JPS62232904A - Manufacture of varistor - Google Patents

Manufacture of varistor

Info

Publication number
JPS62232904A
JPS62232904A JP61077137A JP7713786A JPS62232904A JP S62232904 A JPS62232904 A JP S62232904A JP 61077137 A JP61077137 A JP 61077137A JP 7713786 A JP7713786 A JP 7713786A JP S62232904 A JPS62232904 A JP S62232904A
Authority
JP
Japan
Prior art keywords
grain growth
varistor
growth promoter
zno
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61077137A
Other languages
Japanese (ja)
Other versions
JPH0795482B2 (en
Inventor
雅昭 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61077137A priority Critical patent/JPH0795482B2/en
Publication of JPS62232904A publication Critical patent/JPS62232904A/en
Publication of JPH0795482B2 publication Critical patent/JPH0795482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体電子部品をサージ電流から保護するため
の低電圧用のバリスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a low voltage varistor for protecting semiconductor electronic components from surge currents.

従来の技術 従来、ZnOを主成分とし、Bi2O3、Coo 、 
5b203゜Cr2O3を始めとする数種の金属酸化物
を副成分とする酸化亜鉛型バリスタが、優れた電圧非直
線性により、サージ吸収用の素子として広く利用されて
きた。この酸化亜鉛型バリスタは焼結体1mm当たりの
立上がり電圧(バリスタ電圧:v1mム)を調整するこ
とにより、種々の電圧回路に適用できる。
Conventional technology Conventionally, the main component is ZnO, Bi2O3, Coo,
Zinc oxide type varistors containing several types of metal oxides including 5b203°Cr2O3 as subcomponents have been widely used as surge absorbing elements due to their excellent voltage nonlinearity. This zinc oxide type varistor can be applied to various voltage circuits by adjusting the rising voltage per 1 mm of the sintered body (varistor voltage: v1 mm).

現在、実用化されている酸化亜鉛型バリスタのv1mム
/mmは概ね10〜300vである。まだ酸化亜鉛型バ
リスタのバリスタ電圧は、焼結体中のZnO粒子の直列
数に依存し、焼結体の厚みを一定とすると、バリスタ電
圧を上げるためにはZnO粒子の成長を阻害し、逆に下
げるためには促進させれば良い。例えば、ZnO、Bi
2O5、Coo 、 Sb203 。
The v1mm/mm of zinc oxide type varistors currently in practical use is approximately 10 to 300V. However, the varistor voltage of a zinc oxide type varistor depends on the number of series ZnO particles in the sintered body, and if the thickness of the sintered body is constant, in order to increase the varistor voltage, the growth of ZnO particles must be inhibited, and vice versa. In order to lower it, we need to promote it. For example, ZnO, Bi
2O5, Coo, Sb203.

5i02 、NiO、Cr2O5、MnO2などから適
当に調製された酸化亜鉛型バリスタでは、ZnO粒子の
大きさは10〜30μm程度、v1mム/mmは8o〜
300vである。一方、これらの成分にTlO2を加え
た酸化亜鉛型バリスタは低電圧化し、ZnO粒子径は5
0〜100μm、V1mム/mmは2o〜50Vとなる
In a zinc oxide type varistor suitably prepared from 5i02, NiO, Cr2O5, MnO2, etc., the size of the ZnO particles is about 10 to 30 μm, and the v1mm/mm is about 8o to
It is 300v. On the other hand, a zinc oxide type varistor with TlO2 added to these components has a lower voltage and a ZnO particle size of 5.
0 to 100 μm, V1mm/mm is 2o to 50V.

近年、家電機器、産業機器の制御回路のマイコン化が進
展し、これに伴い駆動回路電圧が低下し、そのほとんど
が10v以下である。ところが、トランジスタICを始
めとする半導体電子部品はサージ電流に極めて弱く、そ
の対策が不可欠のものとなっている。このような背景に
より、バリスタ電圧が10V程度の低電圧回路用の酸化
亜鉛型バリスタが市場から強く求められている。このた
めにはZnO粒子径を200〜300μmにする必要が
ある1−1 上記低電圧回路用の酸化亜鉛型バリスタを製造する方法
として、例えば特公昭56−39525号公報に記載の
ものが知られている。これは、ZnO99,5−E−/
L、%、 BaCO30,6モル%を混合したのち熔結
し、加水分解により30〜200μmのZnO結晶を得
る。さらに、ZnO、5b205 、 Coo 。
In recent years, the use of microcomputers in the control circuits of home appliances and industrial equipment has progressed, and as a result, drive circuit voltages have decreased, and most of them are below 10V. However, semiconductor electronic components such as transistor ICs are extremely susceptible to surge currents, and countermeasures against surge currents are essential. Against this background, there is a strong demand in the market for zinc oxide type varistors for low voltage circuits with a varistor voltage of about 10V. For this purpose, it is necessary to make the ZnO particle size 200 to 300 μm.1-1 As a method for manufacturing the zinc oxide type varistor for the above-mentioned low voltage circuit, for example, the method described in Japanese Patent Publication No. 39525/1982 is known. ing. This is ZnO99,5-E-/
After mixing 0.6 mol% of BaCO3, the mixture is welded and hydrolyzed to obtain ZnO crystals of 30 to 200 μm. Furthermore, ZnO, 5b205, Coo.

MnO2、Ni O、Or、+ 05などを混合したの
ち燐結し、スピネル相成分を得る。このスピネル相成分
とZnO結晶を適当に分級し、別に用意したZnO粉末
にスピネル相成分を1〜50重量% 、 ZnO結晶を
1〜40重景多添加し、混合、成型、燐結し、v1mム
/mmが約10Vの低電圧バリスタが作成される。
After mixing MnO2, NiO, Or, +05, etc., phosphorization is performed to obtain a spinel phase component. The spinel phase component and ZnO crystals were appropriately classified, and 1 to 50% by weight of the spinel phase component and 1 to 40 ZnO crystals were added to separately prepared ZnO powder, mixed, molded, and phosphorized to form a v1 m A low voltage varistor with a voltage of about 10 V/mm is created.

発明が解決しようとする問題点 しかしながら、上記のような従来の方法によれば、Zn
O結晶粒を得るために焼成後、加水分解、分級が必要で
あり、さらにスピネル相成分の作成にも同様の工程が必
要なため、工数が非常に多く、時間的、エネルギー的ロ
スが高いという欠点を有していた。さらに、ZnO結晶
粒とスピネル相成分、ZnO粉末を混合する際、それら
の比重の違いから均一な混合が困難で、ZnO結晶粒の
偏在によりバリスタ電圧が大きく、バラツキが大きいと
いう欠点も同時に有していた。
Problems to be Solved by the Invention However, according to the conventional method as described above, Zn
Hydrolysis and classification are required after firing to obtain O crystal grains, and a similar process is also required to create the spinel phase component, resulting in a very large number of man-hours and a high loss of time and energy. It had drawbacks. Furthermore, when mixing ZnO crystal grains, spinel phase components, and ZnO powder, it is difficult to mix uniformly due to the difference in their specific gravity, and the uneven distribution of ZnO crystal grains also has the disadvantage that the varistor voltage is large and has large variations. was.

本発明はこのような問題点を解決するもので、半導体電
子部品をサージ電流から保護するだめの低電圧用のバリ
スタの製造方法を提供することを目的とするものである
The present invention solves these problems and aims to provide a method for manufacturing a low-voltage varistor that protects semiconductor electronic components from surge currents.

問題点を解決するだめの手段 本発明では、上記従来の問題点を解決するため、酸化亜
鉛型バリスタの造粒粉を基材とし、これに別途用意した
人rhos * Tj−02などを含む酸化亜鉛バリス
タの造粒粉を粒成長促進剤として添加し、混合、成型、
焼結させることを特徴とするものである。
Means to Solve the Problems In the present invention, in order to solve the above-mentioned conventional problems, a granulated powder of a zinc oxide type varistor is used as a base material, and an oxidized powder containing separately prepared rhos*Tj-02, etc. is used as a base material. Zinc varistor granulated powder is added as a grain growth promoter, mixed, molded,
It is characterized by being sintered.

作用 上記方法を採用することにより、焼結体内部に80〜3
00μmのZnO結晶粒が分散して配置され、電圧非直
線指数の優れた低電圧のバリスタを容易に得ることとな
る。
Effect By adopting the above method, 80 to 3
00 μm ZnO crystal grains are dispersed and arranged, and a low voltage varistor with an excellent voltage nonlinearity index can be easily obtained.

実施例 以下、本発明の詳細を実施例に基づき説明する。Example Hereinafter, details of the present invention will be explained based on examples.

〈実施例1〉 まず、ZnO粉末にBi2O3、Coo 、 MnO2
、5b205 。
<Example 1> First, Bi2O3, Coo, MnO2 was added to ZnO powder.
, 5b205.

NiO、Cr2O5、TiO2をそれぞれ1.0モル%
 、0.4モル%、1.○モル%、09OSモル%、0
.8モルチ添加し、これにバインダーと水を加え混合す
る。これをスプレードライヤーにて乾燥造粒し基材を得
る。次に、粒成長促進剤として、前述の基材のス51J
−に17!20sを0,6 X 10 モ/し% 、 
1,0X10−5モル% 、 1.5 X 10 モル
% 、 2,5X10 モに% 。
1.0 mol% each of NiO, Cr2O5, and TiO2
, 0.4 mol%, 1. ○mol%, 09OSmol%, 0
.. Add 8 mulch, add binder and water and mix. This is dried and granulated using a spray dryer to obtain a base material. Next, as a grain growth promoter, the above-mentioned base material 51J
- 17!20s to 0.6 x 10 mo/%,
1,0 x 10-5 mol%, 1.5 x 10 mol%, 2,5 x 10 mol%.

s、o x 1o  モルチオ了、5X10 モルチを
添加し充分に混合し、スプレードライヤーにて乾燥、造
粒し、6種類の粉末を得る。この造粒粉を粒径20μm
〜1oOμmになるようメツシュカットを行い、粒成長
促進剤として用いた。この粒成長促進剤を基材に対し適
尚量混合し、低電圧バリスタの原料粉とした。この原料
粉を加圧成型後、1250℃で1〜6時間燐結させ、バ
リスタ電圧、電圧非直線指数などを調べた。
s, ox 1o molti, and 5X10 molti were added, thoroughly mixed, dried with a spray dryer, and granulated to obtain six types of powder. This granulated powder has a particle size of 20 μm.
Mesh cutting was performed to obtain a particle size of ~100 μm and used as a grain growth promoter. An appropriate amount of this grain growth promoter was mixed with a base material to obtain a raw material powder for a low voltage varistor. After pressure molding this raw material powder, it was phosphorized at 1250°C for 1 to 6 hours, and the varistor voltage, voltage nonlinearity index, etc. were examined.

第1図は基材に粒成長促進剤を4o重量係添加した試料
の単位素子淳み当たりのバリスタ電圧(V+mム/mm
)および電圧非直線指数(α)と、粒成長促進剤中のA
e20s 8度との関係を示しだ図である。また、第2
図は粒成長促進剤のみを焼結させた試料について、同様
にvi m A 7mmおよびαと、Ag20s濃度と
の関係である。第1図から、粒成長促進剤中の人120
5eA度が1,0X10 モルチ以下の時V + mA
 7mm は2Q〜3ov、αは約45.j5〜IjO
X 10モルチの範囲で71=ム/mmは目標とする1
6〜9V、αは約40.λe20s濃度がF5.OX 
10  モル係を越えると71m17mmおよびαの低
下が急激に起きる。第2図は粒成長促進剤のみを炉結し
た場合のデータである。第2図からArhos 濃度と
ともにvIma/mmが低下し、ZnO粒成長が発生し
ていることがわかる。このことからZnO粒成長の主原
因がAl2O5にあると推測できる。
Figure 1 shows the varistor voltage (V + mm/mm
) and the voltage nonlinearity index (α) and A in the grain growth promoter
It is a diagram showing the relationship with e20s 8 degrees. Also, the second
The figure similarly shows the relationship between vi m A 7 mm and α and the Ag20s concentration for a sample in which only the grain growth promoter was sintered. From Figure 1, 120 people in the grain growth promoter
V + mA when 5eA degree is less than 1.0x10 molti
7mm is 2Q~3ov, α is about 45. j5~IjO
71=mu/mm in the range of X 10 molts is the target 1
6-9V, α is about 40. λe20s concentration is F5. OX
When the value exceeds 10 molar ratio, the value of 71 mm and 17 mm and α rapidly decrease. FIG. 2 shows data when only the grain growth promoter was furnace solidified. From FIG. 2, it can be seen that vIma/mm decreases with the Arhos concentration, and ZnO grain growth occurs. From this, it can be inferred that the main cause of ZnO grain growth is Al2O5.

しかし、ム1205濃度を上げることのみでv11xI
A/ff1mを下げると、第2図からバリスタとしての
非常に重要な特性である電圧非直線指数(α)が極端に
低下することがわかる。
However, by simply increasing the mu1205 concentration, v11xI
It can be seen from FIG. 2 that when A/ff1m is lowered, the voltage nonlinearity index (α), which is a very important characteristic of a varistor, is extremely reduced.

第3図および第4図は基材に添加する粒成長促進剤の種
類および量を変化させた場合の”1mmムロm。
Figures 3 and 4 show "1 mm thickness" when the type and amount of the grain growth promoter added to the base material are varied.

αを示したものである。第3図、第4図で粒成長促進剤
中の人4205濃度は曲線aが1,0X10モル%、b
が2.5 X 10 モに% 、 Cjが7.5 X 
10 モル係である。そして、ム1host4度が1.
0X10モルチの場合、基材に対する粒成長促進剤の割
合が増加しても71m17mm 、αはともにほとんど
変化しない。一方、ム1203濃度が2,5 X 10
 モル係の場合、粒成長促進剤の添加量が25〜80重
量%の時、V IIIIA 7mmは10〜15v1α
は35〜4oと低電圧バリスタとして最適の特性を持つ
。しかし、添加量が80重量%を超えるとαが急激に低
下し、バリスタとして使用できなくなる。図示していな
いがA1205e度が5.OX 10  モル係の粒成
長促進剤を用いた場合にも同様の結果が得られた。また
、120s濃度が乙5X10  モル係の場合、粒成長
促進剤の添加量が10〜40重量係の時、v、mム/m
mは約6vに低下するものの、αが非常に悪くなる。
This shows α. In Figures 3 and 4, the concentration of human 4205 in the grain growth promoter is 1.0 x 10 mol% for curve a and 1.0 x 10 mol% for curve b.
is 2.5 x 10%, Cj is 7.5 x
10 moles. And MU1host4 degrees is 1.
In the case of 0x10 molti, both 71m17mm and α hardly change even if the ratio of the grain growth promoter to the base material increases. On the other hand, the concentration of mu1203 is 2.5 x 10
In the case of molar ratio, when the amount of grain growth promoter added is 25 to 80% by weight, VIIIA 7mm is 10 to 15v1α
has the optimum characteristics as a low voltage varistor, with a value of 35 to 4o. However, when the amount added exceeds 80% by weight, α sharply decreases, making it impossible to use it as a varistor. Although not shown, A1205e degree is 5. Similar results were obtained using OX 10 molar grain growth promoter. In addition, when the 120s concentration is 5 x 10 molar, and the amount of grain growth promoter added is 10 to 40 molar, v, mm/m
Although m decreases to about 6V, α becomes very poor.

さらに、添加量が60重量%を超えるとZnO粒子が異
常粒成長をし、すべての試料がショートする0以上の結
果から粒成長促進剤中の人7!20sが1.5〜5、O
X 10  モル係で、基材に対する添加量が25〜8
0重量%の時、Vjmム/mro 10〜16v、α約
40の低電圧バリスタを製造することができる。
Furthermore, when the amount added exceeds 60% by weight, ZnO particles grow abnormally, and all samples are short-circuited.
X 10 molar ratio, the amount added to the base material is 25 to 8
When it is 0% by weight, a low voltage varistor with Vjm/mro of 10 to 16v and α of about 40 can be manufactured.

ぐ実施例2〉 次に、ZnO粉末にBi2O3、Coo 、 MnO2
、5b203 、 。
Example 2 Next, Bi2O3, Coo, MnO2 were added to ZnO powder.
, 5b203, .

NiO、Cr2O5をそれぞれ1,0モル% 、 0.
6モル% 。
NiO and Cr2O5 were each 1.0 mol% and 0.
6 mol%.

0.6モルチ、0.5モル係、0.5モル%、0.1モ
ル係添加し、これにバインダーと水を加え混合する。
0.6 mol%, 0.5 mol%, 0.5 mol%, and 0.1 mol% are added, and the binder and water are added and mixed.

これをスプレードライヤーにて乾燥、造粒し基材を得る
。これに上記実施例1と同一組成の粒成長促進剤用に造
粒粉を作成する。この造粒粉を粒径6o〜200μmに
なるようメソシュカットを行い、粒成長促進剤として用
い、実施例1と同一の条件で試料を作成し、電気的特性
を調べた。
This is dried with a spray dryer and granulated to obtain a base material. In addition, a granulated powder for a grain growth promoter having the same composition as in Example 1 is prepared. This granulated powder was mesocut to a particle size of 60 to 200 μm, used as a grain growth promoter, and a sample was prepared under the same conditions as in Example 1, and its electrical properties were examined.

第5図は基材に粒成長促進剤を40重重量部加した試料
の単位素子厚み当りのバリスタ電圧(V1mム/nun
)および電圧非直線指数(α)と、粒成長促進剤中のム
1205濃度との関係を示した図である。第6図は基材
にム120sを0.5〜7.5X10−3モルチ添加し
た原料粉を成型、炉詰した試料のVjmム/n+m 、
αの値である。この基材を用いた場合にも、粒成長促進
剤中の五lhosm度が1.6〜80×10 モル係の
場合、V、mム/mmが60〜1tsVに低下するがα
は〜4o程度と良好な値を示す。一方、この基材に直接
ム120sを添加した場合、人1205濃度が0〜7.
6×10モル係で、v1mム/mrnはわずかに低下し
、αはその濃度とともに大きく低下する。
Figure 5 shows the varistor voltage (V1 mm/nun) per unit element thickness of a sample in which 40 parts by weight of a grain growth promoter was added to the base material.
) and voltage nonlinearity index (α), and the relationship between Mu1205 concentration in the grain growth promoter. Figure 6 shows the Vjm/n+m of a sample obtained by molding raw material powder with 0.5 to 7.5 x 10-3 mulch of Mu 120s added to the base material and packing it in an oven.
is the value of α. Even when this base material is used, when the degree of hosm in the grain growth promoter is 1.6 to 80 × 10 mol, V, mm/mm decreases to 60 to 1 tsV, but α
shows a good value of about 4o. On the other hand, when Mu 120s was directly added to this base material, the human 1205 concentration was 0 to 7.
At 6×10 molar ratios, v1 mm/mrn decreases slightly and α decreases significantly with its concentration.

第7図および第8図は基材に添加する粒成長促進剤の量
を変化された場合の71m17mm 、αを示したもの
である。第7図、第8図で粒成長促進剤中の人62 O
5は曲線dが1.0X10モルチ9曲線eが2.5 X
 10 モル% 、曲線fが7,5 X 10 モル%
である。これよりム1203濃度が1,0X10モルチ
の場合、粒成長促進剤の添加量を増してもv1mム/m
mは低下しない。一方、ムIhO3濃度が2.5 X 
10  モル係の場合、粒成長促進剤の添加量が25重
量%以上でv1111ム/mrnが低下し、ZnO粒成
長が発生している。また、αは80重量%を超えると急
激に低下する。図示していないが、人120sa度が1
jOX10−モル係の場合でも同様の傾向が確認された
。そして、ムhOsm度が7.5 X 10モル係の場
合、基材に対する添加量が低くてもV、mム/mmは低
下するものの、αが非常に低下し、バリスタとして使用
できなくなる。以上の実験結果から、粒成長促進剤中(
D Aj?20s (Da度は1.5〜5,0X10−
E−ル%、基材に対する添加量は25〜80重量%が最
適であることがわかる。
Figures 7 and 8 show 71m17mm and α when the amount of grain growth promoter added to the base material was varied. In Figures 7 and 8, 62 O in the grain growth promoter.
5 is curve d is 1.0X10 morch 9 curve e is 2.5X
10 mol%, curve f is 7,5 x 10 mol%
It is. From this, when the Mu1203 concentration is 1.0 x 10 molt, even if the amount of grain growth promoter added is increased, v1mm/m
m does not decrease. On the other hand, when the mu IhO3 concentration is 2.5
In the case of 10 molar ratio, when the amount of grain growth promoter added is 25% by weight or more, v1111 m/mrn decreases and ZnO grain growth occurs. Further, when α exceeds 80% by weight, it decreases rapidly. Although not shown, a person's 120sa degree is 1
A similar tendency was confirmed in the case of 10-mole of jOX. When the degree of hOsm is 7.5 x 10 mol, V and mm/mm decrease even if the amount added to the base material is low, but α decreases so much that it cannot be used as a varistor. From the above experimental results, it was found that in the grain growth promoter (
D Aj? 20s (Da degree is 1.5~5,0X10-
It can be seen that the optimum amount of E-leum added to the base material is 25 to 80% by weight.

発明の効果 以上のように本発明によれば、バリスタ特性を有する造
粒粉にAd203 、 TiO2などを含む焼結体自身
がバリスタ特性を有する造粒粉を粒成長促進剤として添
加することにより、バリスタ電圧が低く、電圧非直線性
の高い酸化亜鉛バリスタを製造することができる。
Effects of the Invention As described above, according to the present invention, by adding the granulated powder having varistor properties to the granulated powder whose sintered body itself containing Ad203, TiO2, etc. has varistor properties as a grain growth promoter, A zinc oxide varistor with low varistor voltage and high voltage nonlinearity can be manufactured.

なお、本実施例では基材および粒成長促進剤にZnO、
Bi2O3、Co O、MnO2、NiO、5b205
 、 TiO2。
In addition, in this example, ZnO,
Bi2O3, CoO, MnO2, NiO, 5b205
, TiO2.

Cr2O5を用いたが、バリスタとしての特性を向上さ
セル他の金属酸化物、例えば5i02 、 Pb O、
5n02 。
Although Cr2O5 was used, other metal oxides such as 5i02, PbO,
5n02.

AgzO+ MgO+ Pr6O11などを用いても本
発明の効果に変わりはない。
Even if AgzO+MgO+Pr6O11 or the like is used, the effects of the present invention will not change.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第8図の図面はいずれも本発明例、参考例の特
性を示しており、第1図は粒成長促進剤中のk120s
 6度とVjmム/mmおよびαの関係の特性図、第2
図は粒成長促進剤のみを焼結させた試料のAβ205a
度とv1mム/mm、およびαの関係の特性図、第3図
および第4図は粒成長促進剤の添加量とV1mム/mm
 、αとの関係を示す特性図、第5図は粒成長促進剤中
のAβ205濃度と”1mム/mmおよびαの関係の特
性図、第6図は基材に人β205を添加した試料のA/
!2os 6度とv1mム/mm 、αとの関係の特性
図、第7図および第8図は粒成長促進剤の添加量と”i
nム/mm 、αとの関係を示す特性図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1多用 
1 図 −AbOs’=3ν((10モルプ・)第2図 =7”qf!20si春−2(ジ(io−物レブ・)第
3図 →オ葵1%;グロ%(峰ブ、) 第4図 −が牙遊11滞加重(重量ブ、) 第5図 → Aア203プ―し巾ミ(tO−’モリレゾ・)第 
7を図 一執側1滞畑t(能1・) 第8図
The drawings in Fig. 1 to Fig. 8 all show the characteristics of the present invention example and the reference example, and Fig. 1 shows the k120s in the grain growth promoter.
Characteristic diagram of the relationship between 6 degrees and Vjmm/mm and α, 2nd
The figure shows Aβ205a of a sample in which only the grain growth promoter was sintered.
Figures 3 and 4 are characteristic diagrams showing the relationship between grain growth accelerator and V1mm/mm, and α.
Figure 5 is a characteristic diagram showing the relationship between Aβ205 concentration in the grain growth promoter and 1 mm/mm and α. Figure 6 is a characteristic diagram showing the relationship between Aβ205 concentration in the grain growth promoter and α. A/
! Characteristic diagrams of the relationship between 2os 6 degrees, v1mm/mm and α, Figures 7 and 8 show the addition amount of grain growth promoter and "i"
FIG. 3 is a characteristic diagram showing the relationship between nm/mm 2 and α. Name of agent: Patent attorney Toshio Nakao and 1 others
1 Figure-AbOs'=3ν((10molp・)2nd figure=7"qf!20si spring-2(di(io-monorev・)3rd figure→Ooi 1%; Gro%(minebu,) Fig. 4 - is the stagnation load (weight) Fig. 5 → Aa 203 pool width (tO-' Morirezo) No.
Figure 7. Ichitsu side 1 Tobata t (Noh 1.) Figure 8

Claims (1)

【特許請求の範囲】[Claims]  焼結体自身がバリスタ特性を有する酸化亜鉛を主成分
とする造粒粉を基材とし、少なくともAl_2O_3を
1.5〜5.0×10^−^3モル%を含み、ZnO、
Bi_2O_3、TiO_2などの金属酸化物からなる
焼結体自身がバリスタ特性を有する造粒粉を粒成長促進
剤とし、上記基材に前記粒成長促進剤を25〜80重量
%添加した原料粉を、混合、成型、焼結してなるバリス
タの製造方法。
The sintered body itself is based on granulated powder mainly composed of zinc oxide, which has varistor properties, contains at least 1.5 to 5.0 x 10^-^3 mol% of Al_2O_3, and contains ZnO,
The sintered body itself made of metal oxides such as Bi_2O_3 and TiO_2 has varistor properties. Granulated powder is used as a grain growth promoter, and the raw material powder is prepared by adding 25 to 80% by weight of the grain growth promoter to the base material. A method for manufacturing varistors by mixing, molding, and sintering.
JP61077137A 1986-04-03 1986-04-03 Varistor manufacturing method Expired - Lifetime JPH0795482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61077137A JPH0795482B2 (en) 1986-04-03 1986-04-03 Varistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61077137A JPH0795482B2 (en) 1986-04-03 1986-04-03 Varistor manufacturing method

Publications (2)

Publication Number Publication Date
JPS62232904A true JPS62232904A (en) 1987-10-13
JPH0795482B2 JPH0795482B2 (en) 1995-10-11

Family

ID=13625411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61077137A Expired - Lifetime JPH0795482B2 (en) 1986-04-03 1986-04-03 Varistor manufacturing method

Country Status (1)

Country Link
JP (1) JPH0795482B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289218A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Manufacture of varistor
JPH01289210A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Manufacture of varistor
JPH01289215A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Manufacture of varistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577903A (en) * 1980-06-17 1982-01-16 Matsushita Electric Ind Co Ltd Method of producing voltage non-linear resistor
JPS5918602A (en) * 1982-07-14 1984-01-31 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレイテツド Low voltage ceramic varistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577903A (en) * 1980-06-17 1982-01-16 Matsushita Electric Ind Co Ltd Method of producing voltage non-linear resistor
JPS5918602A (en) * 1982-07-14 1984-01-31 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレイテツド Low voltage ceramic varistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289218A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Manufacture of varistor
JPH01289210A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Manufacture of varistor
JPH01289215A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Manufacture of varistor

Also Published As

Publication number Publication date
JPH0795482B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
JPS62232904A (en) Manufacture of varistor
JPS61121301A (en) Manufacture of low voltage varistor
JP2536128B2 (en) Method for manufacturing voltage non-linear resistance element
JP2548297B2 (en) Varistor manufacturing method
JP2558811B2 (en) Varistor manufacturing method
JPH0448746B2 (en)
JPH01289218A (en) Manufacture of varistor
JPH0212901A (en) Manufacture of zinc oxide varistor
JPH0574606A (en) Zinc oxide varistor for low voltage
JPH03261101A (en) Manufacture of voltage nonlinear resistor of zinc oxide
JPS6028203A (en) Method of producing voltage nonlinear resistor
JPH0224361B2 (en)
JPH01289214A (en) Manufacture of varistor
JPH02156506A (en) Voltage non-linear resistor
JPH0224362B2 (en)
JPS5821807B2 (en) Manufacturing method of voltage nonlinear resistance element
JPS643326B2 (en)
JPH01289210A (en) Manufacture of varistor
JPS644645B2 (en)
JPS6386501A (en) Manufacture of voltage nonlinear resistance element
JPH01289215A (en) Manufacture of varistor
JPS5816603B2 (en) Manufacturing method of voltage nonlinear resistance element
JPS58220406A (en) Method of producing voltage nonlinear resistor
JPS5982702A (en) Voltage nonlinear resistor
JPS643324B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term