JPH0494103A - Manufacture of zinc oxide voltage dependent nonlinear resistor - Google Patents
Manufacture of zinc oxide voltage dependent nonlinear resistorInfo
- Publication number
- JPH0494103A JPH0494103A JP2211949A JP21194990A JPH0494103A JP H0494103 A JPH0494103 A JP H0494103A JP 2211949 A JP2211949 A JP 2211949A JP 21194990 A JP21194990 A JP 21194990A JP H0494103 A JPH0494103 A JP H0494103A
- Authority
- JP
- Japan
- Prior art keywords
- zinc oxide
- mole
- oxide
- voltage
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 230000001419 dependent effect Effects 0.000 title 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000010419 fine particle Substances 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 6
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 6
- 239000002994 raw material Substances 0.000 claims abstract description 5
- 238000005245 sintering Methods 0.000 claims abstract description 5
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 4
- 238000010298 pulverizing process Methods 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- 239000011230 binding agent Substances 0.000 abstract description 2
- 239000002002 slurry Substances 0.000 abstract description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 2
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- 229910002637 Pr6O11 Inorganic materials 0.000 abstract 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 229910052709 silver Inorganic materials 0.000 abstract 1
- 239000004332 silver Substances 0.000 abstract 1
- 239000000654 additive Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical class [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052738 indium Chemical class 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical class [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、酸化亜鉛を主成分とし、副成分として例えば
プラセオジムなどの酸化物を含む酸化亜鉛電圧非直線抵
抗体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a zinc oxide voltage nonlinear resistor containing zinc oxide as a main component and an oxide such as praseodymium as a subcomponent.
酸化亜鉛を生成分とし、これに種々の添加物を加えて混
合した後、焼結してなるセラミックスは、抵抗の電圧非
直線性を示すことが知られており、印加電圧増加に伴い
抵抗が急激に減少し、電流増加が著しいため、電気回路
における異常電圧(サージ)を抑制するバリスタとして
広く実用されている。Ceramics made by mixing zinc oxide with various additives and sintering it are known to exhibit voltage nonlinearity in resistance, and as the applied voltage increases, the resistance increases. Because the current decreases rapidly and the current increases significantly, it is widely used as a varistor to suppress abnormal voltage (surge) in electrical circuits.
バリスタの電圧−電流特性は次の近似式で示される。The voltage-current characteristics of the varistor are expressed by the following approximate equation.
■
! −(−)α
に
こでIはバリスタに流れる電流、■は印加電圧、Cは定
数、αは電圧非直線指数である。すなわち、バリスタ特
性はCおよびαの二つの定数で表わすことができる。通
常、Cの代わりにバリスタに1mAの電流を流したとき
の電圧V、、、が用いられる。■! -(-)α where I is the current flowing through the varistor, ■ is the applied voltage, C is a constant, and α is the voltage nonlinear index. That is, the varistor characteristics can be expressed by two constants, C and α. Usually, instead of C, the voltage V when a current of 1 mA flows through the varistor is used.
特に、電圧非直線性を示す指数であるαは値が大きいこ
とが重要とされている。酸化亜鉛バリスタは優れた電圧
−電流特性を示し、さらに素子犀さを#璽することによ
り特性を任意に調節できる特徴を備えている。In particular, it is considered important that α, which is an index indicating voltage nonlinearity, has a large value. Zinc oxide varistors exhibit excellent voltage-current characteristics, and also have the characteristic that the characteristics can be adjusted arbitrarily by adjusting the element stiffness.
一方、これらの酸化亜鉛バリスタを各種電子機器の電源
入力側の線間およびアース間対応として使用する場合、
従来の酸化亜鉛電圧非直線抵抗体は常時電圧印加時にお
ける低電流領域の特性変化が大きく、さらに大電流の長
波尾サージが印加された場合のバリスタ電圧の変化率が
大きいために、素子の小型、高性能化を行うことが難し
いという問題があった。On the other hand, when these zinc oxide varistors are used between lines and ground on the power input side of various electronic devices,
Conventional zinc oxide voltage nonlinear resistors have large characteristic changes in the low current region when voltage is constantly applied, and also have a large rate of change in varistor voltage when large current long-tail surges are applied. However, there was a problem in that it was difficult to improve the performance.
従来の酸化亜鉛電圧非直線抵抗体の欠点を除くためには
、特に大電流領域における電圧の立上がりを低く抑える
必要がある。換言すれば入電mi域の電圧非直線性の改
善が必要とされる。このためには、酸化亜鉛に種々の金
属酸化物を添加配合した基本組成に対し、さらに数種類
の微量の添加物を加える方法が一般的にとられている0
例えばアルーミニウム、ガリウムおよびインジウムなど
の酸化物、塩の添加がある。In order to eliminate the drawbacks of conventional zinc oxide voltage nonlinear resistors, it is necessary to suppress the voltage rise particularly in the large current region. In other words, it is necessary to improve the voltage nonlinearity in the input power mi region. To this end, the general method is to add trace amounts of several types of additives to the basic composition of zinc oxide and various metal oxides.
Examples include the addition of oxides and salts of aluminum, gallium and indium.
しかし、これらの酸化物、塩は一般に数〜数10−と粒
度が粗(、また水溶液として添加1分散させるにはきわ
めて困難であった。実際に抵抗体全体にわたって添加物
の効果を得ようとすると0.01モル%以上の量を添加
することとなる。このように添加量を増すと低電流領域
における非直線性が悪(なり、大電流の長波尾サージ印
加でのバリスタ電圧の変化率が太き(なるといった、素
子としての信頼性にも問題が生じる。However, these oxides and salts generally have a coarse particle size of several to several 10 particles (and are extremely difficult to add and disperse as an aqueous solution.Actually, it is difficult to obtain the effect of additives over the entire resistor). Therefore, the amount of addition is 0.01 mol% or more.If the amount added is increased in this way, the nonlinearity in the low current region becomes worse (and the rate of change of the varistor voltage when a long wave tail surge of a large current is applied) becomes worse. Problems also arise in the reliability of the device due to the large thickness.
本発明の目的は、上述の問題を解決し、大電流領域の電
圧非直線性を改善させるための添加物を均一に分散させ
ることのできる酸化亜鉛電圧非直線抵抗体の製造方法を
提供することにある。An object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing a zinc oxide voltage nonlinear resistor that can uniformly disperse additives for improving voltage nonlinearity in a large current region. It is in.
(IIIを解決するための手段〕
上記の目的を達成するために、本発明の酸化亜鉛電圧非
直線抵抗体の製造方法は、酸化亜鉛および複数の種類の
他の金属酸化物に酸化アルミニウムを含有する粒径ln
以下の酸化亜鉛微粒子をlJ*osニ換算して0.00
1〜0.005 モル%の範囲で添加し、混合した原料
を焼結するものとする。また、本発明の製造方法は、酸
化亜鉛および複数の種類の他の金属酸化物に酸化アルミ
ニウムを含有する粒径1−以下の酸化亜鉛微粒子をAI
gozに換算して0.001〜0.005モル%の範囲
で添加し、混合、粉砕する工程、粉砕された混合物を造
粒する工程、造粒された粒体を成形する工程および成形
体を焼結する工程を含むものとする。(Means for Solving III) In order to achieve the above object, the method for manufacturing a zinc oxide voltage nonlinear resistor of the present invention includes aluminum oxide in zinc oxide and a plurality of types of other metal oxides. particle size ln
The following zinc oxide fine particles are converted into lJ*os2 and are 0.00
It is added in a range of 1 to 0.005 mol%, and the mixed raw materials are sintered. In addition, the production method of the present invention allows zinc oxide fine particles containing aluminum oxide in zinc oxide and a plurality of types of other metal oxides and having a particle size of 1 or less to be
A step of adding in a range of 0.001 to 0.005 mol% in terms of goz, mixing and pulverizing, a step of granulating the pulverized mixture, a step of molding the granulated granules, and a step of molding the molded object. It shall include a sintering process.
酸化亜鉛電圧非直線抵抗体は、酸化亜鉛を主成分とする
固有抵抗の低い結晶粒子と副成分を含む固有抵抗の高い
粒界および粒界層より成っている。The zinc oxide voltage nonlinear resistor is composed of crystal grains with low resistivity mainly composed of zinc oxide, and grain boundaries and grain boundary layers with high resistivity containing subcomponents.
非直線性は結晶粒子の抵抗が小さいほど、また粒界近傍
の抵抗が大きいほど優れている。U、O,に1111)
Eして0.001〜0.005モル%の微量のアルミニ
ウム元素は酸化亜鉛粒子中に均一に固溶し、結晶の固有
抵抗を下げて電圧非直線性を改善する。また、酸化アル
ミニウムを含有する粒径l−以下の微粒子の酸化亜鉛を
用いると、従来の酸化物1塩および水溶液を用いた場合
に比較し、原料粒体内での分散性が向上する。The smaller the resistance of crystal grains and the larger the resistance near the grain boundaries, the better the nonlinearity is. U, O, ni 1111)
A trace amount of aluminum element of 0.001 to 0.005 mol % is uniformly dissolved in the zinc oxide particles, lowering the specific resistance of the crystal and improving voltage nonlinearity. Further, when fine particles of zinc oxide containing aluminum oxide and having a particle size of 1- or less are used, the dispersibility within the raw material particles is improved compared to when a conventional oxide monosalt and aqueous solution are used.
酸化亜鉛にpr601+を0.5モル%、C05Oaを
2.0モル%、KgO+ CrtOs+ Mg’および
CaOをそれぞれ0.1モル%、B2O2を0.01モ
ル%添加したものを基本組成とし、酸化アルミニウムを
0.2重量%含有する粒度が0.15〜1nの範囲にあ
る微粒子酸化亜鉛を用い、M2O,に換算して0.00
01〜0.01モル%の範囲で添加し、ボールミルで十
分に混合、粉砕してスラリー化し、バインダ (粘結荊
)を配合し、乾燥して造粒したのち、直径17■、厚さ
約2態の円板状に成形した。このとき、密度が3.1g
/ajになるように成形圧力が調整される0次に125
0℃で1時間空気中で焼成し、焼結体の両面にStS電
性ペーストをスクリーン印刷し、600℃で5分間焼成
して電極を形成し、得られた素子のミス的特性を測定し
た。なお、酸化アルミニウムを均一に含有する酸化亜鉛
は、酸化亜鉛の粉体に硫酸アルミニウムを混合するか、
あるいは酸化亜鉛の粉体と硫酸アルミニウム水溶液を混
合し、加熱することによって得ることができる。The basic composition is zinc oxide with 0.5 mol% pr601+, 2.0 mol% CO5Oa, 0.1 mol% each of KgO+ CrtOs+ Mg' and CaO, and 0.01 mol% B2O2, and aluminum oxide. Using fine particle zinc oxide containing 0.2% by weight and having a particle size in the range of 0.15 to 1n, 0.00% in terms of M2O,
01 to 0.01 mol%, thoroughly mixed in a ball mill, pulverized to form a slurry, blended with a binder (caking thorn), dried and granulated to form a powder with a diameter of 17 cm and a thickness of approx. It was molded into a disk shape with two states. At this time, the density is 3.1g
0th order 125 where the molding pressure is adjusted so that /aj
The sintered body was fired in air for 1 hour, StS conductive paste was screen printed on both sides of the sintered body, and electrodes were formed by firing at 600 °C for 5 minutes, and the error characteristics of the resulting device were measured. . In addition, zinc oxide containing aluminum oxide uniformly can be obtained by mixing aluminum sulfate with zinc oxide powder, or by mixing aluminum sulfate with zinc oxide powder.
Alternatively, it can be obtained by mixing zinc oxide powder and an aqueous aluminum sulfate solution and heating the mixture.
第1図は、素子に40Aの電流を流したときの電圧、■
、。、と素子に111^の電流を流したときの電圧、V
16.の比、■4゜A / V 1.Aで表わした大電
流領域における非直線性とり、0.添加量の関係を示し
、第2図は素子に10μへの電流を流したときの電圧、
V、@IIAと素子に1mAの電流を流したときの電圧
、VI+IAの比、V re D / V +m AZ
表わした低電流領域の特性とに1□0.添加量の関係を
示す。Figure 1 shows the voltage when a current of 40A is passed through the element, ■
,. , and the voltage when a current of 111^ flows through the element, V
16. The ratio of ■4゜A/V 1. Nonlinearity in the large current region represented by A, 0. Figure 2 shows the relationship between the amount of addition and the voltage when a current of 10μ is passed through the element.
V, @IIA and the voltage when a current of 1 mA flows through the element, the ratio of VI + IA, V re D / V + m AZ
The characteristics in the low current region shown are 1□0. The relationship between the amounts added is shown.
第1図から大電流領域での非直線性はM2O,の添加量
が増大するに伴い特性が改善されることがわかる。一方
、第2図から、低電流領域での特性はAltosの添加
量にほぼ反比例して低下しており、0.005モル%を
超えると低電流領域での特性を悪化させることになる。It can be seen from FIG. 1 that the nonlinearity in the large current region improves as the amount of M2O added increases. On the other hand, from FIG. 2, the characteristics in the low current region decrease in almost inverse proportion to the amount of Altos added, and if the amount exceeds 0.005 mol %, the characteristics in the low current region will deteriorate.
第3図は幅2 +wsec 、 100 Aのく形波を
流を20回印加して前後のV +@Aの変化率、ΔV、
、、で表わした長波尾サージ耐量とM2O3添加量の関
係を示す。Figure 3 shows the rate of change of V + @A before and after applying a rectangular wave of width 2 + wsec and 100 A 20 times, ΔV,
The relationship between the long wave tail surge resistance and the amount of M2O3 added is shown.
第3図からはAltO,の添加量が増大するに伴い長波
尾サージ耐量が悪化していることがわかる。第2図およ
び第3図に示されるように多量のアルミニウム酸化物の
添加は低電流領域における非直線性が悪くなり、長波尾
サージ印加でのバリスタ電圧の変化率が大きくなること
から、Al2O,の添加量を極力押さえる必要がある。It can be seen from FIG. 3 that as the amount of AltO added increases, the long wave tail surge resistance deteriorates. As shown in FIGS. 2 and 3, adding a large amount of aluminum oxide worsens nonlinearity in the low current region and increases the rate of change in varistor voltage when a long wave tail surge is applied. It is necessary to suppress the amount of addition as much as possible.
具体的にはAZ 、0゜添加量として0.001〜0.
005モル%の添加が適当である。Specifically, AZ, 0° addition amount is 0.001 to 0.
A suitable addition amount is 0.005 mol%.
本発明によれば、酸化亜鉛電圧非直線抵抗体の原料粉末
に酸化アルミニウムを、酸化アルミニウムを含有する酸
化亜鉛微粒子の形で添加することにより、低電圧領域の
特性および長波尾サージ耐量の悪化する0、005モル
%を超えないM2O3に換夏しての酸化アルミニウムを
抵抗体内に均一に分散させることができ、o、ootモ
ル%以上の添加で大電流領域での電圧非直線性の同上し
た酸化亜鉛電圧非直yiA抵抗体を製造することが可能
になった。According to the present invention, by adding aluminum oxide in the form of zinc oxide fine particles containing aluminum oxide to the raw material powder of the zinc oxide voltage nonlinear resistor, the characteristics in the low voltage region and the long wave tail surge resistance are deteriorated. It is possible to uniformly disperse aluminum oxide in M2O3 which does not exceed 0,005 mol% in the resistor, and by adding more than 0,000 mol%, voltage nonlinearity in the large current region can be reduced. It has become possible to produce zinc oxide voltage non-direct yiA resistors.
第1図は酸化亜鉛電圧非直線抵抗体の大電流領域の非直
線性、第2図は低電流領域特性、第3図は長波尾サージ
耐量とklzo3添加量との関係をそれぞれ示す線図で
ある。Figure 1 shows the nonlinearity of the zinc oxide voltage nonlinear resistor in the high current range, Figure 2 shows the characteristics in the low current range, and Figure 3 shows the relationship between the long wave tail surge resistance and the amount of klzo3 added. be.
Claims (1)
アルミニウムを含有する粒径1μm以下の酸化亜鉛微粒
子をN_2O_3に換算して0.001〜0.005モ
ル%の範囲で添加し、混合した原料を焼結することを特
徴とする酸化亜鉛電圧非直線抵抗体の製造方法。 2)酸化亜鉛および複数の種類の他の金属酸化物に酸化
アルミニウムを含有する粒径1μm以下の酸化亜鉛微粒
子をN_2O_3に換算して0.001〜0.005モ
ル%の範囲で添加し、混合,粉砕する工程、その粉砕さ
れた混合物を造粒する工程、その造粒された粒体を成形
する工程およびその成形体を焼結する工程を含むことを
特徴とする酸化亜鉛電圧非直線抵抗体の製造方法。 3)酸化亜鉛と硫酸アルミニウムとの混合物を加熱し、
粉砕して得られた酸化アルミニウム含有酸化亜鉛微粒子
を用いる請求項1あるいは2記載の酸化亜鉛電圧非直線
抵抗体の製造方法。[Claims] 1) Zinc oxide fine particles with a particle size of 1 μm or less containing aluminum oxide in zinc oxide and a plurality of other metal oxides in an amount of 0.001 to 0.005 mol% in terms of N_2O_3. A method for manufacturing a zinc oxide voltage nonlinear resistor, characterized by adding a range of zinc oxide and sintering the mixed raw materials. 2) Zinc oxide fine particles containing aluminum oxide and having a particle size of 1 μm or less are added to zinc oxide and multiple types of other metal oxides in a range of 0.001 to 0.005 mol% in terms of N_2O_3, and mixed. , a step of pulverizing the pulverized mixture, a step of granulating the pulverized mixture, a step of molding the granulated granules, and a step of sintering the molded body. manufacturing method. 3) heating a mixture of zinc oxide and aluminum sulfate;
3. The method for producing a zinc oxide voltage nonlinear resistor according to claim 1, wherein aluminum oxide-containing zinc oxide fine particles obtained by pulverization are used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2211949A JPH0494103A (en) | 1990-08-10 | 1990-08-10 | Manufacture of zinc oxide voltage dependent nonlinear resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2211949A JPH0494103A (en) | 1990-08-10 | 1990-08-10 | Manufacture of zinc oxide voltage dependent nonlinear resistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0494103A true JPH0494103A (en) | 1992-03-26 |
Family
ID=16614368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2211949A Pending JPH0494103A (en) | 1990-08-10 | 1990-08-10 | Manufacture of zinc oxide voltage dependent nonlinear resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0494103A (en) |
-
1990
- 1990-08-10 JP JP2211949A patent/JPH0494103A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58225604A (en) | Oxide voltage nonlinear resistor | |
JPH0494103A (en) | Manufacture of zinc oxide voltage dependent nonlinear resistor | |
KR920005155B1 (en) | Zno-varistor making method | |
JPS605062A (en) | Manufacture of zinc oxide varistor | |
JPS6249961B2 (en) | ||
JPS6115303A (en) | Method of producing oxide voltage nonlinear resistor | |
JPH0128481B2 (en) | ||
JPH04290202A (en) | Manufacture of voltage dependent nonlinear resistor | |
JPH03116901A (en) | Zinc oxide varistor | |
JPS62232904A (en) | Manufacture of varistor | |
JPH03261101A (en) | Manufacture of voltage nonlinear resistor of zinc oxide | |
JP5929152B2 (en) | Method for manufacturing non-linear resistor element | |
JP3256366B2 (en) | Method of manufacturing voltage non-linear resistor | |
JP2003007512A (en) | Nonlinear resistor element | |
JPH05258914A (en) | Manufacture of voltage non-linear resistor | |
JPS63132401A (en) | Manufacture of voltage nonlinear resistor | |
JPS62237704A (en) | Manufacture of voltage nonlinear resistance element | |
JPS5831504A (en) | Method of producing non-linear resistor | |
JPH05267014A (en) | Manufacture of voltage dependent nonlinear resistor | |
JPH0281403A (en) | Manufacture of voltage nonlinear resistor | |
JPS5932043B2 (en) | Manufacturing method of voltage nonlinear resistance element | |
JPS61139003A (en) | Non-linear resistor | |
JPS61139004A (en) | Non-linear resistor | |
JPH0128483B2 (en) | ||
JPH0578925B2 (en) |