JPH0224363B2 - - Google Patents

Info

Publication number
JPH0224363B2
JPH0224363B2 JP58082237A JP8223783A JPH0224363B2 JP H0224363 B2 JPH0224363 B2 JP H0224363B2 JP 58082237 A JP58082237 A JP 58082237A JP 8223783 A JP8223783 A JP 8223783A JP H0224363 B2 JPH0224363 B2 JP H0224363B2
Authority
JP
Japan
Prior art keywords
zinc oxide
particles
mol
barium oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58082237A
Other languages
Japanese (ja)
Other versions
JPS59207602A (en
Inventor
Takamichi Momoki
Keiji Juki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP58082237A priority Critical patent/JPS59207602A/en
Publication of JPS59207602A publication Critical patent/JPS59207602A/en
Publication of JPH0224363B2 publication Critical patent/JPH0224363B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は酸化亜鉛を主成分とした低電圧用のバ
リスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a low voltage varistor containing zinc oxide as a main component.

従来、酸化亜鉛を主成分としこれにBi2O3
MgO、Cr2O3、Fe2O3、Sb2O3、CoO、MnO、
NiOなどの電圧敏感性酸化物および電導性酸化物
を加えた組成を成形焼結してなる酸化亜鉛系バリ
スタはそのすぐれた非直線性のために広く用いら
れている。これらの酸化亜鉛系バリスタでは焼結
体厚さ1mmにおける立上り電圧をV1mA/mmと
し種々の立上り電圧のものが製造されているが、
この立上り電圧は焼結体中の酸化亜鉛を主成分と
する結晶粒の大きさによつて決まる。すなわち低
い立上り電圧を得るためには結晶粒を大きく成長
させることが必要であり、逆に高い立上り電圧を
得るためには結晶粒の成長を抑え、小さな結晶粒
から構成することが必要である。前記酸化亜鉛を
主成分としBi2O3、MgO、Cr2O3、Fe2O3
Sb2O3、CoO、MnO、NiOなどを加えてなる酸化
亜鉛系バリスタでは結晶粒の大きさが15μm程度
であり、立上り電圧は組成により約80〜300Vで
ある。また前記組成からSb2O3を除いたものは結
晶粒の大きさが50μm程度、立上り電圧は20〜
40V程度となることも知られている。近年とくに
酸化亜鉛系バリスタの低電圧化の要求が強まり前
記結晶粒の大きなものを含む酸化亜鉛系バリスタ
を得ることが重要な課題となつてきた。この大き
な結晶粒を得る手段としてたとえば特公昭56−
11203号公報に提案された技術がある。これは酸
化亜鉛99.9〜99.5モル%とBaOまたはSrO 0.1〜
0.5モル%を混合したのち仮焼し加水熱分解を行
つて70μm程度の結晶粒を得、該結晶粒を酸化亜
鉛を主成分とする粉末に0.1〜60重量%添加混合
したのち焼結してなるものである。しかしながら
このように加水熱分解によつて結晶粒を得るには
前記酸化亜鉛にBaOまたはSrOを調合しバインダ
を加えて成形し、1300℃程度の高温で仮焼し粉砕
したのち加水熱分解しなければならず、工程数が
非常に多くなる欠点がある。また成形後の仮焼温
度を高くしないと大きな結晶粒が得られず、たと
えば結晶粒の大きさ70μmのものを得るには1300
℃程度の高い仮焼温度を要し、温度管理ならびに
これにともなう焼結炉の材料の選択などの技術
的、価格的問題点でもあつた。また特性的にもこ
の結晶粒を得るための仮焼温度が高いと結晶粒自
体の成長が進んでしまうため活性度が小さくな
り、かつこの結晶粒を酸化亜鉛を主成分とするも
のに加え混合焼結して焼結体を得るときの焼結温
度と前記仮焼温度とが近くなるので結晶粒の成長
は限界近くなり、したがつて焼結体を得るときの
焼結過程において結晶粒がほとんど成長せず焼結
後も前記加水熱分解により得た結晶粒とあまり変
わらない大きさのものしか得られないという欠点
を有していた。
Conventionally, zinc oxide was the main component, and Bi 2 O 3 and
MgO, Cr2O3 , Fe2O3 , Sb2O3 , CoO , MnO ,
Zinc oxide-based varistors, which are formed by molding and sintering a composition containing voltage-sensitive oxides such as NiO and conductive oxides, are widely used because of their excellent nonlinearity. These zinc oxide-based varistors have a rising voltage of V1mA/mm when the thickness of the sintered body is 1 mm, and various types of rising voltage are manufactured.
This rising voltage is determined by the size of crystal grains whose main component is zinc oxide in the sintered body. That is, in order to obtain a low rising voltage, it is necessary to grow large crystal grains, and conversely, in order to obtain a high rising voltage, it is necessary to suppress the growth of crystal grains and to construct the crystal grains from small crystal grains. The above-mentioned zinc oxide is the main component, and Bi 2 O 3 , MgO, Cr 2 O 3 , Fe 2 O 3 ,
In zinc oxide-based varistors made by adding Sb 2 O 3 , CoO, MnO, NiO, etc., the crystal grain size is about 15 μm, and the rise voltage is about 80 to 300 V depending on the composition. In addition, when Sb 2 O 3 is removed from the above composition, the crystal grain size is about 50 μm, and the rise voltage is 20 ~
It is also known that the voltage is around 40V. In recent years, there has been a particularly strong demand for lower voltages for zinc oxide-based varistors, and it has become an important issue to obtain zinc oxide-based varistors containing large crystal grains. As a means of obtaining such large crystal grains, for example,
There is a technique proposed in Publication No. 11203. It contains 99.9-99.5 mol% of zinc oxide and 0.1-99.5 mol% of BaO or SrO
After mixing 0.5 mol %, calcining and hydrothermal decomposition are performed to obtain crystal grains of about 70 μm, and after adding and mixing 0.1 to 60 wt % of the crystal grains to a powder whose main component is zinc oxide, the powder is sintered. It is what it is. However, in order to obtain crystal grains through hydrothermal decomposition, it is necessary to mix BaO or SrO with the zinc oxide, add a binder, shape it, calcinate it at a high temperature of about 1300°C, crush it, and then hydropyrolyze it. However, there is a drawback that the number of steps is extremely large. In addition, large crystal grains cannot be obtained unless the calcination temperature after molding is high; for example, to obtain crystal grains with a size of 70 μm,
It requires a high calcination temperature of about 10.0°C, and there were technical and cost problems in terms of temperature control and the selection of materials for the sintering furnace. Also, in terms of characteristics, if the calcination temperature to obtain these crystal grains is high, the growth of the crystal grains themselves will progress, resulting in a decrease in activity. Since the sintering temperature when sintering to obtain a sintered body and the above-mentioned calcination temperature are close to each other, the growth of crystal grains is close to its limit, and therefore, the crystal grains are It has the disadvantage that it hardly grows, and even after sintering, only crystal grains with a size not much different from those obtained by the hydrothermal decomposition can be obtained.

本発明は上記の点に鑑みてなされたもので、酸
化亜鉛と酸化バリウムとを造粒して得た粒子を、
酸化亜鉛を主成分としこれに少なくとも酸化ビス
ナスを加えた粉粒中に添加混合して焼結すること
により前記粒子を焼結体内部に分散して位置さ
せ、これを核として結晶粒の成長を図るもので、
これによつて焼結体内部に大きな結晶粒を配しバ
リスタの低電圧化を図ることを目的としたもので
ある。以下本発明の詳細を実施例によつて説明す
る。
The present invention has been made in view of the above points, and uses particles obtained by granulating zinc oxide and barium oxide.
By adding and mixing zinc oxide into powder grains with at least bisnuth oxide added thereto and sintering the particles, the particles are dispersed and located inside the sintered body, and crystal grains are grown using these as nuclei. It is intended to
The purpose of this is to arrange large crystal grains inside the sintered body and lower the voltage of the varistor. The details of the present invention will be explained below with reference to Examples.

実施例 1 酸化亜鉛粉末に酸化バリウム粉末をそれぞれ
0.003モル%、0.01モル%、0.03モル%、0.1モル
%、0.3モル%、1.0モル%、3.0モル%添加混合し
て7種の酸化亜鉛+酸化バリウムの混合粉末を
得、これにバインダと水を加えて混合する。これ
をスプレードライヤに入れて造粒すると前記混合
粉末に加えた水が蒸発した球状粒子を得ることが
できる。この球状粒子はその粒径が約3〜200μ
mの大きさを有するが、60〜120μmの粒子がも
つとも多く20μm程度の粒子は非常に少ない。前
記酸化亜鉛+酸化バリウムによる7種の粒子を篩
で選別して平均粒径100μmの酸化亜鉛+酸化バ
リウムの粒子を得、これを酸化亜鉛94.5モル%+
MgO 3モル%+Bi2O3 0.5モル%+CoO 1.0モル
%+MnO 0.5モル%+NiO 0.5モル%からなる主
組成に対しそれぞれ0.1重量%、0.3重量%、10重
量%、30重量%、60重量%添加混合し、これを成
形したのち1100〜1400℃の温度で1〜8時間焼結
した焼結体の立上り電圧を酸化亜鉛への酸化バリ
ウムの添加量との関連にについて表わしたのが第
1図であり同じく非直線係数αを表わしたのが第
2図である。いずれも曲線Aは主組成に対する酸
化亜鉛+酸化バリウム粒子の添加量が0.1重量%
の場合、同じく曲線Bは0.3重量%、曲線Cは10
重量%、曲線Dは30重量%、曲整Eは60重量%の
場合である。また第3図には平均粒径100μmの
酸化亜鉛+酸化バリウム粒子を用い、前記主組成
に対するこの粒子の添加量と立上り電圧との関係
を示す曲線図、第4図はこの粒子の添加量と非直
線係数との関係を示す曲線図であるが、いずれも
曲線Fは酸化亜鉛+酸化バリウム粒子の酸化亜鉛
に対する酸化バリウムの添加量が0.003モル%の
場合、曲線Gは0.01モル%、曲線Hは0.1モル%、
曲線Iは1.0モル%、曲線Jは3.0モル%の場合を
示したものである。さらに第5図には酸化亜鉛に
対し酸化バリウムを0.1モル%添加した酸化亜鉛
+酸化バリウム粒子を前記主組成に対し10重量%
添加したときの酸化亜鉛+酸化バリウム粒子の大
きさと立上り電圧との関係を示す曲線図であり、
第6図は粒子の大きさと非直線係数との関係を示
す曲線図である。この結果から明らかなように第
1図の立上り電圧では酸化亜鉛に添加する酸化バ
リウムの量は曲線Aを除き0.01モル%以上が良好
であるが、第2図の非直線係数では曲線Eを除き
酸化バリウム添加量1.0モル%までは良好であり
これを越えると急激に低下するという結果を示し
ている。この第1図および第2図の結果から酸化
亜鉛に添加する酸化バリウムの量は0.01〜1.0モ
ル%が良好であり、かつこの酸化亜鉛+酸化バリ
ウム粒子を主組成に添加する量は0.3〜30重量%
が良好である。そして第3図および第4図でも酸
化亜鉛+酸化バリウム粒子中の酸化バリウム添加
量による特性への影響は曲線Fが第3図の立上り
電圧特性が劣つており、また第4図の曲線Jが非
直線係数が劣つていることを示している。そして
第3図では主組成に対する酸化亜鉛+酸化バリウ
ム粒子の添加量では0.3重量%から顕著な効果を
示し、第4図では30重量%までは良好だがこれを
越えると急激に劣化することを示している。した
がつて主組成に対する酸化亜鉛+酸化バリウム粒
子の添加量は0.3〜30重量%が良好であり、かつ
前述のように曲線FおよびJを除外した曲線G,
H,Iが良好な結果を示していることから酸化亜
鉛に対する酸化バリウムの添加量は0.01〜1.0モ
ル%である。したがつてこの範囲は第1図および
第2図と全く同一な結果を示している。
Example 1 Adding barium oxide powder to zinc oxide powder
0.003 mol%, 0.01 mol%, 0.03 mol%, 0.1 mol%, 0.3 mol%, 1.0 mol%, 3.0 mol% were added and mixed to obtain a mixed powder of seven types of zinc oxide + barium oxide, which was then added with a binder and water. Add and mix. When this is placed in a spray dryer and granulated, spherical particles in which the water added to the mixed powder has evaporated can be obtained. These spherical particles have a particle size of approximately 3 to 200μ.
It has a size of m, but there are many particles with a size of 60 to 120 μm, and there are very few particles with a size of about 20 μm. The seven types of particles of zinc oxide + barium oxide were sorted with a sieve to obtain particles of zinc oxide + barium oxide with an average particle size of 100 μm, which were mixed with 94.5 mol% zinc oxide +
Added 0.1% by weight, 0.3% by weight, 10% by weight, 30% by weight, and 60% by weight, respectively, to the main composition consisting of 3 mol% MgO + 0.5 mol% Bi 2 O 3 + 1.0 mol% CoO + 0.5 mol% MnO + 0.5 mol% NiO. Figure 1 shows the relationship between the rise voltage of the sintered body which was mixed, molded, and sintered at a temperature of 1100 to 1400°C for 1 to 8 hours in relation to the amount of barium oxide added to zinc oxide. Similarly, FIG. 2 shows the nonlinear coefficient α. In both curves, the amount of zinc oxide + barium oxide particles added to the main composition is 0.1% by weight.
In the same case, curve B is 0.3% by weight and curve C is 10% by weight.
Curve D is 30% by weight, curve E is 60% by weight. Furthermore, Fig. 3 is a curve diagram showing the relationship between the amount of addition of these particles and the rise voltage with respect to the main composition using zinc oxide + barium oxide particles with an average particle size of 100 μm, and Fig. 4 is a curve diagram showing the relationship between the amount of addition of these particles and the rise voltage. These are curve diagrams showing the relationship with the non-linear coefficient. Curve F is 0.003 mol% of barium oxide to zinc oxide in zinc oxide + barium oxide particles, curve G is 0.01 mol%, and curve H is 0.01 mol%. is 0.1 mol%,
Curve I shows the case of 1.0 mol%, and curve J shows the case of 3.0 mol%. Furthermore, Fig. 5 shows zinc oxide + barium oxide particles containing 0.1 mol% of barium oxide to zinc oxide, which is 10% by weight of the main composition.
It is a curve diagram showing the relationship between the size of zinc oxide + barium oxide particles and the rise voltage when added,
FIG. 6 is a curve diagram showing the relationship between particle size and nonlinear coefficient. As is clear from this result, for the rising voltage in Figure 1, the amount of barium oxide added to zinc oxide is good at 0.01 mol% or more, except for curve A, but for the nonlinear coefficients in Figure 2, except for curve E. The results show that the addition amount of barium oxide is good up to 1.0 mol %, but when it exceeds this, it decreases rapidly. From the results shown in Figures 1 and 2, the amount of barium oxide added to zinc oxide is preferably 0.01 to 1.0 mol%, and the amount of zinc oxide + barium oxide particles added to the main composition is 0.3 to 30%. weight%
is good. Also in Figures 3 and 4, the influence of the amount of barium oxide added in the zinc oxide + barium oxide particles on the characteristics is that curve F has poor rise voltage characteristics in Figure 3, and curve J in Figure 4 has an inferior rise voltage characteristic. This shows that the nonlinear coefficient is inferior. Figure 3 shows that the amount of zinc oxide + barium oxide particles added to the main composition shows a remarkable effect from 0.3% by weight, and Figure 4 shows that it is good up to 30% by weight, but deteriorates rapidly beyond this. ing. Therefore, the addition amount of zinc oxide + barium oxide particles to the main composition is preferably 0.3 to 30% by weight, and as mentioned above, curves G, excluding curves F and J,
Since H and I have shown good results, the amount of barium oxide added to zinc oxide is 0.01 to 1.0 mol%. Therefore, this range shows exactly the same results as in FIGS. 1 and 2.

さらに酸化亜鉛+酸化バリウムの粒子径と立上
り電圧および非直線係数との関係を第5図および
第6図を示す。なお試料は酸化亜鉛に添加する酸
化バリウム量を0.1モル%とし上記実施例と同じ
組成からなる主組成に対し酸化亜鉛+酸化バリウ
ムを10重量%添加混合した粒子を用いたものであ
る。第5図および第6図において従来とあるのは
主組成に直接実施例と同じ量の酸化亜鉛と酸化バ
リウム粉末を添加し、これらを混合して1100〜
1400℃の温度で1〜8時間いつしよに焼結した場
合を示し酸化亜鉛+酸化バリウムの造粒工程を省
いたものである。これによればスプレードライヤ
で造粒した酸化亜鉛+酸化バリウム粒子の平均粒
径が10μmでは非直線係数が従来と変化なく、か
つ立上り電圧V1mA/mmが従来の39Vから30Vに
低下し非常に低電圧のパリスタを得られることは
明白であり、平均粒径が大となるにしたがつて立
上り電圧は急激な低下を示す。しかし非直線係数
は従来30に対し平均粒径100μmを越えると急激
に低下しはじめ、200μmでは21を示しこの値は
十分使用できる値であるが、300μmではさらに
低下して9となり使用できない数値となる。以上
のことから酸化亜鉛+酸化バリウムを造粒したと
きの粒径は10〜200μmが適当な範囲と定めるこ
とができる。
Further, FIGS. 5 and 6 show the relationship between the particle diameter of zinc oxide + barium oxide, the rising voltage, and the nonlinear coefficient. The sample used particles in which 10% by weight of zinc oxide and barium oxide were added to the main composition of the same composition as in the above example, with the amount of barium oxide added to zinc oxide being 0.1 mol%. In Fig. 5 and Fig. 6, the conventional method is to directly add the same amount of zinc oxide and barium oxide powder as in the example to the main composition, and to mix these together.
This shows the case of continuous sintering at a temperature of 1400°C for 1 to 8 hours, and the step of granulating zinc oxide + barium oxide is omitted. According to this, when the average particle size of zinc oxide + barium oxide particles granulated with a spray dryer is 10 μm, the nonlinear coefficient remains unchanged from the conventional one, and the rise voltage V1mA/mm decreases from the conventional 39V to 30V, which is extremely low. It is clear that a voltage pallister can be obtained, with the rise voltage decreasing rapidly as the average grain size increases. However, the nonlinear coefficient starts to decrease rapidly when the average particle size exceeds 100 μm, compared to the conventional 30. At 200 μm, it reaches 21, which is a sufficiently usable value, but at 300 μm, it decreases further to 9, which is an unusable value. Become. From the above, it can be determined that the appropriate particle size for granulating zinc oxide + barium oxide is 10 to 200 μm.

この結果から酸化亜鉛粉末に対し0.01〜1.0モ
ル%の酸化バリウムを添加して造粒し平均粒径10
〜200μmの酸化亜鉛+酸化バリウム粒子を得、
これを酸化亜鉛+MgO+Bi2O3+CoO+MnO+
NiOからなる主組成に対し0.3〜30重量%添加し
て混合粒子とし、ともに焼結することによつて立
上り電圧や非直線係数などの特性の優れた低電圧
用バリスタを得ることができる。
Based on this result, we added 0.01 to 1.0 mol% barium oxide to zinc oxide powder and granulated it with an average particle size of 10.
~200μm zinc oxide + barium oxide particles were obtained,
This is zinc oxide + MgO + Bi 2 O 3 + CoO + MnO +
By adding 0.3 to 30% by weight of NiO to the main composition to form mixed particles and sintering them together, a low voltage varistor with excellent characteristics such as rise voltage and nonlinear coefficient can be obtained.

実施例 2 前記実施例1では主組成として酸化亜鉛+
MgO+Bi2O3+CoO+MnO+NiOからなるもの
を使用した場合について述べたが、この実施例2
ではこれにSb2O3およびCr2O3を加えて主組成と
した場合について述べる。Sb2O3やCr2O3は酸化
亜鉛の結晶粒成長を助長させるビスマスなどの低
融点金属やこれらの酸化物の中へ早期に拡散する
ので酸化亜鉛の粒成長を阻害する性質を有してい
る。したがつてSb2O3やCr2O3を含む酸化亜鉛を
主成分とするバリスタでは酸化亜鉛の結晶粒成長
が望めず結晶が小さくなるので比較的高電圧用に
用いられ低電圧用には不適とされているものであ
る。まず酸化亜鉛粉末に酸化バリウム粉末をそれ
ぞれ0.003モル%、0.01モル%、0.03モル%、0.1
モル%、0.3モル%、3.0モル%添加混合してスプ
レードライヤで造粒し7種の酸化亜鉛+酸化バリ
ウム粒子を得、以下実施例1と同様にして平均粒
径100μmの酸化亜鉛+酸化バリウムの球状粒子
を得た。この粒子を酸化亜鉛94モル%+MgO 3
モル%+Bi2O3 0.5モル%+CoO 1.0モル%+
MnO 0.5モル%+NiO 0.5モル%+Sb2O3 0.3モ
ル%+Cr2O3 0.2モル%からなる主組成に対し、
0.1重量%、0.3重量%、10重量%、30重量%、60
重量%をそれぞれ添加混合してこれを成形したの
ち1100〜1400℃の温度で1〜8時間焼結したとき
の立上り電圧を酸化亜鉛への酸化バリウムの添加
量との関連において第7図、同じく非直線係数を
第8図に示した。いずれも曲線Kは主組成に対す
る酸化亜鉛+酸化バリウム粒子の添加量が0.1重
量%の場合、曲線Lは0.3重量%、曲線Mは10重
量%、曲線Nは30重量%、曲線Oは60重量%の場
合を示す。また第9図には平均粒径100μmの酸
化亜鉛+酸化バリウム粒子を用い前記主組成に対
するこの粒子の添加量と立上り電圧との関係を示
す曲線図を、そして第10図にはこの粒子の添加
量と非直線係数との関係を示す曲線図を示した。
なお曲線Pは酸化亜鉛+酸化バリウム粒子の酸化
亜鉛に対する酸化バリウムの添加量が0.003モル
%の場合、曲線Qは0.01モル%、曲線Rは0.1モ
ル%、曲線Sは1.0モル%、曲線Tは3.0モル%の
場合を示したものである。そして第11図には酸
化亜鉛に対し酸化バリウムを0.1モル%添加した
酸化亜鉛+酸化バリウム粒子を主組成に対し10重
量%添加したときの酸化亜鉛+酸化バリウム粒子
の大きさと立上り電圧との関係を示す曲線図であ
り、第12図は粒子の大きさと非直線径数との関
係を示す曲線図である。なおそれぞれの焼結は
1100〜1400℃の温度で1〜8時間行つた。
Example 2 In Example 1, the main composition was zinc oxide +
Although we have described the case where MgO + Bi 2 O 3 + CoO + MnO + NiO is used, this Example 2
Now, we will discuss the case where Sb 2 O 3 and Cr 2 O 3 are added to this as the main composition. Sb 2 O 3 and Cr 2 O 3 have the property of inhibiting the grain growth of zinc oxide because they quickly diffuse into low melting point metals such as bismuth, which promote grain growth of zinc oxide, and these oxides. ing. Therefore, in varistors whose main component is zinc oxide containing Sb 2 O 3 or Cr 2 O 3 , crystal grain growth of zinc oxide cannot be expected and the crystals become small, so they are used for relatively high voltage applications and are not used for low voltage applications. It is considered inappropriate. First, barium oxide powder was added to zinc oxide powder at 0.003 mol%, 0.01 mol%, 0.03 mol%, and 0.1 mol%, respectively.
mol%, 0.3 mol%, and 3.0 mol% were added and mixed and granulated using a spray dryer to obtain seven types of zinc oxide + barium oxide particles. spherical particles were obtained. These particles are mixed with 94 mol% zinc oxide + 3 MgO
Mol% + Bi 2 O 3 0.5 mol% + CoO 1.0 mol% +
For the main composition consisting of 0.5 mol% MnO + 0.5 mol% NiO + 0.3 mol% Sb 2 O 3 + 0.2 mol% Cr 2 O 3 ,
0.1% by weight, 0.3% by weight, 10% by weight, 30% by weight, 60
Figure 7 shows the rise voltage when sintering at a temperature of 1,100 to 1,400°C for 1 to 8 hours after adding and mixing the respective weight percentages and molding the resulting product, in relation to the amount of barium oxide added to zinc oxide. The nonlinear coefficients are shown in Figure 8. In each case, when the amount of zinc oxide + barium oxide particles added to the main composition is 0.1% by weight, curve K is 0.3% by weight, curve M is 10% by weight, curve N is 30% by weight, and curve O is 60% by weight. Indicates the case of %. Furthermore, Fig. 9 shows a curve diagram showing the relationship between the amount of these particles added to the main composition and the rise voltage using zinc oxide + barium oxide particles with an average particle size of 100 μm, and Fig. 10 shows the relationship between the amount of these particles added to the main composition and the rise voltage. A curve diagram showing the relationship between the amount and the nonlinear coefficient is shown.
Curve P is 0.003 mol% of barium oxide to zinc oxide in zinc oxide + barium oxide particles, curve Q is 0.01 mol%, curve R is 0.1 mol%, curve S is 1.0 mol%, and curve T is The figure shows the case of 3.0 mol%. Figure 11 shows the relationship between the size of zinc oxide + barium oxide particles and the rise voltage when 10% by weight of zinc oxide + barium oxide particles with 0.1 mol% of barium oxide added to the main composition. FIG. 12 is a curve diagram showing the relationship between particle size and nonlinear diameter number. In addition, each sintering
It was carried out at a temperature of 1100-1400°C for 1-8 hours.

これらの結果から明らかなように第7図および
第8図に示した立上り電圧と非直線係数は実施例
1の第1図・第2図より顕著ではないが、曲線K
およびOを除き酸化亜鉛に添加する酸化バリウム
の混合量が0.01〜1.0モル%の範囲で良好である。
したがつて第7図および第8図の結果から酸化亜
鉛に添加する酸化バリウムの量は0.01〜1.0モル
%で、かつこの酸化亜鉛+酸化バリウム粒子を主
組成に添加する量は0.3〜30重量%の範囲が良好
である。この範囲が特性上良好な結果を示すこと
は第9図および第10図からも確認できる。そし
て実施例1と同様、酸化亜鉛+酸化バリウム粒子
の大きさと立上り電圧および非直線係数との関係
を第11図および第12図に示す。試料は酸化亜
鉛に添加する酸化バリウム量を0.1モル%とし主
組成に対し酸化亜鉛+酸化バリウム粒子を10重量
%添加したものを用いた。図において従来とある
のは主組成に直接該実施例と同じ量の酸化亜鉛と
酸化バリウム粉末を添加混合して焼結した場合を
示したものである。この結果立上り電圧および非
直線係数とも絶対値は大きいものの実施例1と同
様の特性傾向を示しており、酸化亜鉛+酸化バリ
ウム粒子の平均粒径が10〜200μmが適当な範囲
とすることができる。
As is clear from these results, the rising voltage and nonlinear coefficient shown in FIGS. 7 and 8 are not as remarkable as those in FIGS. 1 and 2 of Example 1, but the curve K
It is preferable that the amount of barium oxide added to zinc oxide, excluding O and O, is in the range of 0.01 to 1.0 mol%.
Therefore, from the results shown in Figures 7 and 8, the amount of barium oxide added to zinc oxide is 0.01 to 1.0 mol%, and the amount of zinc oxide + barium oxide particles added to the main composition is 0.3 to 30% by weight. % range is good. It can be confirmed from FIGS. 9 and 10 that this range shows good results in terms of characteristics. As in Example 1, the relationship between the size of the zinc oxide+barium oxide particles, the rising voltage, and the nonlinear coefficient is shown in FIGS. 11 and 12. The sample used was one in which the amount of barium oxide added to zinc oxide was 0.1 mol%, and 10% by weight of zinc oxide + barium oxide particles was added to the main composition. In the figure, "conventional" indicates the case where zinc oxide and barium oxide powder were added and mixed directly to the main composition in the same amounts as in the embodiment and sintered. As a result, although the absolute values of both the rise voltage and the nonlinear coefficient are large, they show the same characteristic tendency as in Example 1, and the average particle size of the zinc oxide + barium oxide particles can be set in an appropriate range of 10 to 200 μm. .

この実施例2では酸化亜鉛粉末に対し0.01〜
1.0モル%の酸化バリウムを添加して造粒し平均
粒径10〜200μmの酸化亜鉛+酸化バリウム粒子
を得、これを酸化亜鉛+MgO+Bi2O3+CoO+
MnO+MiO+Sb2O3+Cr2O3からなる主組成に対
し0.3〜30重量%添加混合し、これをいつしよに
焼結することによつて立上り電圧や非直線係数特
性の優れたバリスタを得ることができる。したが
つて酸化亜鉛の結晶粒成長を阻害するSb2O3
Cr2O3を含む主組成に酸化亜鉛+酸化バリウム粒
子を添加した場合でも結晶粒は成長するので低電
圧化できる効果を有する。
In this Example 2, 0.01~
Granulation is performed by adding 1.0 mol% barium oxide to obtain zinc oxide + barium oxide particles with an average particle size of 10 to 200 μm, which are then combined into zinc oxide + MgO + Bi 2 O 3 + CoO +
To obtain a varistor with excellent rise voltage and nonlinear coefficient characteristics by adding and mixing 0.3 to 30% by weight to the main composition consisting of MnO + MiO + Sb 2 O 3 + Cr 2 O 3 and sintering this in time. Can be done. Therefore, Sb 2 O 3 and
Even when zinc oxide + barium oxide particles are added to the main composition containing Cr 2 O 3 , the crystal grains grow, which has the effect of lowering the voltage.

以上述べたように本発明によればあらかじめ酸
化亜鉛+酸化バリウム粉末を造粒したのちこれを
酸化亜鉛を主とする主組成に添加混合−成形し焼
結してバリスタを得るもので、このバリスタは結
晶粒径が大きいので非直線係数を低下させずに立
上り電圧を低下させる特性を有し低電圧用に適す
るものである。また実施例では主組成として酸化
亜鉛、酸化ビスマスにほかMgO、CoO、MnO、
NiO、Sb2O3、Cr2O3を添加した場合について述
べたが、その他の金属酸化物たとえばSiO2
CuO、Al2O3、BaO、CaO、SrO、PbO、SnO2
Ag2O、TiO2、ZrO2、La2O3、Pr6O11、Fe2O3
B2O3などを添加してもよく、空気中高温で酸化
物になるものならばこれらに限るものではない。
しかし本発明は主組成としての酸化亜鉛と酸化ビ
スマスとに酸化亜鉛+酸化バリウム粒子を加えた
焼結体からなるものでバリスタの低電圧化の効果
を得ることができるものであつて、前記MgO、
CoOなどの金属酸化物はバリスタとしての特性を
向上させる効果は有するが本発明の要旨たる低電
圧化という観点からは必須要件ではない。
As described above, according to the present invention, a varistor is obtained by granulating zinc oxide + barium oxide powder in advance, adding it to a main composition mainly consisting of zinc oxide, mixing, molding, and sintering. Since the crystal grain size is large, it has the property of reducing the rise voltage without reducing the nonlinear coefficient, and is suitable for low voltage applications. In addition to zinc oxide and bismuth oxide, the main components in the examples include MgO, CoO, MnO,
Although the case of adding NiO, Sb 2 O 3 and Cr 2 O 3 has been described, other metal oxides such as SiO 2 ,
CuO, Al2O3 , BaO, CaO, SrO , PbO, SnO2 ,
Ag 2 O, TiO 2 , ZrO 2 , La 2 O 3 , Pr 6 O 11 , Fe 2 O 3 ,
B 2 O 3 or the like may be added, but is not limited to these as long as it becomes an oxide at high temperature in air.
However, the present invention is made of a sintered body in which zinc oxide and barium oxide particles are added to zinc oxide and bismuth oxide as the main composition, and it is possible to obtain the effect of lowering the voltage of the varistor. ,
Although a metal oxide such as CoO has the effect of improving the characteristics of a varistor, it is not an essential requirement from the viewpoint of lowering the voltage, which is the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれも本発明および参考例、従来例の
特性を示す曲線図で第1図は酸化亜鉛に対する酸
化バリウムの添加量と立上り電圧の関係、第2図
は同じく酸化バリウムの添加量と非直線係数との
関係、第3図は主組成に対する酸化亜鉛+酸化バ
リウム粒子の添加量と立上り電圧との関係、第4
図は同じく酸化亜鉛+酸化バリウム粒子の添加量
と非直線係数との関係、第5図は酸化亜鉛+酸化
バリウム粒子の平均粒径と立上り電圧との関係、
第6図は同じく酸化亜鉛+酸化バリウム粒子の平
均粒径と非直線係数との関係、第7図〜第12図
は他の実施例による特性を示す曲線図であり第7
図は酸化亜鉛に対する酸化バリウムの添加量と立
上り電圧の関係、第8図は同じく酸化バリウムの
添加量と非直線係数との関係、第9図は主組成に
対する酸化亜鉛+酸化バリウム粒子の添加量と立
上り電圧との関係、第10図は同じく酸化亜鉛+
酸化バリウム粒子の添加量と非直線係数との関
係、第11図は酸化亜鉛+酸化バリウム粒子の平
均粒径と立上り電圧との関係、第12図は同じく
酸化亜鉛+酸化バリウム粒子の平均粒径と非直線
係数との関係を示す曲線図である。
The drawings are all curve diagrams showing the characteristics of the present invention, reference examples, and conventional examples. Figure 1 shows the relationship between the amount of barium oxide added to zinc oxide and the rise voltage, and Figure 2 shows the relationship between the amount of barium oxide added and the non-linearity. Figure 3 shows the relationship between the amount of zinc oxide + barium oxide particles added to the main composition and the rise voltage.
The figure also shows the relationship between the amount of zinc oxide + barium oxide particles added and the nonlinear coefficient, and Figure 5 shows the relationship between the average particle diameter of zinc oxide + barium oxide particles and the rising voltage.
FIG. 6 similarly shows the relationship between the average particle diameter and nonlinear coefficient of zinc oxide + barium oxide particles, and FIGS. 7 to 12 are curve diagrams showing characteristics according to other examples.
The figure shows the relationship between the amount of barium oxide added to zinc oxide and the rise voltage, Figure 8 shows the relationship between the amount of barium oxide added and the nonlinear coefficient, and Figure 9 shows the amount of zinc oxide + barium oxide particles added to the main composition. Figure 10 shows the relationship between the voltage and the rising voltage.
The relationship between the amount of barium oxide particles added and the nonlinear coefficient, Figure 11 shows the relationship between the average particle size of zinc oxide + barium oxide particles and the rise voltage, and Figure 12 shows the average particle size of zinc oxide + barium oxide particles. It is a curve diagram showing the relationship between and a nonlinear coefficient.

Claims (1)

【特許請求の範囲】 1 酸化亜鉛粉末と酸化バリウム粉末とを混合し
たのち造粒し酸化亜鉛+酸化バリウム粒子を得る
工程と、該粒子を平均粒径により選別する工程
と、該工程で選別した粒子を少なくとも酸化亜鉛
と酸化ビスマスを含む主組成に添加混合して混合
粒子を得る工程と、該工程ののち混合粒子を成形
焼結する工程とを具備したことを特徴とするバリ
スタの製造方法。 2 造粒をスプレードライヤで行うことを特徴と
する特許請求の範囲第1項記載のバリスタの製造
方法。 3 酸化亜鉛に添加する酸化バリウムの混合量が
0.01〜1.0モル%であることを特徴とする特許請
求の範囲第1項または第2項記載のバリスタの製
造方法。 4 酸化亜鉛+酸化バリウム粒子の平均粒径が10
〜200μmであることを特徴とする特許請求の範
囲第1項〜第3項のいずれかに記載のバリスタの
製造方法。 5 主組成に添加混合する酸化亜鉛+酸化バリウ
ム粒子の添加量が0.3〜30重量%であることを特
徴とする特許請求の範囲第1項〜第4項のいずれ
かに記載のバリスタの製造方法。
[Claims] 1. A step of mixing zinc oxide powder and barium oxide powder and then granulating them to obtain zinc oxide + barium oxide particles, a step of sorting the particles according to their average particle size, and a step of sorting the particles in the step. 1. A method for manufacturing a varistor, comprising the steps of: adding and mixing particles to a main composition containing at least zinc oxide and bismuth oxide to obtain mixed particles; and after this step, shaping and sintering the mixed particles. 2. The method for manufacturing a varistor according to claim 1, wherein the granulation is performed using a spray dryer. 3 The amount of barium oxide added to zinc oxide is
The method for manufacturing a varistor according to claim 1 or 2, wherein the content is 0.01 to 1.0 mol%. 4 The average particle size of zinc oxide + barium oxide particles is 10
The method for manufacturing a varistor according to any one of claims 1 to 3, wherein the thickness is 200 μm. 5. The method for manufacturing a varistor according to any one of claims 1 to 4, characterized in that the amount of zinc oxide + barium oxide particles added and mixed to the main composition is 0.3 to 30% by weight. .
JP58082237A 1983-05-10 1983-05-10 Method of producing varistor Granted JPS59207602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58082237A JPS59207602A (en) 1983-05-10 1983-05-10 Method of producing varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58082237A JPS59207602A (en) 1983-05-10 1983-05-10 Method of producing varistor

Publications (2)

Publication Number Publication Date
JPS59207602A JPS59207602A (en) 1984-11-24
JPH0224363B2 true JPH0224363B2 (en) 1990-05-29

Family

ID=13768797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58082237A Granted JPS59207602A (en) 1983-05-10 1983-05-10 Method of producing varistor

Country Status (1)

Country Link
JP (1) JPS59207602A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630283B2 (en) * 1985-10-29 1994-04-20 株式会社東芝 Non-linear resistor manufacturing method

Also Published As

Publication number Publication date
JPS59207602A (en) 1984-11-24

Similar Documents

Publication Publication Date Title
JPH0142602B2 (en)
JPH0224363B2 (en)
JPH0142609B2 (en)
JPS644645B2 (en)
JPH0142610B2 (en)
JPH0142608B2 (en)
JPH0142604B2 (en)
JPH0142601B2 (en)
JPH0142603B2 (en)
JPH0224361B2 (en)
JP2751511B2 (en) Method of manufacturing voltage non-linear resistor
JPH0552642B2 (en)
JPH0224362B2 (en)
KR900001979B1 (en) Process for the preparation of voltage non-linearity type resistors
JP2548297B2 (en) Varistor manufacturing method
JPH0795482B2 (en) Varistor manufacturing method
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JP2558811B2 (en) Varistor manufacturing method
JP2548298B2 (en) Varistor manufacturing method
JPH0383846A (en) Production of varistor
JPH07249505A (en) Manufacture of nonlinear resistor
JPH02248003A (en) Manufacture of voltage dependent nonlinear resistor for low voltage
JPS5939884B2 (en) Voltage nonlinear resistor ceramic composition and its manufacturing method
JPH0510804B2 (en)
JPH09326304A (en) Manufacture of nonlinear voltage resistor element for low voltage