JPS6115303A - Method of producing oxide voltage nonlinear resistor - Google Patents

Method of producing oxide voltage nonlinear resistor

Info

Publication number
JPS6115303A
JPS6115303A JP59135909A JP13590984A JPS6115303A JP S6115303 A JPS6115303 A JP S6115303A JP 59135909 A JP59135909 A JP 59135909A JP 13590984 A JP13590984 A JP 13590984A JP S6115303 A JPS6115303 A JP S6115303A
Authority
JP
Japan
Prior art keywords
raw material
slurry
nonlinear resistor
voltage nonlinear
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59135909A
Other languages
Japanese (ja)
Inventor
今井 基真
修 古川
金井 秀之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59135909A priority Critical patent/JPS6115303A/en
Publication of JPS6115303A publication Critical patent/JPS6115303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は酸化物電圧非直線抵抗体の製造方法に関し、特
に酸化亜@ (ZnO)系電圧非直線抵抗体の原料の混
合方法の改良に係る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing an oxide voltage nonlinear resistor, and in particular to an improvement in a method for mixing raw materials for a zinc oxide (ZnO)-based voltage nonlinear resistor. .

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電圧非直線抵抗体、すなわちバリスタは、非直線的な電
圧−電流特性を有し、印加電圧の増大に伴いその抵抗が
急激に減少して流れる電流が著しく増大するので、異常
な高電圧の吸収又は電圧安定化のために広く実用に供さ
れている。
A voltage non-linear resistor, that is, a varistor, has non-linear voltage-current characteristics, and as the applied voltage increases, its resistance rapidly decreases and the flowing current increases significantly, so it is difficult to absorb abnormally high voltage. It is also widely used for voltage stabilization.

そ2.の代表的なものとしてZnO系焼結体を用いたバ
リスタが知られている。
Part 2. A varistor using a ZnO-based sintered body is known as a typical example.

このようなZnO系電圧非直線抵抗体は一般に次のよう
な方法で製造されている。すなわち、まず、主成分原料
であるZnO粉末と副成分原料である酸化ビスマス(B
i203) l酸化アンチモン(Sb2()5) r酸
化コバルト(CoO)、酸化マフがン(MnO)などの
金属酸化物の微粉末とを所定の割合で配合し、これを混
合・粉砕機中で例えばノルコニアボールを用いて混合・
粉砕した後、適当なバインダを添加して所定粒径に造粒
する。
Such a ZnO-based voltage nonlinear resistor is generally manufactured by the following method. That is, first, ZnO powder, which is the main component raw material, and bismuth oxide (B
i203) l Antimony oxide (Sb2()5) r Fine powder of metal oxides such as cobalt oxide (CoO) and muffin oxide (MnO) are blended in a predetermined ratio, and this is mixed and crushed in a grinder. For example, using Norconia balls to mix and
After pulverizing, an appropriate binder is added to granulate the powder to a predetermined particle size.

次いで、この造粒粉末を所定の型内に充填した後、これ
を圧粉成形して圧粉体(例えばベレット)とし、得られ
た圧粉体を例えば1100〜1350℃程度の温度で焼
成することによりZnO糸焼結体を得るものである。
Next, after filling this granulated powder into a predetermined mold, it is compacted to form a compact (for example, a pellet), and the obtained compact is fired at a temperature of, for example, about 1100 to 1350°C. By doing this, a ZnO yarn sintered body is obtained.

得られた焼結体においては、主成分のZnOは通常数μ
m〜数十μmの比較的大きな結晶粉成分を構成し、副成
分である金属酸化物は、znO結晶粒を薄く被覆した状
態で結晶粒相互の接触面に層状に介在する粒界層成分を
構成している。
In the obtained sintered body, the main component, ZnO, usually has a thickness of several μm.
The metal oxide, which is a subcomponent, constitutes a relatively large crystal powder component ranging from m to several tens of μm, and forms a grain boundary layer component that thinly covers the ZnO crystal grains and is interposed in a layered manner on the contact surface between the crystal grains. It consists of

このような微細構造を有するZnO系バリスタにおいて
、各成分の組織的な均一度は、電圧非直線性、寿命特性
、サージエネルギー耐量などのバリスタ特性の安定化及
び向上にとって重要な因子として作用する。
In a ZnO-based varistor having such a microstructure, the structural uniformity of each component acts as an important factor for stabilizing and improving varistor characteristics such as voltage nonlinearity, life characteristics, and surge energy resistance.

しかし、従来の製造方法では主成分原料であるZnO粉
束や副成分原料である金属酸化物粉末として微細な粒子
径を有するものを用いることにょう組織上の均一度を向
上することが試みられたが、期待通シの効果を得ること
は非常に困難であった。また、一般に副成分原料の添加
量はZnO粉末量に比べて極めて少量であるため、両者
の混合が不十分となり、特にZnO結晶粒間に厚み及び
組成の均一な粒界層成分を介在させることが非常に困難
である。
However, in conventional manufacturing methods, attempts have been made to improve the structural uniformity by using ZnO powder bundles as the main component raw material and metal oxide powders as the subcomponent raw materials with fine particle diameters. However, it was extremely difficult to achieve the desired effect. In addition, since the amount of subcomponent raw materials added is generally extremely small compared to the amount of ZnO powder, mixing of the two becomes insufficient, and it is particularly difficult to interpose grain boundary layer components with uniform thickness and composition between ZnO crystal grains. is extremely difficult.

したがって、従来の製造方法ではバリスタ特性そのもの
の劣化を招くうえに、製造ロット間又はロット内で特性
のバラツキが大きくなり、品質安定性の低下を招くとい
う欠点がある。
Therefore, conventional manufacturing methods have the disadvantage that not only the varistor characteristics themselves deteriorate, but also the characteristics vary widely between or within manufacturing lots, leading to a decrease in quality stability.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであシ、優れた
特性を有する酸化物電圧非直線抵抗体を安定した品質で
製造し得る方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing an oxide voltage nonlinear resistor having excellent characteristics with stable quality.

〔発明の概要〕[Summary of the invention]

本発明者らは、従来の製造方法のように原料粉末を混合
した、場合には、副成分原料が凝集体を形成し、厚み及
び組成の均一な粒界層成分を形成することができないこ
とを見出した。そして、厚み及び組成の均一な粒界層成
分を形成するために、原料の混合方法について鋭意研究
を重ねた結果、原料をスラリー化し、しかも段階的に混
合すれば凝集体の生成が著しく低減し、更には焼結体の
バリスタ特性が向上するとの知見を得た。
The present inventors discovered that when raw material powders are mixed as in the conventional manufacturing method, the subcomponent raw materials form aggregates, making it impossible to form grain boundary layer components with uniform thickness and composition. I found out. In order to form a grain boundary layer component with a uniform thickness and composition, we have conducted intensive research on mixing methods of raw materials, and have found that by slurrying the raw materials and mixing them in stages, the formation of aggregates can be significantly reduced. Moreover, it was found that the varistor properties of the sintered body were improved.

すなわち本発明の酸化物電圧非直線抵抗体の製造方法は
、副成分原料の少なくとも一部と主成分原料である酸化
亜鉛の一部とをスラリーとする工程と、最終的に該スラ
リーとスラリー化した残余の原料とを混合する工程とを
具備したことを特徴とするものである。
That is, the method for manufacturing an oxide voltage nonlinear resistor of the present invention includes a step of making a slurry of at least a part of the subcomponent raw material and a part of zinc oxide, which is the main component raw material, and finally forming the slurry with the slurry. The method is characterized by comprising a step of mixing the remaining raw materials.

本発明において、副成分原料は主成分原料である酸化亜
鉛に配合して焼結体を製造したときに、該焼結体にバリ
スタ特性を付与し、性能を向上させるものであれば何で
もよい。このような副成分原料としては、アンチモン(
Sb)、ビスマス(Bi)、クロム(Cr)、:+パル
ト(’coLマンガノ(Mn ) 、 ニッケル(Ni
)、ケイ素(Si)。
In the present invention, the sub-component raw material may be any material as long as it imparts varistor properties to the sintered body and improves its performance when the sintered body is produced by blending it with the main component raw material, zinc oxide. Such subcomponent raw materials include antimony (
Sb), bismuth (Bi), chromium (Cr), :+pult ('coL Mangano (Mn), nickel (Ni)
), silicon (Si).

アルミニウム(Al)、ホウ素(B)、銀(Ag)等の
酸化物その他の化合物のうち少なくとも1種が挙げられ
る。
At least one of oxides such as aluminum (Al), boron (B), silver (Ag), and other compounds may be used.

本発明方法においては、まず副成分原料の一部又は全部
と主成分原料である酸化亜鉛の一部とを、混合した抜水
に分散してスラリー化するか又はスラリー化したもの同
士を混合することによりスラリーとする。次に、このス
ラリーと残余の原料(主成分原料と副成分原料又は主成
分原料のみ)、をスラリー化したものとを混合する。
In the method of the present invention, first, some or all of the subcomponent raw materials and a part of the main component raw material, zinc oxide, are dispersed in mixed drained water to form a slurry, or the slurry products are mixed together. In some cases, it is made into a slurry. Next, this slurry is mixed with a slurry of the remaining raw materials (the main component raw material and the subcomponent raw material or only the main component raw material).

なお、残余の原料をスラリー化したものは複数回に分割
して混合してもよい。また、スラリー作成時には適当な
分散剤やバインダを添加してもよい。
Note that the slurry of the remaining raw materials may be divided into multiple portions and mixed. Furthermore, an appropriate dispersant or binder may be added when preparing the slurry.

このように原料をスラリー化し、段階的に混合すれ、ば
、副成分原料が凝集するのを防止でき、スラリーを乾燥
した後、造粒し、更に焼結体を製造すれば、この焼結体
内の粒界層成分は均一な厚み及び組成を有し、良好なバ
リスタ特性を得られるとともにロット間及びロット内の
特性のバラツキも極めて小さくなる。
By slurrying the raw materials and mixing them in stages, it is possible to prevent the subcomponent raw materials from agglomerating.If the slurry is dried, then granulated, and a sintered body is manufactured, the internal The grain boundary layer component has a uniform thickness and composition, and good varistor properties can be obtained, and variations in properties between lots and within lots are also extremely small.

また、ZnOを主成分としB+703 r Coo +
 Sb2Sb203r 、 NiOをそれぞれ0.1〜
5 mo1%程度含有する系(必要に応じCr2O3等
の他の成分も含む)は、非直線特性、寿命特性に優れて
いるが、特に0.1重量%以下程度のB + Ag r
 Si等の化合物の微量添加によシ、更に特性が向上す
る。
In addition, ZnO is the main component and B+703 r Coo +
Sb2Sb203r and NiO each from 0.1 to
A system containing approximately 1% of B + Ag r (containing other components such as Cr2O3 as necessary) has excellent nonlinear characteristics and life characteristics, but especially B + Ag r of approximately 0.1% by weight or less.
By adding a small amount of a compound such as Si, the properties are further improved.

特に、このような0.1重量−以下程度の微量添加成分
の均一性については本発明の方法は有効であシ、このよ
うな微量添加で有効な副成分としては例えば前記のB 
I Ag + Si等の化合物が挙げられる。
In particular, the method of the present invention is effective for the uniformity of such small amounts of added components of about 0.1 weight or less, and examples of subcomponents that are effective in such small amounts of addition include
Examples include compounds such as I Ag + Si.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜9及び比較例1 1ず、副成分原料としてBi2O30,75モル%。 Examples 1 to 9 and Comparative Example 1 1. Bi2O30.75 mol% as a subcomponent raw material.

Coo 0.5モル% 、 MnO0,5モル% 、 
5b2o51.0モル% l Cr2030.5モル、
 % 、 NiO1,Oモルチ。
Coo 0.5 mol%, MnO 0.5 mol%,
5b2o51.0 mol% l Cr2030.5 mol,
%, NiO1,Omolti.

Al(No3)50.01モルチ、更に副成分原料のう
ち微量成分(0,1重量%以下程度添加する成分)とし
て5i020.01重量%、 82030.02重量%
Al(No3) 50.01% by weight, and 5i020.01% by weight, 82030.02% by weight as trace components (components added at about 0.1% by weight or less) among the raw materials for subcomponents.
.

Ag2O0,02重量%、残部が主成分原料であるZn
Oからなる配合組成となるように各成分を秤取した。
0.02% by weight of Ag2O, the balance being Zn which is the main component raw material
Each component was weighed out so that the composition consisted of O.

次に、副成分のうち微量成分の全量と、主成分原料であ
るZnO及び微量成分以外の副成分原料の合計量のうち
下記第1表の1回目に示す量(重量%)とを所定量の水
とともに所定時間混合し、スラリー化した。つづいて、
残余の原料(主成分原料であるZnO及び微量成分以外
の副成分原料からなる)を上記と同様にスラリー化し、
下記第1表の2回目以降に示す量(重量%)に相当する
スラリーを1回目のスラリーと合わせて通算20時間の
混合を行なった。
Next, the total amount of trace components among the subcomponents and the amount (wt%) shown in the first column in Table 1 below of the total amount of ZnO, which is the main component raw material, and the subcomponent raw materials other than trace components, are determined by a predetermined amount. of water for a predetermined period of time to form a slurry. Continuing,
The remaining raw materials (consisting of ZnO, which is the main component raw material, and subcomponent raw materials other than trace components) are slurried in the same manner as above,
Slurries corresponding to the amounts (wt%) shown in the second and subsequent times in Table 1 below were combined with the first slurry and mixed for a total of 20 hours.

なお、使用した水の全量は重量比で原料の合計量の2.
5倍であシ、重量比で各回ごとに分配した。また、実施
例1〜4については1回目の混合時間は5時間、実施例
5〜9については最終回以前の混合時間は各2時間とし
た。
The total amount of water used is 2.2% of the total amount of raw materials by weight.
It was distributed 5 times in weight ratio each time. Further, for Examples 1 to 4, the first mixing time was 5 hours, and for Examples 5 to 9, the mixing time before the final time was 2 hours each.

また、下記第1表中比較例1は従来の方法のように上記
各成分を一括混合したものである。
Furthermore, in Comparative Example 1 in Table 1 below, the above components were mixed all at once as in the conventional method.

第1表 実施例10〜18及び比較例2 まず、副成分原料としてBi2O3Q、 75 %ヤチ
Table 1 Examples 10 to 18 and Comparative Example 2 First, Bi2O3Q, 75% Yachi, was used as a subcomponent raw material.

Co00.5モル% 、 MnO0,5モル% 、 5
b2o31.0モ/L’ % ! 5i020.5 モ
ル% 、 Cr2O30,5モル%。
Co00.5 mol%, MnO0.5 mol%, 5
b2o31.0mo/L'%! 5i020.5 mol%, Cr2O30.5 mol%.

Ni01.0モルチ、 A/(NO3)30.01モル
チオ残部が主成分原料であるZnOからなる配合組成と
なるように各成分を秤取した。
Each component was weighed out so that the blended composition consisted of 01.0 mole of Ni and 30.01 mole of A/(NO3), with the remainder being ZnO, which was the main raw material.

次に、副成分の全量と、主成分原料であるZnOのうち
下記第2表の1回目に示す量(型針%)とを所定量の水
とともに所定時間混合し、スラリー化した。つづいて、
残余の原料(主成分原料であるZnOからなる)を上記
と同様にスラリー化し、下記第2表の2回目以降に示す
量(重量%)に相当するスラリーを1回目のスラリーと
合わせて通算20時間の混合を行なった。
Next, the total amount of the subcomponents and the amount of ZnO, which is the main component raw material, shown in the first batch in Table 2 below (% of mold needles) were mixed together with a predetermined amount of water for a predetermined time to form a slurry. Continuing,
The remaining raw material (consisting of ZnO, which is the main component raw material) was made into a slurry in the same manner as above, and the slurry corresponding to the amount (wt%) shown from the second time onwards in Table 2 below was combined with the first slurry to make a total of 20. Time mixing was performed.

なお、使用した水゛の全量は重量比で原料の合計量の2
.5倍であり、重量比で各回ごとに分配した。また、実
施例10〜13については1回目の混合時間は5時間、
実施例14〜18については最終回以前の混合時間は各
2時間とした。
The total amount of water used is 2 times the total amount of raw materials by weight.
.. 5 times, and distributed each time by weight ratio. In addition, for Examples 10 to 13, the first mixing time was 5 hours,
For Examples 14 to 18, the mixing time before the final round was 2 hours each.

また、下記第2表中比較例2は従来の方法のように上記
各成分を一括混合したものである。
Furthermore, in Comparative Example 2 in Table 2 below, the above components were mixed all at once as in the conventional method.

第2表 上述したように原料の全量を混合した後、スラリーを乾
燥し、更に適量のポリビニルアルコール(PVA)を添
加して造粒した。つづいて、得られた造粒粉末を所定寸
法・形状の金型の中に充填して加圧成形した。次いで、
得られたべL/ワット1 ’100℃〜13oo℃で2
時間焼成し、直径20震厚み2噛の円板状の焼結体を得
た。この焼結体の両面にアルミニウム電極を溶射し、特
性測定用の試料とした。
Table 2 After all the raw materials were mixed as described above, the slurry was dried, and an appropriate amount of polyvinyl alcohol (PVA) was added for granulation. Subsequently, the obtained granulated powder was filled into a mold having a predetermined size and shape and press-molded. Then,
Obtained L/W 1'2 at 100℃~13oo℃
Firing was performed for an hour to obtain a disk-shaped sintered body with a diameter of 20 mm and a thickness of 2 mm. Aluminum electrodes were thermally sprayed on both sides of this sintered body to prepare a sample for measuring characteristics.

これらの試料について、下記のようにして性能を調べた
The performance of these samples was investigated as follows.

1)寿命特性 各試料を90℃の恒温槽に入れ、それぞれ1mA 、 
10 /jAの電流を流したときの初期電圧値v1mA
、v1oよを測定し、更にこれら電圧の95−の電圧を
200時間印加したときの電圧:(vlmA )200
 r (v10μA)2’OOを測定し・それらの値か
ら変化率: ((VlmA)2oo  VlmA:)/
 V1m* +〔(v10μA)200−v10μム〕
/v1oμAを算出した。この変化率が小さいほど、そ
の特性劣化が小さいことを表わす。これらの結果を下記
第3表に示す。
1) Life characteristics Each sample was placed in a constant temperature bath at 90℃, and each sample was heated to 1mA,
Initial voltage value v1mA when a current of 10/jA flows
, v1o, and further applied a voltage of 95- of these voltages for 200 hours: (vlmA)200
Measure r (v10μA)2'OO and calculate the rate of change from these values: ((VlmA)2oo VlmA:)/
V1m* + [(v10μA) 200-v10μm]
/v1oμA was calculated. The smaller this rate of change is, the smaller the characteristic deterioration is. These results are shown in Table 3 below.

2)非直線性及びサージエネルギー耐量各試料に10 
kAの電流を流したときの電圧値:vlokAを測定し
X” 10kA / vlmAを算出した。この制限電
圧比が小さいほど非直線性に優れていることを表わす。
2) Nonlinearity and surge energy tolerance 10 for each sample
The voltage value when a current of kA was passed: vlokA was measured and X''10kA/vlmA was calculated.The smaller the limiting voltage ratio, the better the nonlinearity.

また、サージエネルギー耐量は、JEC’−203,4
3頁に記載されている方法に準拠し・試料に2 m5e
cの電流矩形波を印加して試料の単位体積Ccrn3)
当シの矩形波放電耐量(Joul)として示した。これ
らの結果を下記第4表に示す0 3)製品の品質安定性 実施例2及び11にっき10ツ)10個で10ロツト製
造し、全数のv 1mA を測定してそのバラツキを調
べた。この結果を第1図(実施例2)及び第2図(実施
例11)にそれぞれ示す。また比較のため比較例1及び
2について同様に各ロットのバラツキを調べ、その結果
を第3図(比較例1)及び第4図(比較例2)にそれぞ
れ示す。
In addition, the surge energy resistance is JEC'-203,4
According to the method described on page 3, 2 m5e was added to the sample.
By applying a current rectangular wave of c, the unit volume of the sample Ccrn3)
It is shown as the rectangular wave discharge withstand capacity (Joul). These results are shown in Table 4 below. 3) Product quality stability Examples 2 and 11 10 lots of 10 pieces were manufactured, and the v 1 mA of all the pieces was measured to examine the variation. The results are shown in FIG. 1 (Example 2) and FIG. 2 (Example 11), respectively. Further, for comparison, the variation between each lot was similarly investigated for Comparative Examples 1 and 2, and the results are shown in FIG. 3 (Comparative Example 1) and FIG. 4 (Comparative Example 2), respectively.

第3表 第4表 第3表から明らかなように比較例1及び2のバリスタは
電圧の変化率が大きく、特性劣化が大きいのに対し、実
施例1〜18のバリスタはいずれも電圧の変化率が小さ
く、特性劣化が小さい。また、第4表から明らかなよう
に比較例1及び2のバリスタは非直線性に劣シ、サージ
エネルギー耐量が小さいのに対し、実施例1〜18のバ
リスタはいずれも非直線性に優れ、サージエネルギー耐
量も大きい。更に、第1図〜第4図から明らかなように
比較例1(第3図)及び比較例2(第4図)のバリスタ
は製造ロット間及びロット内のバリスタ電圧のバラツキ
が大きいのに対し、実施例2(第1図)及び実施例11
(第2図)のバリスタは品質が安定している。
Table 3 Table 4 As is clear from Table 3, the varistors of Comparative Examples 1 and 2 had a large rate of change in voltage and had large characteristic deterioration, whereas the varistors of Examples 1 to 18 all had a change in voltage. The ratio is small, and the deterioration of characteristics is small. Furthermore, as is clear from Table 4, the varistors of Comparative Examples 1 and 2 have poor nonlinearity and low surge energy resistance, whereas the varistors of Examples 1 to 18 all have excellent nonlinearity, It also has high surge energy resistance. Furthermore, as is clear from Figures 1 to 4, the varistors of Comparative Example 1 (Figure 3) and Comparative Example 2 (Figure 4) have large variations in varistor voltage between manufacturing lots and within lots. , Example 2 (Figure 1) and Example 11
The quality of the varistor shown in (Fig. 2) is stable.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明方法によれば、非直線性に優れ
、サージエネルギー耐量が大きく、寿命特性も良好で、
しかも製造時におけるロット間及びロット内の品質安定
性に優れた酸化物非直線抵抗体を製造できるものである
As detailed above, the method of the present invention has excellent nonlinearity, high surge energy resistance, and good life characteristics.
Furthermore, it is possible to manufacture an oxide nonlinear resistor with excellent quality stability between lots and within a lot during manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はそれぞれ実施例2、実施例11、比較
例1及び比較例2の方法により得られたバリスタのロッ
ト間、ロット内のバリスタ電圧のバラツキを示す線図で
ある。 出願人代理人  弁理士 鈴 江 武 音節1図 ロット香り 第2図 ロシト 香う
1 to 4 are diagrams showing variations in varistor voltage between lots and within lots of varistors obtained by the methods of Example 2, Example 11, Comparative Example 1, and Comparative Example 2, respectively. Applicant's Representative Patent Attorney Takeshi Suzue Syllable 1 Figure Lot Fragrance Figure 2 Rosito Scent

Claims (3)

【特許請求の範囲】[Claims] (1)酸化亜鉛を主成分とする酸化物電圧非直線抵抗体
を製造するにあたり、副成分原料の少なくとも一部と主
成分原料である酸化亜鉛の一部とをスラリーとする工程
と、最終的に該スラリーとスラリー化した残余の原料と
を混合する工程とを具備したことを特徴とする酸化物電
圧非直線抵抗体の製造方法。
(1) In manufacturing an oxide voltage nonlinear resistor whose main component is zinc oxide, there is a step of slurrying at least a part of the subcomponent raw material and a part of the main component raw material, zinc oxide, and a final step. A method for manufacturing an oxide voltage nonlinear resistor, comprising the steps of: mixing the slurry with the remaining raw material made into a slurry.
(2)スラリー化した残余の原料を複数回に分割して混
合することを特徴とする特許請求の範囲第1項記載の酸
化物電圧非直線抵抗体の製造方法。
(2) The method for manufacturing an oxide voltage nonlinear resistor according to claim 1, characterized in that the remaining slurry-formed raw material is mixed in multiple batches.
(3)副成分原料の一部がSi、Ag又はBの化合物の
うち少なくとも一種を含むことを特徴とする特許請求の
範囲第1項記載の酸化物電圧非直線抵抗体の製造方法。
(3) The method for manufacturing an oxide voltage nonlinear resistor according to claim 1, wherein a part of the subcomponent raw material contains at least one of Si, Ag, or B compounds.
JP59135909A 1984-06-30 1984-06-30 Method of producing oxide voltage nonlinear resistor Pending JPS6115303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135909A JPS6115303A (en) 1984-06-30 1984-06-30 Method of producing oxide voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135909A JPS6115303A (en) 1984-06-30 1984-06-30 Method of producing oxide voltage nonlinear resistor

Publications (1)

Publication Number Publication Date
JPS6115303A true JPS6115303A (en) 1986-01-23

Family

ID=15162665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135909A Pending JPS6115303A (en) 1984-06-30 1984-06-30 Method of producing oxide voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS6115303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224779A (en) * 1989-02-28 1990-09-06 Takara Co Ltd Driving device for rotating core material
JPH0514703U (en) * 1991-08-08 1993-02-26 タナシン電機株式会社 Rotation transmission device
JP2010077001A (en) * 2008-09-29 2010-04-08 Hitachi Metals Ltd Method and apparatus for producing slurry, slurry produced using the same and sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224779A (en) * 1989-02-28 1990-09-06 Takara Co Ltd Driving device for rotating core material
JPH0514703U (en) * 1991-08-08 1993-02-26 タナシン電機株式会社 Rotation transmission device
JP2010077001A (en) * 2008-09-29 2010-04-08 Hitachi Metals Ltd Method and apparatus for producing slurry, slurry produced using the same and sintered body

Similar Documents

Publication Publication Date Title
JPS58225604A (en) Oxide voltage nonlinear resistor
US4127511A (en) Ceramic electrical resistor with nonlinear voltage characteristic
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JPS59903A (en) Voltage nonlinear resistor
US4174303A (en) Ceramic electrical material with high nonlinear resistance
KR920005155B1 (en) Zno-varistor making method
JPS6249961B2 (en)
JP3256366B2 (en) Method of manufacturing voltage non-linear resistor
JP2546726B2 (en) Voltage nonlinear resistor
JPH0346962B2 (en)
JP5929152B2 (en) Method for manufacturing non-linear resistor element
JP2003007512A (en) Nonlinear resistor element
JPH0214763B2 (en)
JP2001093705A (en) Nonlinear resistor and method for manufacture thereof
JPH05258914A (en) Manufacture of voltage non-linear resistor
JPH04290202A (en) Manufacture of voltage dependent nonlinear resistor
JPS6156843B2 (en)
JPH02189904A (en) Manufacture of varistor
JPS6322602B2 (en)
JPS5939884B2 (en) Voltage nonlinear resistor ceramic composition and its manufacturing method
JPS62208606A (en) Manufacture of voltage nonlinear resistance device
JPS60170206A (en) Voltage nonlinear resistor
JPH0494103A (en) Manufacture of zinc oxide voltage dependent nonlinear resistor
JPS60169103A (en) Voltage nonlinear resistor
JPH0515041B2 (en)