JP2558811B2 - Varistor manufacturing method - Google Patents

Varistor manufacturing method

Info

Publication number
JP2558811B2
JP2558811B2 JP63119523A JP11952388A JP2558811B2 JP 2558811 B2 JP2558811 B2 JP 2558811B2 JP 63119523 A JP63119523 A JP 63119523A JP 11952388 A JP11952388 A JP 11952388A JP 2558811 B2 JP2558811 B2 JP 2558811B2
Authority
JP
Japan
Prior art keywords
varistor
grain growth
growth promoter
voltage
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63119523A
Other languages
Japanese (ja)
Other versions
JPH01289209A (en
Inventor
雅昭 勝又
貴之 湯浅
香織 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63119523A priority Critical patent/JP2558811B2/en
Publication of JPH01289209A publication Critical patent/JPH01289209A/en
Application granted granted Critical
Publication of JP2558811B2 publication Critical patent/JP2558811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体電子部品をサージ電流から保護するた
めの低電圧用のバリスタの製造方法に関するものであ
る。
Description: FIELD OF THE INVENTION The present invention relates to a method for manufacturing a low voltage varistor for protecting semiconductor electronic components from surge current.

従来の技術 従来、ZnOを主成分とし、Bi2O3,CoO,Sb2O3,Cr2O3を始
めとする数種の金属酸化物を副成分とする酸化亜鉛型バ
リスタが、優れた電圧非直線性により、サージ吸収用の
素子として広く利用されてきた。この酸化亜鉛型バリス
タは焼結体1mm当たりの立上がり電圧(バリスタ電圧:V
1mA)を調整することにより、種々の電圧回路に適用で
きる。現在、実用化されている酸化亜鉛型バリスタのV
1mA/mmは概ね10〜300Vである。また、酸化亜鉛型バリス
タのバリスタ電圧は、焼結体中のZnO粒子の直列数に依
存し、焼結体の厚みを一定とすると、バリスタ電圧を上
げるためにはZnO粒子の成長を阻害し、逆に下げるため
には促進させれば良い。例えば、ZnO,Bi2O3,CoO,Sb2O3,
SiO2,NiO,Cr2O3,MnO2などから適当に調整された酸化亜
鉛型バリスタでは、ZnO粒子の大きさは10〜30μm程
度、V1mA/mmは80〜300Vである。一方、これらの成分にT
iO2を加えた酸化亜鉛型バリスタは低電圧化し、ZnO粒子
径は50〜100μm,V1mA/mmは20〜50Vとなる。
Conventional technology Conventionally, a zinc oxide type varistor mainly composed of ZnO and containing several kinds of metal oxides such as Bi 2 O 3 , CoO, Sb 2 O 3 and Cr 2 O 3 as an auxiliary component has been excellent. Due to the voltage nonlinearity, it has been widely used as a device for absorbing surge. This zinc oxide type varistor has a rising voltage (varistor voltage: V
It can be applied to various voltage circuits by adjusting 1mA ). V of zinc oxide type varistor currently in practical use
1mA / mm is about 10-300V. The varistor voltage of the zinc oxide type varistor depends on the number of ZnO particles in series in the sintered body, and if the thickness of the sintered body is constant, the growth of ZnO particles is hindered in order to increase the varistor voltage. On the contrary, it may be promoted in order to lower it. For example, ZnO, Bi 2 O 3 ,, CoO, Sb 2 O 3 ,
In a zinc oxide type varistor appropriately adjusted from SiO 2 , NiO, Cr 2 O 3 , MnO 2, etc., the size of ZnO particles is about 10 to 30 μm, and V 1mA / mm is 80 to 300V. On the other hand, the T
The voltage of the zinc oxide type varistor to which iO 2 is added becomes low, and the ZnO particle size becomes 50 to 100 μm and V 1mA / mm becomes 20 to 50V.

近年、家電機器,産業機器の制御回路のマイコン化が
進展し、これに伴い駆動回路電圧が低下し、そのほとん
どが10V以下である。ところが、トランジスタ,ICを始め
とする半導体電子部品はサージ電流に極めて弱く、その
対策が不可欠のものとなっている。このような背景によ
り、バリスタ電圧が10V程度の低電圧回路用の酸化亜鉛
型バリスタが市場から強く求められている。このために
はZnO粒子径を200〜300μmにする必要がある。
In recent years, progress has been made in making control circuits for home electric appliances and industrial equipment into microcomputers. As a result, the drive circuit voltage has dropped, and most of them are below 10V. However, semiconductor electronic components such as transistors and ICs are extremely vulnerable to surge currents, and countermeasures against them are essential. Due to such a background, there is a strong demand from the market for a zinc oxide type varistor for a low voltage circuit having a varistor voltage of about 10V. For this purpose, it is necessary to set the ZnO particle diameter to 200 to 300 μm.

上記低電圧回路用の酸化亜鉛型バリスタを製造する方
法として、例えば特公昭56−39526号公報に記載のもの
が知られている。これは、ZnO99.5モル%,BaCO30.5モル
%を混合したのち焼結し、加水分解により30〜200μm
のZnO結晶を得る。さらに、ZnO,Sb2O3,CoO,MnO2,NiO,Cr
2O3などを混合したのち焼結し、スピネル相成分を得
る。このスピネル相成分とZnO結晶を適当に分級し、別
に用意したZnO粉末にスピネル相成分を1〜50重量%,Zn
O結晶を1〜40重量%添加し、混合,成型,焼結し、V
1mA/mmが約10Vの低電圧バリスタが作成される。
As a method for producing the zinc oxide type varistor for the low voltage circuit, for example, a method described in Japanese Patent Publication No. 56-39526 is known. This is mixed with 99.5 mol% ZnO and 0.5 mol% BaCO 3 and then sintered and hydrolyzed to 30-200 μm.
To obtain a ZnO crystal. Furthermore, ZnO, Sb 2 O 3 ,, CoO, MnO 2 , NiO, Cr
After mixing 2 O 3 and the like, sintering is performed to obtain a spinel phase component. This spinel phase component and ZnO crystal are appropriately classified, and 1 to 50% by weight of the spinel phase component is added to a separately prepared ZnO powder.
Add 1-40% by weight of O crystal, mix, mold, sinter, V
A low voltage varistor with 1mA / mm of about 10V is created.

発明が解決しようとする課題 しかしながら、上記のような従来の方法によれば、Zn
O結晶粒を得るために焼成後、加水分解,分級が必要で
あり、さらにスピネル相成分の作成にも同様の工程が必
要なため、工数が非常に多く、時間的,エネルギー的ロ
スが高いという欠点を有していた。さらに、ZnO結晶粒
とスピネル相成分、ZnO粉末を混合する際、それらの比
重の違いから均一な混合が困難で、ZnO結晶粒の偏在に
よりバリスタ電圧が大きく、バラツキが大きいという欠
点も同時に有していた。
SUMMARY OF THE INVENTION However, according to the conventional method as described above, Zn
After firing, hydrolysis and classification are required to obtain O crystal grains, and the same steps are required to create the spinel phase component, so the number of man-hours is very large, and time and energy loss are high. It had drawbacks. Furthermore, when mixing ZnO crystal grains, spinel phase components, and ZnO powder, it is difficult to mix them uniformly due to the difference in their specific gravities, and the varistor voltage is large due to the uneven distribution of ZnO crystal grains, and there are also the drawbacks that the variation is large. Was there.

本発明はこのような問題点を解決するもので、半導体
電子部品をサージ電流から保護するための低電圧用のバ
リスタの製造方法を提供することを目的とするものであ
る。
The present invention solves such problems, and an object of the present invention is to provide a method of manufacturing a low voltage varistor for protecting a semiconductor electronic component from a surge current.

課題を解決するための手段 本発明では、上記従来の問題点を解決するため、酸化
亜鉛型バリスタの造粒粉を基材とし、これに別途用意し
たBi2O3,TiO2からなる造粒粉を粒成長促進剤として添加
し、混合,成型,焼結させることを特徴とするものであ
る。
Means for Solving the Problems In the present invention, in order to solve the above-mentioned conventional problems, a granulated powder of a zinc oxide varistor is used as a base material, and granules made of Bi 2 O 3 and TiO 2 separately prepared for this are granulated powder. The feature is that powder is added as a grain growth promoter, and mixed, molded and sintered.

作用 上記方法を採用することにより、焼結体内部に80〜30
0μmのZnO結晶粒が分散して配置され、電圧非直線指数
の優れた低電圧のバリスタを容易に得ることとなる。
Action By adopting the above method, 80-30
ZnO crystal grains of 0 μm are dispersedly arranged, and a low-voltage varistor having an excellent voltage non-linearity index can be easily obtained.

実施例 以下、本発明の詳細を実施例に基づき説明する。Examples Hereinafter, details of the present invention will be described based on Examples.

まず、ZnO粉末にはBi2O3,CoO,MnO2,Sb2O3,NiO,Cr2O3
をそれぞれ0.50モル%,0.50モル%,1.00モル%,0.05モ
ル%,0.50モル%,0.10モル%添加し、これにバインダー
と水を加え混合しスラリーを得る。このスラリーをスプ
レードライヤーにて乾燥,造粒し基材を得る。次に、粒
成長促進剤として適当な比で配合したBi2O3,TiO2の粉末
にバインダーと水を加え混合し、スプレードライヤーに
て乾燥,造粒し造粒粉を得る。この際、スプレードライ
ヤーの乾燥条件を適当に調整し造粒粉の粒度分布を変え
た。この造粒粉をメッシュカットし5μm,10μm,25μm,
50μm,75μmの5種類の粒成長促進剤を作成した。次い
で、基材と粒成長促進剤を適当量混合し低電圧バリスタ
の原料粉とした。この原料粉を円板状に加圧成形後、12
50℃で焼結させ、焼結体の両端面にオーミック電極を形
成して試料とし、バリスタ電圧,電圧非直線指数などの
諸特性を調べた。
First, ZnO powder contains Bi 2 O 3 , CoO, MnO 2 , Sb 2 O 3 , NiO and Cr 2 O 3.
0.50 mol%, 0.50 mol%, 1.00 mol%, 0.05 mol%, 0.50 mol% and 0.10 mol%, respectively, and a binder and water are added and mixed to obtain a slurry. This slurry is dried and granulated with a spray dryer to obtain a base material. Next, a binder and water are added to and mixed with the powder of Bi 2 O 3 and TiO 2 mixed in an appropriate ratio as a grain growth promoter, dried by a spray dryer and granulated to obtain a granulated powder. At this time, the drying condition of the spray dryer was appropriately adjusted to change the particle size distribution of the granulated powder. Mesh-cut this granulated powder to 5μm, 10μm, 25μm,
Five kinds of grain growth promoters of 50 μm and 75 μm were prepared. Then, the base material and the grain growth promoter were mixed in appropriate amounts to obtain a raw material powder for a low voltage varistor. After pressing this raw material powder into a disk shape,
Various characteristics such as varistor voltage and voltage non-linearity index were investigated by using a sample by sintering at 50 ° C and forming ohmic electrodes on both end surfaces of the sintered body.

第1図は基材に添加する粒成長促進剤の組成、すなわ
ちBi/TiとV1mA/mm,αの関係を表わす特性図である。こ
こで、添加した粒成長促進剤の濃度(TiO2,Bi2O3濃度合
計値)は原料粉組成において0.5モル%、粒径は25μm
である。第1図より、V1mA/mmはBi/Tiが1.2以上で低下
しているが、1.5を越えるとαが低下することがわか
る。第2図は同試料の制限電圧比(V10A/V1mA)であり
(電流波形8/20μs)、Bi/Tiが1.2以上で制限電圧特性
が良好な値を示している。以上の結果から粒成長促進剤
のBi/Tiの値の最適値は1.2〜1.5であることがわかる。
FIG. 1 is a characteristic diagram showing the composition of the grain growth promoter added to the base material, that is, the relationship between Bi / Ti and V 1mA / mm, α. Here, the concentration of the added grain growth promoter (total concentration of TiO 2 and Bi 2 O 3 concentration) was 0.5 mol% in the raw material powder composition, and the grain size was 25 μm.
Is. From Fig. 1, it can be seen that at V 1mA / mm, Bi / Ti decreases at 1.2 or more, but when it exceeds 1.5, α decreases. FIG. 2 shows the limiting voltage ratio (V 10A / V 1mA ) of the same sample (current waveform 8/20 μs), and Bi / Ti is 1.2 or more, which shows a good limiting voltage characteristic. From the above results, it is found that the optimum value of Bi / Ti of the grain growth promoter is 1.2 to 1.5.

第3図は粒成長促進剤の平均粒径とV1mA/mm,αの関係
を示す特性図である。ここで、粒成長促進剤のBi/Tiの
値は1.33、粒成長促進剤の濃度は0.5モル%である。そ
して、粒成長促進剤の平均粒径10〜50μmの時、V1mA/m
mが15V以下に低下し、αも40以上の値を示すことがわか
る。第4図は粒成長促進剤添加量とV1mA/mm,αの関係を
示す特性図である。ここで、粒成長促進剤のBi/Tiの値
は1.33、平均粒径は25μmである。そして、V1mA/mmは
粒成長促進剤の添加量が0.1〜3.0モル%の時、8.5〜15.
0Vまで低下し、αも35以上の良好な値を示すことがわか
る。
FIG. 3 is a characteristic diagram showing the relationship between the average particle size of the grain growth promoter and V 1mA / mm, α. Here, the value of Bi / Ti of the grain growth promoter is 1.33, and the concentration of the grain growth promoter is 0.5 mol%. When the average particle size of the grain growth promoter is 10 to 50 μm, V 1mA / m
It can be seen that m drops to 15 V or less and α also shows a value of 40 or more. FIG. 4 is a characteristic diagram showing the relationship between the amount of grain growth promoter added and V 1mA / mm, α. Here, the value of Bi / Ti of the grain growth promoter is 1.33, and the average grain size is 25 μm. And, V 1mA / mm is 8.5 to 15 when the amount of grain growth promoter added is 0.1 to 3.0 mol%.
It can be seen that the value decreases to 0 V and α also exhibits a favorable value of 35 or more.

第5図は粒成長促進剤と基材を分離せずに添加する従
来法を用いた場合の粒成長促進剤添加量換算値(基材中
に含まれる0.5モル%分のBi2O3を除いた量)とV1mA/mm,
αの関係を示す特性図である。第5図より、添加量が3.
0モル%でV1mA/mmは約15Vまで低下するものの目標とす
る10Vまでは低下せず、αも添加量の増加とともに低下
傾向を示す。
Fig. 5 shows the conversion value of the amount of grain growth promoter added when the conventional method of adding the grain growth promoter and the substrate without separating them (0.5 mol% of Bi 2 O 3 contained in the substrate is Excluded amount) and V 1mA / mm,
It is a characteristic view which shows the relationship of (alpha). From Fig. 5, the addition amount is 3.
At 0 mol%, V 1mA / mm decreases to about 15V, but does not decrease to the target of 10V, and α also tends to decrease with increasing addition amount.

以上の結果より粒成長促進剤のBi/Tiの比1.2〜1.5、
平均粒径10〜50μm、添加量0.1〜3.0モル%の時、V1mA
/mm8.5〜15.0V、α約40の特性を有する低電圧バリスタ
を製造することができる。
From the above results, the grain growth promoter Bi / Ti ratio 1.2 to 1.5,
When the average particle size is 10 to 50 μm and the addition amount is 0.1 to 3.0 mol%, V 1mA
It is possible to manufacture a low voltage varistor having the characteristics of / mm 8.5 to 15.0 V and α about 40.

発明の効果 以上のように本発明によれば、バリスタ特性を有する
造粒粉に、Bi2O3,TiO2混合物からなる粒成長促進剤を添
加することにより、バリスタ電圧が低く、電圧非直線性
の高い酸化亜鉛バリスタを極めて容易に製造することが
できる。
As described above, according to the present invention, the granulated powder having varistor characteristics is added with a grain growth promoter composed of a Bi 2 O 3 and TiO 2 mixture, so that the varistor voltage is low and the voltage nonlinearity is high. A zinc oxide varistor having high properties can be manufactured extremely easily.

なお、本実施例では基材にZnO,Bi2O3,CoO,MnO2,Cr
2O3,NiO,Sb2O3,TiO2を用いたが、バリスタとしての特性
を向上させる他の金属酸化物、例えばSiO2,PbO,SnO2,Al
2O3,MgO,Ag2O,Pr6O11などを用いても本発明の効果に変
わりはない。
In this example, ZnO, Bi 2 O 3 , CoO, MnO 2 and Cr were used as the base material.
2 O 3 , NiO, Sb 2 O 3 , TiO 2 was used, but other metal oxides that improve the characteristics as a varistor, such as SiO 2 , PbO, SnO 2 , and Al.
Even if 2 O 3 , MgO, Ag 2 O, Pr 6 O 11 or the like is used, the effect of the present invention does not change.

【図面の簡単な説明】 第1図〜第4図はいずれも本発明例,参考例の特性図
で、第1図は粒成長促進剤組成とV1mA/mmおよびαの関
係を示す特性図、第2図は粒成長促進剤組成と制限電圧
比の関係を示す特性図、第3図は粒成長促進剤の平均粒
径とV1mA/mmおよびαの関係を示す特性図、第4図は粒
成長促進剤添加量とV1mA/mmおよびαの関係を示す特性
図、第5図は従来の製造方法によるバリスタの特性図で
ある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 4 are characteristic charts of the present invention example and reference example, and FIG. 1 is a characteristic chart showing the relationship between the grain growth promoter composition and V 1mA / mm and α. FIG. 2 is a characteristic diagram showing the relationship between the grain growth promoter composition and the limiting voltage ratio, and FIG. 3 is a characteristic diagram showing the relationship between the average particle size of the grain growth promoter and V 1 mA / mm and α, FIG. Is a characteristic diagram showing the relationship between the amount of grain growth promoter added and V 1 mA / mm and α, and FIG. 5 is a characteristic diagram of a varistor manufactured by a conventional manufacturing method.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼結体自身がバリスタ特性を有する酸化亜
鉛を主成分とする造粒粉を基材とし、スプレードライヤ
ーにて10〜50μmに造粒したBi2O3およびTiO2の混合物
からなる造粒粉を粒成長促進剤とし、上記基材に上記粒
成長促進剤を混合することにより原料粉を作成し、上記
原料粉を成形,焼成してなるバリスタの製造方法。
1. A mixture of Bi 2 O 3 and TiO 2 which is granulated to have a particle size of 10 to 50 μm by a spray dryer, which is a granulated powder containing zinc oxide as a main component having a varistor characteristic. A method for producing a varistor comprising: forming a raw material powder by mixing the above-mentioned granulated powder as a grain growth promoting agent, mixing the above-mentioned base material with the above grain growing promoting agent, and molding and firing the raw material powder.
【請求項2】粒成長促進剤のBi/Tiの比が1.2〜1.5の範
囲で、基材に添加する粒成長促進剤の濃度(Bi2O3+TiO
2)が0.1〜3.0モル%であることを特徴とする特許請求
の範囲第1項に記載のバリスタの製造方法。
2. The concentration of the grain growth promoter (Bi 2 O 3 + TiO) added to the base material when the Bi / Ti ratio of the grain growth promoter is in the range of 1.2 to 1.5.
2 ) is 0.1-3.0 mol%, The manufacturing method of the varistor of Claim 1 characterized by the above-mentioned.
JP63119523A 1988-05-17 1988-05-17 Varistor manufacturing method Expired - Lifetime JP2558811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119523A JP2558811B2 (en) 1988-05-17 1988-05-17 Varistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119523A JP2558811B2 (en) 1988-05-17 1988-05-17 Varistor manufacturing method

Publications (2)

Publication Number Publication Date
JPH01289209A JPH01289209A (en) 1989-11-21
JP2558811B2 true JP2558811B2 (en) 1996-11-27

Family

ID=14763386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119523A Expired - Lifetime JP2558811B2 (en) 1988-05-17 1988-05-17 Varistor manufacturing method

Country Status (1)

Country Link
JP (1) JP2558811B2 (en)

Also Published As

Publication number Publication date
JPH01289209A (en) 1989-11-21

Similar Documents

Publication Publication Date Title
JP2558811B2 (en) Varistor manufacturing method
JP2548297B2 (en) Varistor manufacturing method
JP2548298B2 (en) Varistor manufacturing method
JPH0795482B2 (en) Varistor manufacturing method
JPH01289218A (en) Manufacture of varistor
JPS61121301A (en) Manufacture of low voltage varistor
JPH0212901A (en) Manufacture of zinc oxide varistor
JPH01289215A (en) Manufacture of varistor
JPS6249961B2 (en)
CN117497267A (en) Zinc oxide high-gradient nonlinear resistor and preparation method thereof
JP2725405B2 (en) Voltage-dependent nonlinear resistor porcelain and method of manufacturing the same
JPH02164006A (en) Zinc oxide type varistor
JP3089371B2 (en) Voltage non-linear resistance composition
JPS62237704A (en) Manufacture of voltage nonlinear resistance element
JPH01289210A (en) Manufacture of varistor
JPH09326304A (en) Manufacture of nonlinear voltage resistor element for low voltage
JPH03178101A (en) Voltage non-linear resistor
JPH10312909A (en) Manufacture of low-voltage voltage non-linear resistor
JPS644645B2 (en)
JPS62282410A (en) Manufacture of voltage nonlinear resistance element
JPH0744088B2 (en) Method for manufacturing voltage non-linear resistor
JPH0224363B2 (en)
JPH06251909A (en) Manufacture of zinc oxide varistor
JPH0729708A (en) Voltage-dependent nonlinear resistor
JPH05275208A (en) Manufacture of voltage nonlinear resistor