titanium oxide, and the iron content of trace impurities contained therein was 0.002% and 0.004% in terms of oxide, respectively.
%, 0.006%, and 0.008%, respectively, and the other materials are not specifically controlled.

【0013】(2)酸化コバルトのみを、これに含まれ
る微量不純物のカリウムを酸化物換算で各々、0.00
01%、0.0003%、0.0005%、および0.
0010%に制御した材料を用いその他の材料は特別に
制御していない材料を用いた場合。 についてそれぞれ直径13mm、厚さ1.2mmに成形した
素子を、実施形態1と同様な処理を行い、そのバリスタ
電圧V1mA/mmを評価しその結果をそれぞれ(表2)、
(表3)に示した。
(2) Only cobalt oxide and potassium, a trace impurity contained therein, are converted to oxides in amounts of 0.00
01%, 0.0003%, 0.0005%, and 0.1%.
When a material controlled to 0010% is used and other materials are not specially controlled. Each of the devices formed into a diameter of 13 mm and a thickness of 1.2 mm was subjected to the same treatment as in the first embodiment, and the varistor voltage V 1 mA / mm was evaluated.
The results are shown in (Table 3).

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】(表2)で明らかなように、酸化チタン中
の鉄分が0.004%より多くなると急激にバリスタ電
圧が高くなるとともに、バラツキも大きくなることが判
る。(表3)においても酸化コバルト中のカリウム分が
0.0003%より多くなるとバリスタ電圧が高くな
り、バラツキも大きくなることが判る。
As is clear from Table 2, when the iron content in the titanium oxide is more than 0.004%, the varistor voltage increases rapidly and the variation also increases. Also in Table 3, it can be seen that, when the potassium content in the cobalt oxide is more than 0.0003%, the varistor voltage increases and the variation increases.

【0017】尚、酸化チタン、酸化コバルトは材料の製
造方法において、それぞれ鉄分、カリウム分の混入が避
けがたくこの不純物を極めて低いレベルに制御すると、
材料が非常に高価なものとなることから、工業的に生産
可能で、しかもバリスタ素子の性能に悪影響を与えない
範囲を定めた。これにより酸化亜鉛の粒成長を促進する
とともに、副成分が反応してできる粒界中のスピネル相
の安定化が図れ、バリスタ電圧V1mA/mmの変動が制御で
きる。
[0017] Titanium oxide and cobalt oxide are difficult to avoid from being mixed with iron and potassium, respectively, in the material manufacturing method.
Since the material is very expensive, a range that can be industrially produced and that does not adversely affect the performance of the varistor element is determined. This promotes the grain growth of zinc oxide, stabilizes the spinel phase in the grain boundaries formed by the reaction of the subcomponents, and can control the fluctuation of the varistor voltage V1 mA / mm .

【0018】[0018]

【発明の効果】以上のように本発明は、副成分として含
まれる酸化チタン中の不純物が、鉄分を酸化物換算で
0.004%以下に制御された材料を用いるものであ
る。つまり前記酸化チタンはバリスタ素子の焼結過程で
現れる液相の酸化ビスマスと固相の酸化亜鉛との反応を
促進し、酸化亜鉛の均一な結晶粒径成長を助ける働きを
有し、これによりバリスタ電圧のバラツキをおさえるこ
とができるものとなる。
As described above, the present invention uses a material in which impurities in titanium oxide contained as subcomponents are controlled so that iron content is 0.004% or less in terms of oxide. That is, the titanium oxide has a function of promoting the reaction between liquid-phase bismuth oxide and solid-phase zinc oxide appearing in the sintering process of the varistor element, and assisting the uniform growth of the crystal grain size of the zinc oxide. The voltage variation can be suppressed.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化亜鉛を主成分とし、副成分として酸
化ビスマス、酸化アンチモン、酸化クロム、酸化コバル
ト、酸化マンガン、酸化ニッケル、酸化チタン、および
硝酸アルミニウムを微量添加してなる電圧非直線性抵抗
磁器組成物において、前記副成分中の酸化チタン中の不
純物が、鉄分を酸化物換算で0.004%以下に制御さ
れた材料を用いることを特徴とする電圧非直線性抵抗磁
器組成物。
1. A voltage non-linear resistance comprising zinc oxide as a main component and trace amounts of bismuth oxide, antimony oxide, chromium oxide, cobalt oxide, manganese oxide, nickel oxide, titanium oxide and aluminum nitrate added as accessory components. A voltage non-linear resistance ceramic composition, wherein a material in which an impurity in the titanium oxide in the subcomponent is controlled to 0.004% or less in terms of an oxide in terms of oxide is used.
【請求項2】 副成分中の酸化コバルト中の不純物が、
カリウム分を酸化物換算で0.0003%以下に制御さ
れた材料を用いることを特徴とする請求項1記載の電圧
非直線性抵抗磁器組成物。
2. The impurities in the cobalt oxide in the secondary component,
2. The voltage non-linear resistance ceramic composition according to claim 1, wherein a material whose potassium content is controlled to 0.0003% or less in terms of oxide is used.
JP06424196A 1996-03-21 1996-03-21 Voltage non-linear resistance ceramic composition Expired - Fee Related JP3317129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06424196A JP3317129B2 (en) 1996-03-21 1996-03-21 Voltage non-linear resistance ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06424196A JP3317129B2 (en) 1996-03-21 1996-03-21 Voltage non-linear resistance ceramic composition

Publications (2)

Publication Number Publication Date
JPH09255419A JPH09255419A (en) 1997-09-30
JP3317129B2 true JP3317129B2 (en) 2002-08-26

Family

ID=13252460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06424196A Expired - Fee Related JP3317129B2 (en) 1996-03-21 1996-03-21 Voltage non-linear resistance ceramic composition

Country Status (1)

Country Link
JP (1) JP3317129B2 (en)

Also Published As

Publication number Publication date
JPH09255419A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP3317129B2 (en) Voltage non-linear resistance ceramic composition
JP3771756B2 (en) Piezoelectric ceramic composition
JPH10316467A (en) Piezoelectric ceramic composition and its production
JPH10233303A (en) Ntc thermistor
JP2004182532A (en) Piezoelectric ceramic composition
JP2016184694A (en) Semiconductor ceramic composition and ptc thermistor
JP2623188B2 (en) Varistor and manufacturing method thereof
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP3313533B2 (en) Zinc oxide-based porcelain composition and method for producing the same
JP2012209292A (en) Positive thermistor
JP2003109806A (en) Nonlinear resistor and its manufacturing method
JP3555395B2 (en) Barium lead titanate based semiconductor porcelain composition
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JP3213647B2 (en) Negative thermistor composition and negative thermistor
JPH09330806A (en) Manufacture of voltage nonlinear resistor
JPH10149904A (en) Manufacturing method of varistor
JPH07133152A (en) Production of piezoelectric porcelain composition
JPH1112033A (en) Barium lead titanate-based semiconductor ceramic composition
JPH0521209A (en) Composition for thermistor
JPH02106903A (en) High-temperature ptc thermistor and manufacture thereof
JPH1197217A (en) Manufacture of voltage-nonlinear resistor for low voltage
JP2000044333A (en) Production of zinc oxide varistor
JPH0610929B2 (en) Ceramic composition for dielectric of multilayer capacitor
JPS59117204A (en) Metal oxide varistor composition for increasing voltage gradient
JP2003007512A (en) Nonlinear resistor element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees