JPH01289211A - Manufacture of varistor - Google Patents

Manufacture of varistor

Info

Publication number
JPH01289211A
JPH01289211A JP63119525A JP11952588A JPH01289211A JP H01289211 A JPH01289211 A JP H01289211A JP 63119525 A JP63119525 A JP 63119525A JP 11952588 A JP11952588 A JP 11952588A JP H01289211 A JPH01289211 A JP H01289211A
Authority
JP
Japan
Prior art keywords
varistor
powder
grain growth
added
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63119525A
Other languages
Japanese (ja)
Other versions
JP2548297B2 (en
Inventor
Masaaki Katsumata
雅昭 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63119525A priority Critical patent/JP2548297B2/en
Publication of JPH01289211A publication Critical patent/JPH01289211A/en
Application granted granted Critical
Publication of JP2548297B2 publication Critical patent/JP2548297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a zinc oxide varistor whose varistor voltage is low and whose voltage nonlinearity is high by adding a grain growth accelerator composed of MgO to a ZnO granulated powder having varistor characteristics. CONSTITUTION:Bi2O3, CoO, MnO2, Sb2O3, NiO, Cr2O3 and TiO2 in individually prescribed amounts are added to a ZnO powder; a binder and water are added to this mixture and are mixed, a slurry is produced, this slurry is dried by using a spray drier, this dried slurry is granulated and a basic material is obtained. Then, a binder and water are added to an MgO powder and are mixed, this mixture is dried by using the spray drier, this dried mixture is granulated, and a granulated powder is obtained as a grain growth accelerator. During this process, a drying condition is changed properly, and a grain growth accelerator whose average grain diameter is 10-50mum is obtained. This grain growth accelerator in a proper amount is added to the basic material, a raw material powder for a low-voltage varistor is produced, and this raw material powder is pressurized, molded and, after that, sintered. By this setup, a ZnO crystal is dispersed and arranged inside a sintered substrate, and an excellent voltage nonlinearity index can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体電子部品をサージ電流から保護するため
の低電圧用のバリスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a low voltage varistor for protecting semiconductor electronic components from surge currents.

従来の技術 従来、ZnOを主成分とし、Bi2O3,Cod、 5
b205 *Cr2O5を始めとする数種の金属酸化物
を副成分とする酸化亜鉛型バリスタが、優れた電圧非直
線性により、サージ吸収用の素子として広く利用されて
きた。この酸化亜鉛型バリスタは焼結体1ff当たりの
立上がり電圧(バリスタ電圧: Vl、ム)を調整する
ことにより1種々の電圧回路に適用できる。
Conventional technology Conventionally, the main component was ZnO, Bi2O3, Cod, 5
b205 *Zinc oxide type varistors containing several types of metal oxides including Cr2O5 as subcomponents have been widely used as surge absorption elements due to their excellent voltage nonlinearity. This zinc oxide type varistor can be applied to various voltage circuits by adjusting the rising voltage (varistor voltage: Vl, m) per 1ff of sintered body.

現在、実用化されている酸化亜鉛型バリスタのv1mム
/ffは概ね10〜300vである。また、酸化亜鉛型
バリスタのバリスタ電圧は、焼結体中のZnO粒子の直
列数に依存し、焼結体の厚みを一定とすると、バリスタ
電圧を上げるためにはZnO粒子の成長を阻害し、逆に
下げるためには促進させれば艮い。例えば、ZnOI 
Bi 203 r Coo l sb 2o 5 +S
iO2、NiO* Or 2o 5 + MnO2など
から適当に調製された酸化亜鉛型バリスタでは、ZnO
粒子の大きさは10〜30μ論程度、V11!1げ−は
80〜300Vである。一方、これらの成分にTiO2
を加えた酸化亜鉛型バリスタは低電圧化し、ZnO粒子
径は60〜100μ!a+  V+ma/―は20〜6
ovとなる。
The v1mm/ff of zinc oxide type varistors currently in practical use is approximately 10 to 300V. In addition, the varistor voltage of a zinc oxide type varistor depends on the number of ZnO particles in series in the sintered body, and if the thickness of the sintered body is constant, in order to increase the varistor voltage, the growth of the ZnO particles must be inhibited. On the contrary, in order to lower it, it is necessary to promote it. For example, ZnOI
Bi 203 r Cool sb 2o 5 +S
In zinc oxide type varistors appropriately prepared from iO2, NiO* Or 2o 5 + MnO2,
The particle size is about 10 to 30 μm, and the V11!1 voltage is 80 to 300 V. On the other hand, TiO2 is added to these components.
The zinc oxide type varistor with added ZnO has a lower voltage, and the ZnO particle size is 60 to 100μ! a+V+ma/- is 20-6
It becomes ov.

近年、家電機器、産業機器の制御回路のマイコン化が進
展し、これに伴い駆動回路電圧が低下し、そのほとんど
が10V以下である。ところが、トランジスタ、ICを
始めとする半導体電子部品はサージ電流に極めて弱く、
その対策が不可欠のものとなっている。このような背景
により、バリスタ電圧が10V程度の低電圧回路用の酸
化亜鉛型バリスタが市場から強く求められている。この
ためにはZnO粒子径を200〜3004mにする必要
がある。
In recent years, the use of microcomputers in the control circuits of home appliances and industrial equipment has progressed, and as a result, drive circuit voltages have decreased, and most of them are below 10V. However, semiconductor electronic components such as transistors and ICs are extremely susceptible to surge currents.
Countermeasures have become essential. Against this background, there is a strong demand in the market for zinc oxide type varistors for low voltage circuits with a varistor voltage of about 10V. For this purpose, it is necessary to set the ZnO particle diameter to 200 to 3004 m.

上記低電圧回路用の酸化亜鉛型バリスタを製造する方法
として、例えば特公昭56−39526号公報に記載の
ものが知られている。これは、ZnO99−5% ル%
 +  BaC050,5モル%を混合したのち焼結し
、加水分解により30〜200μmのZnO結晶を得る
。さらに、ZnO,Sb 20.、 Coo 。
As a method for manufacturing the zinc oxide type varistor for the above-mentioned low voltage circuit, for example, the method described in Japanese Patent Publication No. 56-39526 is known. This is ZnO99-5% le%
+ After mixing 5 mol % of BaC050, it is sintered and hydrolyzed to obtain ZnO crystals of 30 to 200 μm. Furthermore, ZnO, Sb 20. , Coo.

MnO2、NiO、0r203などを混合したのち焼結
し、スピネル相成分を得る。このスピネル相成分とZn
O結晶を適当に分級し、別に用意したZnO粉末にスピ
ネル相成分を1〜60重量%、  ZnO結晶を1〜4
oM量チ添加し、混合、成型、焼結し、v1mム/fl
が約1ovの低電圧バリスタが作成される。
After mixing MnO2, NiO, Or203, etc., it is sintered to obtain a spinel phase component. This spinel phase component and Zn
Appropriately classify the O crystals and add 1 to 60% by weight of the spinel phase component and 1 to 4% of the ZnO crystals to separately prepared ZnO powder.
Add oM amount, mix, mold, sinter, v1mm/fl
A low voltage varistor with a voltage of about 1 ov is created.

発明が解決しようとする課題 しかしながら、上記のような従来の方法によれば、Zn
O結晶粒を得るために焼成後、加水分解、分級が必要で
あり、さらにスピネル相成分の作成にも同様の工程が必
要なため、工数が非常に多く、時間的、エネルギー的ロ
スが高いという欠点を有していた。さらに、ZnO結晶
粒とスピネル相成分、ZnO粉末を混合する際、それら
の比重の違いから均一な混合が困難で、ZnO結晶粒の
偏在によりバリスタ電圧が大きく、バラツキが大きいと
いう欠点も同時に有していた。
Problems to be Solved by the Invention However, according to the conventional method as described above, Zn
Hydrolysis and classification are required after firing to obtain O crystal grains, and a similar process is also required to create the spinel phase component, resulting in a very large number of man-hours and a high loss of time and energy. It had drawbacks. Furthermore, when mixing ZnO crystal grains, spinel phase components, and ZnO powder, it is difficult to mix them uniformly due to the difference in their specific gravity, and the uneven distribution of ZnO crystal grains also has the disadvantage that the varistor voltage is large and has large variations. was.

本発明はこのような問題点を解決するもので、半導体電
子部品をサージ電流から保護するための低電圧用のバリ
スタの製造方法を提供することを目的とするものである
The present invention solves these problems and aims to provide a method for manufacturing a low voltage varistor for protecting semiconductor electronic components from surge currents.

課題を解決するための手段 本発明では、上記従来の問題点を解決するため、酸化亜
鉛型バリスタの造粒粉を基材とし、これにスプレードラ
イヤーに別途用意したMgOからなる造粒粉を粒成長促
進剤として添加し、混合、成型。
Means for Solving the Problems In the present invention, in order to solve the above conventional problems, granulated powder of zinc oxide type varistor is used as a base material, and granulated powder made of MgO prepared separately in a spray dryer is granulated into this. Added as a growth promoter, mixed and molded.

焼結させることを特徴とするものである。It is characterized by being sintered.

作用 上記方法を採用することにより、焼結体内部に80〜3
00μmのZnO結晶粒が分散して配置され、電圧非直
線指数の優れた低電圧のバリスタを容易に得ることとな
る。
Effect By adopting the above method, 80 to 3
00 μm ZnO crystal grains are dispersed and arranged, and a low voltage varistor with an excellent voltage nonlinearity index can be easily obtained.

実施例 以下、本発明の詳細を実施例に基づき説明する。Example Hereinafter, details of the present invention will be explained based on examples.

まず、ZnO粉末にBi2O5+ Coo 、 MnO
2,5b2o、 。
First, Bi2O5+ Coo, MnO was added to ZnO powder.
2,5b2o,.

NiO、Cr2O5、TiO2をそれぞれ1.OO%/
l、%。
NiO, Cr2O5, and TiO2 were each 1. OO%/
l,%.

0.50%/I/%、1.00モル%、0.05モルチ
0.50%/I/%, 1.00 mol%, 0.05 mol.

0.6モルチ、0.10モルチ、1.00モルチ添加し
、これにバインダーと水を加え混合しスラリーを得る。
0.6 molti, 0.10 molti, and 1.00 molti are added, and a binder and water are added and mixed to obtain a slurry.

このスラリーをスプレードライヤーにて乾燥、造粒し基
材を得る。次に、粒成長促進剤として、平均粒径1.5
μmに粉砕したMgO粉末にバインダーと水を加え混合
し、スプレードライヤーにて乾燥、造粒し造粒粉を得る
。この際、スプレードライヤーの乾燥条件を適当に変え
、メツシュカットを行い平均粒径6μ!11110μ!
1.25μ重。
This slurry is dried with a spray dryer and granulated to obtain a base material. Next, as a grain growth promoter,
A binder and water are added to and mixed with MgO powder pulverized to micrometers, dried with a spray dryer, and granulated to obtain granulated powder. At this time, the drying conditions of the spray dryer were changed appropriately and mesh cut was performed to obtain an average particle size of 6 μm! 11110μ!
1.25μ weight.

50μm、75μ重の5種類の粒成長促進剤を得た。こ
の粒成長促進剤を基材に対し適当量混合し低電圧バリス
タの原料粉とした。この原料粉を加圧成型後、1250
’Cで1〜6時間焼結させ、バリスタ電圧、電圧非直線
指数などを調べた。
Five types of grain growth promoters of 50 μm and 75 μm weight were obtained. An appropriate amount of this grain growth promoter was mixed with a base material to obtain raw material powder for a low voltage varistor. After pressure molding this raw material powder, 1250
'C for 1 to 6 hours, and the varistor voltage, voltage nonlinearity index, etc. were investigated.

第1図〜第6図は基材に平均粒径6μml  1゜μl
l 25μm+  60pm、76ptaにそれぞれメ
ツシュカットした粒成長促進剤(MgO)をQO3〜1
0・Ooモルチの濃度範囲で添加した試料の単位厚み当
たりのバリスタ電圧(V+mム/gg)および電圧非直
線指数(α)の関係を示す特性図である。
Figures 1 to 6 show average particle diameters of 6μml and 1゜μl on the base material.
l Grain growth promoter (MgO) mesh-cut to 25 μm + 60 pm and 76 pta to QO3-1
FIG. 2 is a characteristic diagram showing the relationship between the varistor voltage (V+mm/gg) per unit thickness and the voltage non-linearity index (α) of a sample added in a concentration range of 0.00%.

比較検討例として第6図に基材、粒成長促進剤を分離せ
ず、出発原料にMgOを0.03〜10.00 モルチ
添加した試料の特性を示した。
As a comparative study example, FIG. 6 shows the characteristics of a sample in which the base material and the grain growth promoter were not separated, and 0.03 to 10.00 mol of MgO was added to the starting material.

第1図より平均粒径6μmの粒成長促進剤を用いた試料
では添加量が0.1〜3.0モルチの時。
From FIG. 1, in the sample using a grain growth promoter with an average grain size of 6 μm, the amount added was 0.1 to 3.0 mol.

v1mム/Hが低下し、 ZnO粒成長が発生している
ことがわかる。しかし、同時にαも急激に低下し低電圧
バリスタとしては不適当である。一方、第2図〜第4図
より平均粒径10〜60μmの粒成長促進剤を用いた試
料では添加量が0.03〜3.00モルチの時、目標と
する’l’jmム/朋が約10vまで低下し、αは30
〜60と良好な値を示す。また、添加量が3.0モルチ
を越えた場合、V1mム/iはむしろ上昇し、αも低下
する。第5図より平均粒径75μmの粒成長促進剤を用
いた場合、v’、、ム/ffは低下するもののαが2o
前後に低下することがわかる。第6図より、基材、粒成
長促進剤を分離して添加しない従来法を用いた場合、M
gO添加量が0.3〜1.0モルチで約10Vまで低下
するもののαも約20まで低下してしまうことがわかる
。以上の結果より、粒成長促進剤の平均粒径1o〜60
μm、添加量0.1〜3,0モルチの時、v1mム/I
IM約10v1α3o〜50の低電圧バリスタを製造す
ることができる。
It can be seen that v1mm/H has decreased and ZnO grain growth has occurred. However, at the same time, α also decreases rapidly, making it unsuitable for use as a low voltage varistor. On the other hand, as shown in Figures 2 to 4, in the samples using a grain growth promoter with an average particle size of 10 to 60 μm, when the amount added was 0.03 to 3.00 molt, the target 'l'jm mm/ho decreases to about 10V, α becomes 30
It shows a good value of ~60. Moreover, when the amount added exceeds 3.0 molti, V1mm/i increases and α also decreases. Figure 5 shows that when a grain growth promoter with an average grain size of 75 μm is used, v',, mu/ff decreases, but α is 2o.
It can be seen that it decreases before and after. From Figure 6, when using the conventional method in which the base material and grain growth promoter are not added separately, M
It can be seen that when the amount of gO added is 0.3 to 1.0 molt, α decreases to about 10V, but α also decreases to about 20. From the above results, the average particle size of the grain growth promoter is 1o~60
μm, when the amount added is 0.1 to 3.0 mol, v1 mm/I
A low voltage varistor with an IM of about 10v1α3o~50 can be manufactured.

発明の効果 以上のように本発明によれば、バリスタ特性を有する造
粒粉に、MgOからなる粒成長促進剤を添加することに
より、バリスタ電圧が低く、電圧非直線性の高い酸化亜
鉛バリスタを極めて容易に製造することができる。
Effects of the Invention As described above, according to the present invention, a zinc oxide varistor with low varistor voltage and high voltage non-linearity can be produced by adding a grain growth promoter made of MgO to granulated powder having varistor properties. It can be manufactured extremely easily.

なお、本実施例では基材にZnO、Bi2O3、CoC
L、  MnO2、Cr2O5、NiO、5b205 
+ TiO2を用いたが、バリスタとしての特性を向上
させる他の金属酸化物、例、t ハム120y、 5i
n2.PbO、5n02 、ムg20゜Pr60Hなど
を用いても本発明の効果に変わりはない。
In addition, in this example, ZnO, Bi2O3, CoC is used as the base material.
L, MnO2, Cr2O5, NiO, 5b205
+ TiO2 was used, but other metal oxides that improve the characteristics as a varistor, e.g. t Ham 120y, 5i
n2. Even if PbO, 5n02, Mug20°Pr60H, etc. are used, the effects of the present invention will not change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図はいずれも本発明例、参考例の特性図で
、それぞれ平均粒径6μm、10μm。 26μm、60μm、75μmの粒成長促進剤を用いた
場合の粒成長促進剤添加量とV 1 !l A /1M
およびαの関係を示す特性図、第6図は従来の製造法に
よるバリスタの特性図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 (topm ) → hVo濃度(モルγ・) 第 3 図 第4図 →N90濱鷹(モル″/、)
1 to 5 are characteristic diagrams of the present invention example and the reference example, with average particle diameters of 6 μm and 10 μm, respectively. Grain growth promoter addition amount and V 1 when using grain growth promoters of 26 μm, 60 μm, and 75 μm! l A /1M
FIG. 6 is a characteristic diagram showing the relationship between α and α, and FIG. 6 is a characteristic diagram of a varistor manufactured by a conventional manufacturing method. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (topm) → hVo concentration (mol γ・) Figure 3 Figure 4 → N90 Hamataka (mol''/,)

Claims (2)

【特許請求の範囲】[Claims] (1)焼結体自身がバリスタ特性を有する酸化亜鉛を主
成分とする造粒粉を基材とし、スプレードライヤーにて
10〜50μmに造粒したMgOを粒成長促進剤とし、
上記基材に上記粒成長促進剤を混合してなる原料粉を成
形、焼結してなるバリスタの製造方法。
(1) The sintered body itself uses granulated powder mainly composed of zinc oxide, which has varistor properties, as a base material, and uses MgO granulated to a size of 10 to 50 μm using a spray dryer as a grain growth promoter,
A method for manufacturing a varistor, which comprises molding and sintering raw material powder obtained by mixing the grain growth promoter with the base material.
(2)原料粉中にMgOを0.1〜3.0モル%含むこ
とを特徴とする特許請求の範囲第1項に記載のバリスタ
の製造方法。
(2) The method for manufacturing a varistor according to claim 1, wherein the raw material powder contains 0.1 to 3.0 mol% of MgO.
JP63119525A 1988-05-17 1988-05-17 Varistor manufacturing method Expired - Lifetime JP2548297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119525A JP2548297B2 (en) 1988-05-17 1988-05-17 Varistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119525A JP2548297B2 (en) 1988-05-17 1988-05-17 Varistor manufacturing method

Publications (2)

Publication Number Publication Date
JPH01289211A true JPH01289211A (en) 1989-11-21
JP2548297B2 JP2548297B2 (en) 1996-10-30

Family

ID=14763437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119525A Expired - Lifetime JP2548297B2 (en) 1988-05-17 1988-05-17 Varistor manufacturing method

Country Status (1)

Country Link
JP (1) JP2548297B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436021B1 (en) * 2002-01-15 2004-06-12 (주) 래트론 ZnO varistor and the fabricating method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436021B1 (en) * 2002-01-15 2004-06-12 (주) 래트론 ZnO varistor and the fabricating method of the same

Also Published As

Publication number Publication date
JP2548297B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
CA1194286A (en) Metal oxide varistor
JPH01289211A (en) Manufacture of varistor
JPH0867555A (en) Production of zinc oxide sintered compact
JPH0795482B2 (en) Varistor manufacturing method
JPS61121301A (en) Manufacture of low voltage varistor
JPH01289214A (en) Manufacture of varistor
JPH01289215A (en) Manufacture of varistor
JP2558811B2 (en) Varistor manufacturing method
JPH01289210A (en) Manufacture of varistor
JPS6249961B2 (en)
JPH01289218A (en) Manufacture of varistor
JPH0142602B2 (en)
JP2671133B2 (en) Manufacturing method of zinc oxide varistor
JPS605062A (en) Manufacture of zinc oxide varistor
JPH0630284B2 (en) Method for manufacturing voltage non-linear resistance element
JPS644645B2 (en)
JPH0224361B2 (en)
JPH0142609B2 (en)
JPH0383846A (en) Production of varistor
JPH0224362B2 (en)
JPH0224363B2 (en)
JP2560502B2 (en) Method of manufacturing voltage non-linear resistor
JP2001102204A (en) Thermistor composition, manufacturing method therefor and thermistor
JPH0142610B2 (en)
JPH0131682B2 (en)