JP2548297B2 - Varistor manufacturing method - Google Patents

Varistor manufacturing method

Info

Publication number
JP2548297B2
JP2548297B2 JP63119525A JP11952588A JP2548297B2 JP 2548297 B2 JP2548297 B2 JP 2548297B2 JP 63119525 A JP63119525 A JP 63119525A JP 11952588 A JP11952588 A JP 11952588A JP 2548297 B2 JP2548297 B2 JP 2548297B2
Authority
JP
Japan
Prior art keywords
varistor
voltage
mol
grain growth
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63119525A
Other languages
Japanese (ja)
Other versions
JPH01289211A (en
Inventor
雅昭 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63119525A priority Critical patent/JP2548297B2/en
Publication of JPH01289211A publication Critical patent/JPH01289211A/en
Application granted granted Critical
Publication of JP2548297B2 publication Critical patent/JP2548297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体電子部品をサージ電流から保護するた
めの低電圧用のバリスタの製造方法に関するものであ
る。
Description: FIELD OF THE INVENTION The present invention relates to a method for manufacturing a low voltage varistor for protecting semiconductor electronic components from surge current.

従来の技術 従来、ZnOを主成分とし、Bi23,CoO,Sb23,Cr23
を始めとする数種の金属酸化物を副成分とする酸化亜鉛
型バリスタが、優れた電圧非直線性により、サージ吸収
用の素子として広く利用されてきた。この酸化亜鉛型バ
リスタは焼結体1mm当たりの立上がり電圧(バリスタ電
圧:V1mA)を調整することにより、種々の電圧回路に適
用できる。現在、実用化されている酸化亜鉛型バリスタ
のV1mA/mmは概ね10〜300Vである。また、酸化亜鉛型バ
リスタのバリスタ電圧は、焼結体中のZnO粒子の直列数
に依存し、焼結体の厚みを一定とすると、バリスタ電圧
を上げるためにはZnO粒子の成長を阻害し、逆に下げる
ためには促進させれば良い。例えば、ZnO,Bi23,CoO,S
b23,SiO2,NiO,Cr23,MnO2などから適当に調製された
酸化亜鉛型バリスタでは、ZnO粒子の大きさは10〜30μ
m程度、V1mA/mmは80〜300Vである。一方、これらの成
分にTiO2を加えた酸化亜鉛型バリスタは低電圧化し、Zn
O粒子径は50〜100μm,V1mA/mmは20〜50Vとなる。
Conventional technology Conventionally, the main component is ZnO, Bi 2 O 3 , CoO, Sb 2 O 3 , Cr 2 O 3
Zinc oxide varistors containing several metal oxides as subcomponents have been widely used as devices for absorbing surge due to their excellent voltage non-linearity. This zinc oxide varistor can be applied to various voltage circuits by adjusting the rising voltage (varistor voltage: V 1mA ) per 1 mm of the sintered body. The V 1mA / mm of a zinc oxide type varistor which is currently put into practical use is about 10 to 300V. The varistor voltage of the zinc oxide type varistor depends on the number of ZnO particles in series in the sintered body, and if the thickness of the sintered body is constant, the growth of ZnO particles is hindered in order to increase the varistor voltage. On the contrary, it may be promoted in order to lower it. For example, ZnO, Bi 2 O 3 , CoO, S
In a zinc oxide type varistor appropriately prepared from b 2 O 3 , SiO 2 , NiO, Cr 2 O 3 , MnO 2 etc., the size of ZnO particles is 10 to 30 μm.
m, V 1mA / mm is 80 to 300V. On the other hand, the zinc oxide varistor with TiO 2 added to these components has a low voltage
O particle diameter is 50 to 100 μm, and V 1mA / mm is 20 to 50V.

近年、家電機器,産業機器の制御回路のマイコン化が
進展し、これに伴い駆動回路電圧が低下し、そのほとん
どが10V以下である。ところが、トランジスタ,ICを始め
とする半導体電子部品はサージ電流に極めて弱く、その
対策が不可欠のものとなっている。このような背景によ
り、バリスタ電圧が10V程度の低電圧回路用の酸化亜鉛
型バリスタが市場から強く求められている。このために
はZnO粒子径を200〜300μmにする必要がある。
In recent years, progress has been made in making control circuits for home electric appliances and industrial equipment into microcomputers. As a result, the drive circuit voltage has dropped, and most of them are below 10V. However, semiconductor electronic components such as transistors and ICs are extremely vulnerable to surge currents, and countermeasures against them are essential. Due to such a background, there is a strong demand from the market for a zinc oxide type varistor for a low voltage circuit having a varistor voltage of about 10V. For this purpose, it is necessary to set the ZnO particle diameter to 200 to 300 μm.

上記低電圧回路用の酸化亜鉛型バリスタを製造する方
法として、例えば特公昭56-39526号公報に記載のものが
知られている。これは、ZnO99.5モル%,BaCO30.5モル%
を混合したのち焼結し、加水分解により30〜200μmのZ
nO結晶を得る。さらに、ZnO,Sb23,CoO,MnO2,NiO,Cr2
3などを混合したのち焼結し、スピネル相成分を得
る。このスピネル相成分とZnO結晶を適当に分級し、別
に用意したZnO粉末にスピネル相成分を1〜50重量%,Zn
O結晶を1〜40重量%添加し、混合,成型,焼結し、V
1mA/mmが約10Vの低電圧バリスタが作成される。
As a method for producing the zinc oxide type varistor for the low voltage circuit, for example, the method described in Japanese Patent Publication No. 56-39526 is known. This is ZnO 99.5 mol%, BaCO 3 0.5 mol%
After mixing, sinter and hydrolyze Z of 30-200μm
Obtain nO crystals. Furthermore, ZnO, Sb 2 O 3 , CoO, MnO 2 , NiO, Cr 2
After mixing O 3 and the like, sintering is performed to obtain a spinel phase component. This spinel phase component and ZnO crystal are appropriately classified, and 1 to 50% by weight of the spinel phase component is added to a separately prepared ZnO powder.
Add 1-40 wt% of O crystal, mix, mold, sinter, V
A low voltage varistor with 1mA / mm of about 10V is created.

発明が解決しようとする課題 しかしながら、上記のような従来の方法によれば、Zn
O結晶粒を得るために焼成後、加水分解、分級が必要で
あり、さらにスピネル相成分の作成にも同様の工程が必
要なため、工数が非常に多く、時間的、エネルギー的ロ
スが高いという欠点を有していた。さらに、ZnO結晶粒
とスピネル相成分、ZnO粉末を混合する際、それらの比
重の違いから均一な混合が困難で、ZnO結晶粒の偏在に
よりバリスタ電圧が大きく、バラツキが大きいという欠
点も同時に有していた。
SUMMARY OF THE INVENTION However, according to the conventional method as described above, Zn
After firing to obtain O crystal grains, hydrolysis and classification are required, and since the same steps are required to create the spinel phase component, the number of man-hours is very large, and time and energy loss are high. It had drawbacks. Furthermore, when mixing ZnO crystal grains, spinel phase components, and ZnO powder, it is difficult to mix them uniformly due to the difference in their specific gravities, and the varistor voltage is large due to the uneven distribution of ZnO crystal grains, and there are also the drawbacks that the variation is large. Was there.

本発明はこのような問題点を解決するもので、半導体
電子部品をサージ電流から保護するための低電圧用のバ
リスタの製造方法を提供することを目的とするものであ
る。
The present invention solves such problems, and an object of the present invention is to provide a method of manufacturing a low voltage varistor for protecting a semiconductor electronic component from a surge current.

課題を解決するための手段 本発明では、上記従来の問題点を解決するため、酸化
亜鉛型バリスタの造粒粉を基材とし、これにスプレード
ライヤーに別途用意したMgOからなる造粒粉を粒成長促
進剤として添加し、混合,成型,焼結させることを特徴
とするものである。
Means for Solving the Problems In the present invention, in order to solve the above-mentioned conventional problems, a granulated powder of a zinc oxide varistor is used as a base material, and a granulated powder composed of MgO separately prepared in a spray dryer is granulated. It is characterized in that it is added as a growth promoter and mixed, molded and sintered.

作用 上記方法を採用することにより、焼結体内部に80〜30
0μmのZnO結晶粒が分散して配置され、電圧非直線指数
の優れた低電圧のバリスタを容易に得ることとなる。
Action By adopting the above method, 80-30
ZnO crystal grains of 0 μm are dispersedly arranged, and a low-voltage varistor having an excellent voltage non-linearity index can be easily obtained.

実施例 以下、本発明の詳細を実施例に基づき説明する。Examples Hereinafter, details of the present invention will be described based on Examples.

まず、ZnO粉末にBi23,CoO,MnO2,Sb23,NiO,Cr
23,TiO2をそれぞれ1.00モル%,0.50%,1.00モル%,0.
05モル%,0.5モル%,0.10モル%,1.00モル%添加し、こ
れにバインダーと水を加え混合しスラリーを得る。この
スラリーをスプレードライヤーにて乾燥、造粒し基材を
得る。次に、粒成長促進剤として、平均粒径1.5μmに
粉砕したMgO粉末にバインダーと水を加え混合し、スプ
レードライヤーにて乾燥、造粒し造粒粉を得る。この
際、スプレードライヤーの乾燥条件を適当に変え、メッ
シュカットを行い平均粒径5μm,10μm,25μm,50μm,75
μmの5種類の粒成長促進剤を得た。この粒成長促進剤
を基材に対し適当量混合し低電圧バリスタの原料粉とし
た。この原料粉を加圧成型後、1250℃で1〜5時間焼結
させ、バリスタ電圧、電圧非直線指数などを調べた。
First, ZnO powder was mixed with Bi 2 O 3 , CoO, MnO 2 , Sb 2 O 3 , NiO, Cr.
2 O 3 and TiO 2 are 1.00 mol%, 0.50%, 1.00 mol%, 0.
05 mol%, 0.5 mol%, 0.10 mol%, 1.00 mol% are added, and a binder and water are added thereto and mixed to obtain a slurry. This slurry is dried and granulated with a spray dryer to obtain a base material. Next, as a grain growth promoter, MgO powder crushed to an average particle size of 1.5 μm is mixed with a binder and water, dried with a spray dryer and granulated to obtain granulated powder. At this time, the drying conditions of the spray dryer are appropriately changed and mesh cutting is performed to obtain an average particle size of 5 μm, 10 μm, 25 μm, 50 μm, 75
Five types of grain growth promoters having a size of μm were obtained. An appropriate amount of this grain growth promoter was mixed with a base material to obtain a raw material powder for a low voltage varistor. This raw material powder was pressure-molded and then sintered at 1250 ° C. for 1 to 5 hours, and the varistor voltage, the voltage non-linearity index, etc. were examined.

第1図〜第5図は基材に平均粒径5μm,10μm,25μm,
50μm,75μmにそれぞれメッシュカットした粒成長促進
剤(MgO)を0.03〜10.00モル%の濃度範囲で添加した試
料の単位厚み当たりのバリスタ電圧(V1mA/mm)および
電圧非直線指数(α)の関係を示す特性図である。比較
検討例として第6図に基材、粒成長促進剤を分離せず、
出発原料にMgOを0.03〜10.00モル%添加した試料の特性
を示した。
Figures 1 to 5 show the average particle size of 5μm, 10μm, 25μm,
The varistor voltage (V 1mA / mm) and the voltage non-linearity index (α) per unit thickness of the sample to which the grain growth promoter (MgO) mesh-cut to 50 μm and 75 μm were added in the concentration range of 0.03 to 10.00 mol% It is a characteristic view which shows a relationship. As a comparative study example, the base material and the grain growth promoter are not separated in FIG.
The characteristics of the sample in which 0.03 to 10.00 mol% of MgO was added to the starting material are shown.

第1図より平均粒径5μmの粒成長促進剤を用いた試
料では添加量が0.1〜3.0モル%の時、V1mA/mmが低下
し、ZnO粒成長が発生していることがわかる。しかし、
同時にαも急激に低下し低電圧バリスタとしては不適当
である。一方、第2図〜第4図より平均粒径10〜50μm
の粒成長促進剤を用いた試料では添加量が0.03〜3.00モ
ル%の時、目標とするV1mA/mmが約10Vまで低下し、α
は30〜50と良好な値を示す。また、添加量が3.0モル%
を越えた場合、V1mA/mmはむしろ上昇し、αも低下す
る。第5図より平均粒径75μmの粒成長促進剤を用いた
場合、V1mA/mmは低下するもののαが20前後に低下する
ことがわかる。第6図より、基材、粒成長促進剤を分離
して添加しない従来法を用いた場合、MgO添加量が0.3〜
1.0モル%で約10Vまで低下するもののαも約20まで低下
してしまうことがわかる。以上の結果より、粒成長促進
剤の平均粒径10〜50μm、添加量0.1〜3.0モル%の時、
1mA/mm約10V、α30〜50の低電圧バリスタを製造する
ことができる。
It can be seen from FIG. 1 that in the sample using the grain growth promoter having an average grain size of 5 μm, V 1mA / mm decreases and ZnO grain growth occurs when the addition amount is 0.1 to 3.0 mol%. But,
At the same time, α also drops sharply, making it unsuitable as a low-voltage varistor. On the other hand, from Fig. 2 to Fig. 4, the average particle size is 10 to 50 µm.
In the sample using the grain growth promoter of No. 3, when the addition amount is 0.03 to 3.00 mol%, the target V 1mA / mm decreases to about 10V, and α
Shows a good value of 30 to 50. The addition amount is 3.0 mol%
When V is exceeded , V 1mA / mm rather rises and α also decreases. It can be seen from FIG. 5 that when a grain growth accelerator having an average grain size of 75 μm is used, V 1mA / mm is reduced, but α is reduced to about 20. From FIG. 6, when the conventional method in which the base material and the grain growth promoter are not added separately is used, the MgO addition amount is 0.3 to
It can be seen that at 1.0 mol%, α drops to about 20 although α drops to about 10V. From the above results, when the average particle size of the grain growth promoter is 10 to 50 μm and the addition amount is 0.1 to 3.0 mol%,
V 1 mA / mm to about 10V, it is possible to manufacture a low-voltage varistor Arufa30~50.

発明の効果 以上のように本発明によれば、バリスタ特性を有する
造粒粉に、MgOからなる粒成長促進剤を添加することに
より、バリスタ電圧が低く、電圧非直線性の高い酸化亜
鉛バリスタを極めて容易に製造することができる。
As described above, according to the present invention, a granulated powder having varistor characteristics, by adding a grain growth promoter composed of MgO, low varistor voltage, high voltage non-linearity zinc oxide varistor It can be manufactured very easily.

なお、本実施例では基材にZnO,Bi23,CoO,MnO2,Cr2
3,NiO,Sb23,TiO2を用いたが、バリスタとしての特
性を向上させる他の金属酸化物、例えばAl23,SiO2,Pb
O,SnO2,Ag2O,Pr611などを用いても本発明の効果に変
わりはない。
Incidentally, ZnO in the substrate in the present embodiment, Bi 2 O 3, CoO, MnO 2, Cr 2
Although O 3 , NiO, Sb 2 O 3 and TiO 2 are used, other metal oxides such as Al 2 O 3 , SiO 2 and Pb which improve the characteristics as a varistor are used.
Even if O, SnO 2 , Ag 2 O, Pr 6 O 11 or the like is used, the effect of the present invention does not change.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第5図はいずれも本発明例,参考例の特性図
で、それぞれ平均粒径5μm,10μm,25μm,50μm,75μm
の粒成長促進剤を用いた場合の粒成長促進剤添加量とV
1mA/mmおよびαの関係を示す特性図、第6図は従来の製
造法によるバリスタの特性図である。
1 to 5 are characteristic diagrams of the present invention example and the reference example, respectively, and the average particle size is 5 μm, 10 μm, 25 μm, 50 μm, 75 μm, respectively.
Grain growth promoter addition amount and V when using other grain growth promoter
FIG. 6 is a characteristic diagram showing the relationship between 1 mA / mm and α, and FIG. 6 is a characteristic diagram of a varistor manufactured by a conventional manufacturing method.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼結体自身がバリスタ特性を有する酸化亜
鉛を主成分とする造粒粉を基材とし、スプレードライヤ
ーにて10〜50μmに造粒したMgOを粒成長促進剤とし、
上記基材に上記粒成長促進剤を混合してなる原料粉を成
形、焼結してなるバリスタの製造方法。
1. A sintered body itself is based on a granulated powder containing zinc oxide as a main component having varistor characteristics, and MgO granulated to 10 to 50 μm by a spray dryer is used as a grain growth promoter.
A method for manufacturing a varistor, which comprises molding and sintering raw material powder obtained by mixing the above grain growth promoter with the above base material.
【請求項2】原料粉中にMgOを0.1〜3.0モル%含むこと
を特徴とする特許請求の範囲第1項に記載のバリスタの
製造方法。
2. The method for producing a varistor according to claim 1, characterized in that the raw material powder contains 0.1 to 3.0 mol% of MgO.
JP63119525A 1988-05-17 1988-05-17 Varistor manufacturing method Expired - Lifetime JP2548297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119525A JP2548297B2 (en) 1988-05-17 1988-05-17 Varistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119525A JP2548297B2 (en) 1988-05-17 1988-05-17 Varistor manufacturing method

Publications (2)

Publication Number Publication Date
JPH01289211A JPH01289211A (en) 1989-11-21
JP2548297B2 true JP2548297B2 (en) 1996-10-30

Family

ID=14763437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119525A Expired - Lifetime JP2548297B2 (en) 1988-05-17 1988-05-17 Varistor manufacturing method

Country Status (1)

Country Link
JP (1) JP2548297B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436021B1 (en) * 2002-01-15 2004-06-12 (주) 래트론 ZnO varistor and the fabricating method of the same

Also Published As

Publication number Publication date
JPH01289211A (en) 1989-11-21

Similar Documents

Publication Publication Date Title
JP2548297B2 (en) Varistor manufacturing method
JP2548298B2 (en) Varistor manufacturing method
JPH0795482B2 (en) Varistor manufacturing method
JP2558811B2 (en) Varistor manufacturing method
JPH0552642B2 (en)
KR920005155B1 (en) Zno-varistor making method
JPH01289206A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JP2536128B2 (en) Method for manufacturing voltage non-linear resistance element
JPH0630284B2 (en) Method for manufacturing voltage non-linear resistance element
JPS6249961B2 (en)
JPH01289215A (en) Manufacture of varistor
JPH01289218A (en) Manufacture of varistor
JPH06204006A (en) Manufacture of zinc oxide varistor
JPH0448746B2 (en)
JPH0212901A (en) Manufacture of zinc oxide varistor
JPS6325219A (en) Production of zno crystal particle
JPH02189904A (en) Manufacture of varistor
JPS6028203A (en) Method of producing voltage nonlinear resistor
JPH03178101A (en) Voltage non-linear resistor
JPH10241910A (en) Nonlinear resistor
JPS644645B2 (en)
JPH0729709A (en) Voltage-dependent nonlinear resistor
JPH0224361B2 (en)
JPH0142609B2 (en)
JPH0577164B2 (en)